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PREFACE

This book is the outgro,vth of a course in vacuum-tube design given
for many years at Stanford University to senior and graduate students in
electrical engineering and physics. It is concerned \vith the determina
tion of vacuum-tube characteristics in terms of the electron action within
the tube. The book attempts to bridge the gap between the physical
laws that lie behind the electron behavior and the external characteristics
of the tubes themselves.

It is hoped that the point of vie'v taken ,vill be acceptable to both
physicists and engineers. The development of the physicalla\vs involved
is indicated, after which emphasis is placed upon their description and
utilization. Although this book cannot pretend to give much design
information, the attempt has been to include enough of the basic relations,
physical data, and significant references to make it a useful reference
source to vacuum experimenters and tube designers.

Vacuum tubes may seem a rather special subject to which to restrict
the material in a book. Actually this is not so. In preparing the book
so much material was collected that the contents had to be restricted to
first-order effects. It is felt that although engineers and physicists work
ing \vith vacuum tubes are primarily concerned with the utilization of
already developed tubes, the successful application of these tubes is
greatly enhanced by a kno\vledge of their limitations and an understand
ing of the origin of their characteristics. This is particularly true since
there are many occasions when it is desired to use tubes under conditions
different from those specified by the manufacturer. Under these condi
tions it is imperative to know ho\v far one may depart from recommended
operating conditions \vithout exceeding some design limitation of the
tube. This, in turn, requires a kno\vledge of how the tube operates.

Circuits and tube applications are so completely covered in the text
book and periodical literature that no effort has been made to include
information on these subjects. Only in the case of ultra-high-frequency
tubes where the tube cannot be completely separated from the circuit
have circuit considerations been included.

The author is indebted to many people for assistance rendered in the
preparation of this book. lIe is particularly indebted to Dr. F. E. Ter-
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man, dean of the Stanford School of Engineering, who was a constant
source of inspiration and encouragement, and who made many valuable
suggestions and gave much direct assistance in checking the work. The
author is also indebted to Prof. Paul Kirkpatrick, head of the Physics
Department at Stanford, for suggestions on the material of Chaps. 3 to
6 and 9; to Prof. L. Marton for suggestions on the material of Chaps. 13
to 15 and 20; and to C. V. Litton for much information and suggestions
relative to Chap. 21. He is indebted to Evelyn G. Sarson, who typed a
large part of the manuscript in its final form. O. O. Pardee and Will
Harman assisted in the correction of the entire work. Lastly, the author
is more than a little indebted to his ,vife, ,vho personally typed much of
the manuscript and ,vas a source of constant assistance.

K~RL R. SPANGENBERG

PALO ALTO, CALIF.

Januarv, 1948
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CIIAPTER 1

INTRODUCTION

VACUUM tubes are found as basic or auxiliary elements in numerous
technical devices no\v in use. rI'hey are indispensable in communication
systems and industrial control. Their development has facilitated
advances in the fields of po\ver and transportation. Without the
vacuum tube \ve should be back in the days of the gravity-cell telegraph
and the ringer telephone.

In the United States the number of vacuum tubes in use is several
times the number of human beings and household pets. The 50,000,000
radio sets manufactured in the United States in the year 1947J alone
contained more vacuum tubes than the adult population of the country.
Associated with the 25,000,000 telephones and 120,000,000 miles of tele
phone and telegraph wire in the United States are many more vacuum
tubes. Various industrial devices include almost as many more. The
United States uses nearly half the world's total of vacuum tubes.

One may conclude that there are many vacuum tubes in use. They
must be of some importance. Theyare.

1.1. Devices Using Vacuum Tubes. This book is more concerned
with the properties and functions of vacuum tubes than with the systems
utilizing these properties. Ho\vever, it is well to be reminded of the
extent of vacuum-tube applications and the degree to \vhich \ve are
dependent upon them. The follo\ving devices are totally dependent
upon vaccum tubes.

Radio Receivers. These are too well kno,vn to require much descrip
tion. They range from portable receivers the size of a brick and capable
of receiving local broadcast stations to large-size all-\vave receivers
capable of picking up a signal stronger than the noise level from any
point on the globe. ~~ven the smallest receivers use 4 or 5 vacuum tubes.
The average home receiver has about 7 tubes. An all-wave receiver may
have 20 or more tubes.

Radio Transmitters. Transmitters range from portable ,valkie-talkie
sets to large po,ver-broadcast and short-wave stations. In output power
they vary from 0.1 \vatt to hundreds of kilo\vatts. In frequency they
may range from 100 kc to 6O,(X){) mc. The short-,vave transmitters are
capable of producing an audible signal at any point on the earth's surface.

1



2 VACUUM TUBES

Transmitters may use voice or code. 'fhey may incorporate static
elimination or secrecy features in their operation. A small transmitter
may use only a few vacuum tubes. The largest transmitters may use
50 or more tubes.

Long-distance Wire Telephones. The connections between telephone
stations on the same continent are effected by wire transmission lines
rather than by radio. When the distance between telephone stations is
large, it is necessary to amplify the speech energy about every 16 miles
for cables and every 50 miles for open-wire lines. Each speech amplifier
contains several vacuum tubes and amplifies the speech power from about
10 microwatts to about 1 milliwatt, a power amplification of 100. Thus
a telephone call from San Francisco to New York passes through 30 or
more speech amplifiers.

Television Systems. Television systems achieve the modern miracle of
reproducing a visual scene at a point remote from the original. This is
done entirely with vacuum tubes and electrical-circuit elements. No me
chanical devices are needed. In its present stage of development the
reproduced picture as vie,ved from 6 it on an 8-in. cathode-ray-tube
screen is as good as a motion picture seen from the first row of the balcony.
Each television transmitter contains hundreds of vacuum tubes, including
a special camera tube. Every television receiver contains 20 or more
tubes, including a special viewing tube.

Measurement Devices. Electronic measurement devices are too
numerous to mention. Quantities that can be measured, besides all the
electrical quantities, are color, weight, light intensity, odor, time interval,
and many others. In fact, it can be said that any quantity which can
be measured at all can probably be measured by electronic means.

Industrial Control. The number of electronic industrial-control
devices is legion. They include counting circuits, sorting systems, illu
mination-control systems, welding-control devices, and liquid- and
gaseous-flow regulators. Typical devices are those which automatically
regulate temperature or humidity. All these devices have their primary
dependence upon the vacuum tubes in them.

In addition to the above devices, \vhich are totally dependent upon
vacuum tubes, there are many others that have acquired a strong depend
ence upon electronic devices. Thus all commercial flying makes constant
use of radio communications to keep posted on the weather and on
terminal traffic and to keep ground stations posted on plane positions
as well as to guide the planes directly. The invasion of other fields by
electronics has already been considerable and is bound to be greater in
time to come.

1.2. Functions of Vacuum Tubes. Although the applications of
vacuum tubes are almost infinite, the specific functions that vacuum tubes
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can perform by virtue of their o\vn properties are relatively few. It is
these few fundamental functions and their combinations that give rise
to the numerous applications.

A list of the functions of vacuum tubes is bound to be an arbitrary
one since the tube cannot function by itself without an associated circuit.
Ho,vever, some of the jobs that vacuum tubes can perform are so funda
mental that they may be considered properties of the tube itself, inde
pendent of the associated circuits.

The principal functions that may be performed by vacuum tubes are
listed below.

Rectification. Vacuum tubes are able to convert alternating currents
to direct currents. This is known as "rectification." Rectification is an
inherent property of vacuum tubes because current can flow in only one
direction from a source of electrons.

If a sinusoidal wave of voltage is applied to a vacuum tube of the
right type, current will flow in only one direction, giving rise to a succes
sion of half-wave pulses all of the same polarity. It is possible to connect
another like tube to insert half-wave pulses of the same polarity between
the pulses of the first tube. The average of these pulses constitutes a
direct current; the other frequency components are rejected by a filter
circuit.

Rectification is important because electronic devices operate best on
direct current, while power is usually generated and transmitted in alter
nating form. It is thus necessary to convert, or rectify, the a-c power to
d-c power.

Amplification. The amplification of voltage or power is the Qutstp·nd
ing function that vacuum tubes are able to perform. With the exception
of the mechanical torque amplifier, no other device can do anything
like it. Strictly speaking, the vacuum tube does not amplify power but
rather controls the flow of a relatively large amount of power from one
source with a small amount of power from another source. The British
use the expression "electric valve" for certain types of electron tubes.
This term is really better than ours, for it indicates the nature of the
amplifying action.

OsciUation. The generation of high-frequency alternating currents,
or oscillation, is another remarkable function that vacuum tubes can
perform. Oscillation is obtained by causing part of the output of an
amplifier to excite the amplifier and thus make the device self-excited
and self-sustaining. Tubes can be built that ,vill produce oscillations
at frequencies as low as 1 cycle per sec, while other tubes can be built
that will oscillate at frequencies as high as 60,000 me per sec.

Frequency Conversion. Vacuum tubes are able to shift the frequency
of a wave. This they are able to do by an electrical "beat" action ..
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Thus a wave of a given frequency can be mixed with a \vave of another
frequency in a vacuum tube, and among the products of the interaction
is found the difference of the two frequencies. If one of the original
waves had certain effects associated "rith it, these same effects are
associated with the difference frequency. The beat action results from
the nonlinear characteristics of the vacuum tube.

Modulation. The transmission of intelligence by radio waves or by
certain types of wire telephony requires the use of frequencies higher than
those audible. It is necessary to superimpose the audible frequencies
upon the higher transmitted frequency. This superimposition is known
as "modulation." Modulation is best performed by vacuum tubes.

Basically, modulation takes the form of varying some property of the
r-f wave at the audible rate. The commonest form of modulation varies
the amplitude of the r-f wave in accordance with the intelligence to be
transmitted. This is known a~ "amplitude modulation." Frequency
modulation is also common.

Detection. Detection is the inverse of modulation and is sometimes
known as " demodulation." I t is the process of extracting the intelligence
from the modulated 1vave. In the case of amplitude modulation the
detection may he effected by rectifying the r-f wave and then utilizing
the average value of the rectified ,vave, since it follo,vs the amplitude varia
tions in magnitude. Detection of modulated radio signals is best per
formed by vacuum tubes over most of the range of radio frequencies.

Light-image Production. It is possible for vacuum tubes to convert
part of their output energy into visible light. rrhis is done in cathode
ray tubes in which a stream of electrons is caused to hit a fluorescent
screen, causing light to be emitted. l'he cathode-ray tube can be used
for viewing wave forms and for doing many other wonderful things,
including the reproduction of visual scenes. The fundamental property
involved here is the conversion of electrical energy into visual energy.

Photoelectric Action. Vacuum tubes can be made that will convert
light energy into electrical energy. l'his is possible by virtue of the
photoelectric effect, which is the emission of electrons from certain sur
faces when illuminated with visual energy. The liberated electrons con
stitute an electric current whose measure is related to the frequency and
intensity of the exciting light. Tubes making use of this principle are
known as it photoelectric tubes." The photoelectric tube is one of the
tubes most extensively used in industrial-control systems.

The above paragraphs have given a bird's-eye vie,v of the functions
of vacuum tubes. The reader is probably familiar \vith all the above
functions, which are now commonly encountered in everyday life. The
rest of the book is devoted to the description and explanation of the
characteristics of the vacuum tubes themselves.
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BASIC TU.BE TYPES

THJ4] electronic engineer has about a dozen types of vacuum tube he
can call upon for his high-frequency and industrial-control circuits_
This is a surprisingly small number of distinct tube types. The small
number of types is balanced, however, by the large number of forms in
which each type may appear, as determined by the required power
capacity and frequency range.

The purpose of this chapter is to list the basic types and their funda
mental characteristics as a prelude to a detailed study of their charac
teristics and the physical laws from ,vhich these are derived.

2.1. Vacuum Diode. The vacuum diode is a t\vo-electrode vacuum
tube. One electrode acts as an

40-------......----,..-....-~~-

emitter of electrons and is called a.>: 32 ~:SYM~BL
the "cathode." The other elec-
trode acts as a collector of elec- /
trans and is called the "anode" )7
or "plate." The emitter may be ~24 _ 686 /v
either directly or in d ire c t Iy ~ /v
heated. In physical f arm the = /
vacuum diode may vary from a ~ 16 /

small metal tube to a large glass ~ V
rectifier tube. 8 t---+---+--7"f-+---+---+-----+-+--~__I

The current-voltage charac- /V
teristics of a typical diode are [/7

°o~...I--~--L_~-L..-~--L_~.....a...----J

shown in Fig. 2.1. The current 2 4 6 8 10
PIOIte voltOlge

follo,vs a three-halves-power law
FIG. 2.1.-PIate-current-plate-vo 1tage

of voltage over the normal range characteristics of a diode.
of operation. At high values of
plate voltage or at low values of heater current the plate current tends
to be limited by the cathode emission and to increase only very slo\vly
\vith plate voltage.

The most useful property of the diode is that it passes current only
in one direction. This property makes the diode useful as a detector
~nd as a rectifier for d-c power supplies.

5
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2.2. Vacuum Triode. A vacuum triode is a three-electrode tube con
taining an emitting electrode called the "cathode," a control electrode
called the "grid," and a current-collecting electrode called the "Rllode"
or "plate."

The emitting electrode may be an indirectly heated oxide cathode,
an oxide-coated filament, or a filament of tungsten or thoriated tungsten..

The control electrode, usually in the form of a grid of fine wire, sur.. ·
rounds the emitter and is in turn surrounded by the plate in the common··
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FIG. 2.2.-Plate-current-plate-voltage characteristics of a triode.

est form of triode. By virtue of its proximity to the cathode the grid is
able to influence the electrostatic field at the cathode to a greater extent
than can the plate, and thus it is able to control the flow of current from
the cathode. The grid is usually operated on a slight negative potential
so that the electrons will pass between the grid wires without hitting the
wires themselves.

Some typical characteristics of a triode illustrating the variation of
plate current with plate voltage for various fixed values of grid voltage
are shown in Fig. 2.2. The plate current increases if either grid or plate
voltage is increased. The increase in plate current for a given increase
in grid voltage is always much larger than the increase in plate current
for the same increase in plate voltage.
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The relative effectiveness of the plate and grid potentials in controlling
the plate current is known as the amplification factor of the tube (mu;
symbol p,). The amplification factor is the maximum amplification that
can be obtained by using the tube as an amplifier. With triodes the
useful amplification is about two-thirds of the amplification factor.

Study of the family of curves of Fig. 2.2 shows that all the curves
are alike in shape and further are somewhat similar to the characteristic
of a diode. This is true in that the plate current of a triode is found to
vary nearly as the three-halves po,ver of an equivalent voltage which is
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FIG. 2.3.-Plate-current-plate-voltage characteristics of a
screen-grid tube. V I = 6.3 volts, V 8g = 100 volts.

the sum of the plate voltage divided by mu and the grid voltage.
Triodes have their greatest use as power amplifiers. They are also

used extensively in control applications wherever a small voltage is
wanted to control an appreciable amount of current.

2.3. Screen-grid Tube.. The screen-grid tube is a four-element
vacuum tube. The fOUf elements are cathode, control grid, screen grid,
and plate. The electrode construction is similar to that of the triode
except that an extra grid of mesh a little coarser than that of the control
grid is inserted between the control grid and the plate.

The screen-grid tube is the historical predecessor of the pentode.
Its invention was the result of an effort to overcome a limitation of the
triode. Triodes do not work well as amplifiers of high frequencies, for
the high interelectrode capacity between plate and grid causes the tube
to regenerate and oscillate. In the screen-grid tube the capacity between
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the control grid and plate is reduced by inserting the extra grid, known
as the "screen grid," bet,veen these elements. The insertion of the
screen grid and its operation at a constant potential succeeded in produc
ing the low control-grid-plate capacity desired but caused distortions in
the plate-current-plate-voltage characteristics, for the neW electrode
arrangement permitted secondary electron .flow between plate and screen
grid. This detrimental effect was overcome in the pentode by the addi
tion of a coarse-mesll suppressor grid between screen grid and plate.

The screen-grid tube is usually operated with cathode near ground
potential, control grid at a small negative potential, and screen grid and
plate at a medium and high positive potential, respectively. Some
typical screen-grid-tube plate-current-plate-voltage characteristics are
shown in Fig. 2.3. The dips in the low-voltage portion of the curves are
the result of secondary electron current flo,ving from plate to screen.
The low slope of the high-voltage portion of the curves results from the
fact that the cathode is screened from the plate by the screen grid as
well as by the control grid, and hence the magnitude of the plate current
is increased only a little by an increase in plate voltage. Screen-grid
tubes have been rendered virtually obsolete by the development of the
pentode and some special tetrodes not subject to the tremendous dis
tortions of current characteristics by secondary emission. Screen-grid
tubes may be used as a-f and r-f amplifiers. They are also occasionally
used in laboratory apparatus in which it is desirable to utilize the negative
resistance characteristic ,vhich is available at the points on the current
characteristics where the slope is negative.

2.4. Pentode. The pentode is a five-element high-vacuum tube.
The five electrodes, in the order in which they occur in the tube, are
cathode, control grid, screen grid, suppressor grid, and plate. In normal
operation the cathode is operated near ground potential, the control grid
at a small negative potential, the screen grid at a relatively large positive
potential, the suppressor grid at cathode potential, and the plate at the
screen potential or a more positive potential.

Some typical plate-current-plate-voltage curves of a pentode are
shown in Fig. 2.4. In these it is seen that the insertion of the suppressor
grid at cathode potential bet\veen screen grid and plate has eliminated the
distortions in the characteristic observed in the case of the screen-grid
tube. This it does by causing a negative potential gradient at both the
screen grid and plate, which suppresses the secondary electrons from these
electrodes. The slope of the plate-current characteristic for high plate
voltages is even less than in the screen-grid tube, for there is another
screening grid between plate and cathode in the pentode. The result of
this high screening action is to make the amplification factor of the
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pentode extremely high, of the order af 1,000 or more, and to give the
tube a high effective resistance in the plate circuit. The pentade is,
in fact, very nearly a constant-current device. The variation of plate
current with grid voltage, which is measured by a factor known as the
"grid-plate transconductance" or, more commonly, the "mutual con
ductance" of the tube, is about the same as in the triode. Only about
one-tenth of the high amplification factor of the pentode can be realized
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in amplifier operation. However, the reduced plate-control-grid
capacity makes the pentacle a better tube in voltage-amplifier applications.

The pentode is a versatile tube. It can be connected to give diode,
triode, and screen-grid as well as pentode action. It is available in
constant- and variable-mu forms. It is probably the most extensively
used tube in low-power applications. There are probably more pentocles
in use today than any other type of electron tube. A cutaway drawing
of a pentade showing the electrode structure is given in Fig. 2.5.

2.5. Beam-power Tube. The beam-power tube is a special type of
tetrode. It is designed so that the electrons move from cathode to
plate in dense sheets. This effect is achieved by making the control
grid and screen grid of the same pitch and aligning the grid wires. The
electrode structure of the tube is shown in Fig. 2.6.
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1 METAL ENVElOPE 1. HEADER SKIRT

2 SPACER SHIELD 19 LEAD WIRE

3 INSULATING SPACER 20 CRIMPED LOCK

4 MOUNT SUPPORT 21 OCTAL BASE

5 CONTROL GRID 22 EXHAUST TUBE

6 COATED CATHODE 23 BASE PIN

7 SCREEN 24 EXHAUST TIP

8 HEATER 25 ALIGNING KEY

9 SUPPRESSOR 26 SOLDER

10 PlATE 27 ALIGNING PLUG

The effect of the dense current sheets between the screen grid and
plate is to depress the potential between these two electrodes within the

.: ~.

11 BATAlUM
GETTER

12 CONICAL
STEM SHJELD

13 HEADER

14 GLASS SEAL

15 HEADER INSERT

16 GLASS-BUTTON STEM
SEAL

17 CYLINDRICAL BASE
SHIELD DETAil OF lASE SHIELDING

FIG. 2.5.-Cutaway picture of a single-ended metal-envelope pentode..

tube because of the high concentration of negative charge.. The poten
tial between screen grid and plate is depressed enough so that secondary
electron flow from plate to grid is suppressed without the aid of a sup-
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pressor grid. Thus the tube represents another solution to the problem
of overcoming the distortions in the current characteristics of the ordi
nary screen-grid tube.

1."'he plate-current-plate-voltage characteristics of a beam-power tube
are shown in Fig. 2.7. It is soon that these characteristics are free of the
dip in the shoulder due to secondary electron flow. The distinctive
features of the beam-power tube's characteristics as contrasted ,vith the
pentode characteristics are that the plate current rises much more rapidly
at low plate potentials and the condition of complete transmission of

Beam-rorm/ng pIette .. ~~

CQthode~ ............
GrId ---~ .. _.... ..

Screen •._.~ ~.•••••.~.....
...........,

FIG. 2.6.-Cutaway view of the electrode arrangement in a
beam-power tube. (Courtesy of RCA.)

current to the plate is reached at a lower plate potentiaL The plate
current rises rapidly because the high space-charge density blocks the
flow of electrons to the plate at low plate potentials, and this blocking
action stops quite abruptly as the plate potential is increased. In the
beam-power tube, complete transmission of current passed by the screen
grid to the plate occurs when the plate potential has risen to about
20 per cent of the screen-grid potential, whereas in the pentode the trans
mission is not complete until the plate potential has risen to about 50 per
cent of the screen-grid potential. rl"'his results from the behavior of the
individual electrons, which, in the beam-power tube, are more uniform in
direction and velocity than in the pentode, in which the electrons are
strongly deflected by the suppressor grid.

The beam-power tube is made in small and medium-size metal tubes
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and in a medium-size glass tube. The beam-power tube is used in many
ways. It is extensively employed as an audio-po\ver amplifier tube and
also as a r-f amplifier and oscillator tube.

2.6. Cathode-ray Tubes. The cathode-ray tube is in a class by itself
among the vacuum tubes. It makes use of the geometrical form rather
than the intensity of its electron stream and converts the energy of its
electron stream into a visual indication. In its commonest application
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:FIG. 2.7.-Plate-current-plate-voltage characteristics of a team-power tube.
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the cathode....ray tube uses its electron beam to sho\v the shape of an
applied voltage wave as a light trace upon a fluorescent screen. The
cathode-ray tube is an electronic oscilloscope that produces on a screen
a light spot that can be deflected in t,vo dimensions.

The cathode-ray tube is generally housed in a large glass envelope
shaped like an Erlenmeyer flask. In the neck of the glass envelope is
located a set of electrodes kno\vn as the" electron gun." This gun servas
to produce a circular beam of electrons that is fired at the large end of
the envelope, which is covered with a fluorescent material. Also housed
in the neck of the envelope are deflecting devices that serve to bend the
beam in horizontal and vertical directions. The fluorescent screen on
the inside of the large end of the envelope gives off light at the point at
which the electron beam strikes.
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In physical size the ordinary cathode-ray tubes range from 10 to
20 in. in length and have fluorescent screens from 3 to 5 in. in diameter.
The tubes operate \\rith a beam-accelerating potential between 800 and
10,000 volts. The electrode arrangement in a typical cathode-ray tube
is sho\vn in Fig. 2.8.

Cathode-ray tubes are principally used to observe electrical wave
forms. They may also be used to compare frequencies, plot the B-H
curves of iron, and plot the current-voltage characteristics of vacuum
tubes. They are extensively employed as indicators of elapsed-time
intervals in ionosphere height-measuring devices and radar sets. They
are built in a special form known as the" kinescope" for use as television

FIG. 2.8.-Typical electrode arrangement in a cathode-ray tube. K, cathode; G,
control grid; H, accelerating electrode; F, focusing electrode; A, final accelerating
electrode; 0, limiting apertures; B, vertical deflecting plates; C, horizontal deflecting
plates.

viewing tubes. They have so many uses as measuring and testing devices
that no radio or electronic laboratory worthy of the name is without
one.

2.7. Klystron. The klystron is a newcomer to the group of vacuum
tubes in use today. I t is a special ultra-high-frequency tube that is capa
ble of generating, detecting, and amplifying radio waves ranging in fre
'luency from 600 to 30,000 me (50 to 1 cm).

The principle of operation of the klystron amplifier differs from that
of other vacuum tubes. It makes use of a velocity-modulation principle
that causes a stream of electrons, which initially has a uniform current
density, to form in bunches. It is the periodic bunch impact that excites
the output resonator, from which energy is extracted. This use of a beam
passing through gaps in closed cavity resonators built into the tube made
it possible for the klystron to overcome the transit-time limitations that
the conventional negative-grid tubes encounter at high frequencies.

A cutaway drawing of an early type of klystron is shown in Fig. 2.9.
The beam of electrons used in the tube is generated in a cat1}Qde at one
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end of the tube. The electrons liberated from this cathode are acceler
ated toward the main body of the tube, where they pass through a tube
and then through a set of grids in a cavity resonator. In passing through
this first resonator some of the electrons are speeded up and some slowed
down by an alternating axial electric field. 'rhis action, called "velocity
modulation," causes the electrons to form in bunches by the time they
pass through the grids of the second resonator, and it is the bunch

FIG. 2.9.-Cutaway view of a two-resonator klystron oscillator.

impact here that converts the kinetic energy of the electrons into high
frequency electromagnetic energy of the second, or catching, resonator.

A klystron tube may be used as an oscillator by feeding part of the
output from the output resonator back to the input resonator. The
tube will oscillate when the total phase shift around the circuit compos\:;~

of the input resonator, the electron beam, the output resonator, and the
coupling line back to the input resonator is some integral multiple ci
360 deg. Because of this phase requirement it is found that the oscillating
action is voltage selective; i.e., the tube will oscillate at certain voltages
but not at others since the phase-angle equivalent of the transit time of
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FIG. 2.10.-Power output-beam voltage
characteristics of a two-resonator klystroll
oscillator. This is a picture of an oscillo
scope trace, which sho,vs that oscillations
are selective with beam voltage.
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the electrons along the beam is involved. In Fig. 2.10 is sho,vn a curve
of klystron output versus beam voltage. This shows how the tube
oscillates at certain select bands
of voltage. The maximum power
output that can be obtained from
a klystron is nearly inversely pro
portional to the frequency for
which the tube is designed, being
about 200 watts at 40 em.

2.& Magnetron. The magne
tron is a vacuum tube \vhose
current may be influenced by a
magnetic field. In certain special
forms it is useful as an ultra-high
frequency oscillator. As such it
may oscillate at wave lengths
from 100 to 1 em. It is capable
of a continuous power output of several hundred watts and instantane
ous powers of several thousand kilowatts.

Early forms of the tube were
of the split-anode type. The
important parts of this type of
magnetron are the cathode, fre
quently in the form of a straight
wire filament, and the anode, in
the form of a circular plate con
centric with the cathode and split
into an even number of similar
segments. The segments of the
plate are operated at the same

1.5
positive d-c potential relative to
the cathode, and a magnetic field
is applied parallel to the tube
axis. This combination of elec
tric and magnetic fields causes the
electrons emittedfrom the cathode
to move in nearly circular paths
in the region between cathode and
anode.

The radii of the nearly circular electron paths in a magnetron
depend upon the strength of the radial electric field and the axial mag
netic field. The radii of the paths decrease as the electric field i~

0.5 1.0
Relative mOfqnet;c field

FIG. 2.11.-Cutoff characteristic of a split
anode magnetron. The curve shows that
as the axial magnetic field is increased the
plate current is at first constant and then
suddenly drops rapidly to zero. This
results from the electrons becoming pro
gressively more curved in their paths until
they finally are unable to reach the plate.
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decreased or as the magnetic field is increased. Thus if a magnetron
has its circular plate segments maintained at a constant d-c potential
and the strength of the axial magnetic field is increased from zero strength
to a large value, the electrons in the tube will at first move radially from
the cathode to the plate and then move in paths which are more and more
strongly curved until finally the magnetic-field strength is reached at
which the electrons miss the plate entirely. This action is shown in
Fig. 2.11, in which there is given a plate-current-magnetic-field charac
teristic and sketches of the associated electron paths. It is seen that

C=Cafhode
Ml/1gnefic field
is perpendicular

SYMBOL Iv paper

FIG. 2.12.-Electrode structure of a multianode cavity-resonator magne
tron. The outer electrode serves as the anode. Each of the hole-and-slot
combinations acts like a parallel resonant L-e circuit.

the magnetic field is capable of entirely cutting off the current from the
plate.

For operation as a high-frequency oscillator the plate segments are
made part of resonant circuits, and the magnetic field is adjusted to
approximately the value that causes the electrons just to graze the plate.
If any small disturbance occurs, a complex electronic action results
in which the damped oscillation of the resonant circuit affects the electron
paths so that some electrons extract energy from the system while others
give up part of their kinetic energy to the oscillating system. The tube
can be adjusted so that energy is extracted from the majority of the
electrons as they graze the plates, and thus powerful oscillations are
maintained.

Modern super-high-frequency magnetrons are made in the form of a
multianode cavity. The basic structure of such magnetrons is shown in
Fig. 2.12. The cathode is in the form of a cylinder of appreciable diam
eter located in the center of the structure. The anodes are cut out of
one piece of metal and have the form of a large circular hole in a block
with radial slots leading out to smaller circular holes. Electrically,
each slot and terminating hole are equivalent to a tuned resonant circuit,
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the slot having a predominantly capacitive action and the terminating
hole having a predominantly inductive action. One of the resonant
conditions possible in this equivalent circuit is one in which alternate
segments of the anode exhibit the same electrical polarity and thus give
the same action as a split multisegment anode, with the advantage that
the fields associated with this resonance are confined. Under proper
conditions of voltage and magnetic-field strength parallel to the long axis
of the cathode, energy will be transferred from the swarm of gyrating
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FIG. 2.13.I-Current-illumination curves of a typical vacuum
phototube. 11le current is linear with the illumination. Al
though actual currents are quite small, the voltage developed
across the large series resistors used is ample for operating
vacuum-tube devices.
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electrons around the anode to the resonant circuit and po,verfuI oscilla
tions ,viII be sustained.

2.9. Phototubes. The phototuhe is a vacuum tube that permits
current to pass through it when light falls upon one of its electrodes. The
tubes are generally small and contain an electrode in the form of a half
cylinder coated with some photosensitive material such as caesium oxide.
Various other light-sensitive materials enable the phototube to respond
to light of different colors or even to iJ''trlsible radiations.
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Phototubes are extensively used for counting and sorting devices,
They may he used to operate doors and drinking fountains, to turn on
lights, and to provide safety devices for machine operators. They may
be employed anywhere where the interruption or detection of a beam of
light is to be correlated with some operation.

Phototubes are able to operate by virtue of an effect known as
" photoemission." Certain materials exhibit the property of emitting
electrons when exposed to light. The number of electrons emitted is
directly proportional to the intensity of the illumination so that a variable
light intensity may he translated into a variable electric current or
potential. Use is made of this linear property in the recording and
reproduction of sound on film. The sensitivity of a phototube in con
junction with a voltage amplifier is so great it may be used to study the
light from stars. A typical set of current-illumination curves of a vacuum
phototube is given in Fig. 2.13.



CHAPTER 3

ELECTRONS AND IONS

3.1. The Electron. It is the electron that makes vacuum tubes possi
ble and endows them with their remarkable properties. 'fhe electron
is one of the fundamental particles of matter. It is the lightest particle
known. It cannot be subdivided into anything smaller than itself. It
is so small that it cannot be observed directly; all observations of its
properties must be made in terms of the effects associated with it, such
effects as the heat generated upon impact of an electron with a stationary
object or the magnetic field surrounding an electron in motion.

For most of the purposes of electronics the electron may be considered
to be a small, dense particle carrying a negative charge of electricity.
However, it should be borne in mind that this picture of the electron is
far from adequate. There are some applications in which the electron
displays more of a "wave" aspect than a "particle" aspect. This is
the case with the electron microscope, where a high-velocity beam of
electrons acts as though it Were a light ray of very short wave length.

In the majority of applications the particle aspect of the electron
predominates, with the following characteristics:

Mass 9.1066 X 10-31 kg
Negative charge 1.6020 X 10-19 coulomb
Apparent radius. . . . . . . . . . . . . . . . . . . . . . . . .. 1. 9 X 10-13 em

It is seen that the electron is very dense and is highly charged. It
has an apparent density of 0.50 X 1011 g per cms, which is millions of
times greater than that of our heaviest metals (the density of iron is
7.86 g per cm3). Further, if the classic concepts of electrostatics be
applied t':> the electron, it may be thought of as being charged to a
potential of about 750 kv.

Electrons are a basic constituent of all matter, being the planetary
unit of all atoms. No matter can exist without electrons, but electrons
may exist by themselves. It is the free electrons that are responsible
for most electrical phenomena. They are the units that carry the cur
rent in vacuum tubes. They constitute currents in conductors when in
motion. Their motion in special conductors such as antennas gives rise
to electromagnetic radiations. They constitute cathode rays and beta
rays and are emitted from hot bodies.

19
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3.2. The Proton. The proton is the companion piece to the electron.
It is the fundamental particle carrying a positive charge of electricity.
It, too, is a constituent of all matter, existing as it does in the nucleus
of all atoms. 'I'he vital statistics of the proton are that its charge is the
same in magnitude as that of the electron but with a positive sign, that
its mass is 1,845 times that of the electron, and that its apparent diameter
is a little less than 10-13 cm. The proton is not nearly so much in
evidence as is the electron in vacuum tubes. It rarely exists as an isolated
particle. Because of its great mass it has a smaller effect than does the
electron in determining the characteristics of materials and in constituting
a current flow.

3.3. Other Fundamental Particles. Until 1932 the electron and the
proton were the only fundamental particles known. Then there were
found a number of other fundamental particles whose rarity and short
life had hitherto precluded their discovery.

Among these new particles is the neutron, which is basically a proton
with no charge. There is also a positron, which is an electron with a
positive charge. There is some evidence of a neutrino, which is a particle
of small mass and with no charge. Strangest of all is the mesotron, often
abbreviated as "meson," which is a particle with about one-tenth the
mass of the proton and carrying either a positive or a negative charge.
These particles, however, are of no concern to the electronic engineer since
they seldom make their appearance in ordinary vacuum tubes.

Another" particle" that has been known for some time is the photon.
The photon, though classed as a particle, exhibits a wave nature most of
the time and is the one particle whose dual nature is most evident.
It is a packet of electromagnetic energy whose apparent mass is directly
proportional to the frequency of its wave aspect. It carries no charge.

3.4. Atoms and Molecules. Electrically neutral combinations of
electrons and protons constitute atoms according to the atomic theory
of Rutherford, Bohr, and subsequent workers. The ,vord U atom" is
derived from the Greek word meaning "indivisible&" Atoms are indi
visible in the sense that they are the smallest bits of matter which main
tain the properties of the several elements of materials of which they are
part. There are 92 types of atoms, corresponding to 92 materials
known as "elements." Combinations of the different atoms form mole
cules, which are the smallest constituent parts of all other materials
composing the physical world.

The basic structure of the atom is believed to be a kind of planetary
system consisting of a nucleus, which is a group of neutrons and protons,
and having a group of planetary electrons equal to the number of protons
j.n the nucleus.
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The simplest atom is that of hydrogen. It has 1 nuclear proton
and 1 planetary electron. To get an idea of the size of such an atom,
if the proton were 1 em in radius, the electron would normally be spaced
a distance of 5 km. The helium atom is the next simplest atom. Its
nucleus consists of 2 protons and 2 neutrons. It has 2 planetary
electrons. Other atoms are relatively more complicated. The oxygen
atom has 8 nuclear protons and 8 nuclear neutrons, whose charge is
balanced by that of 8 planetary electrons.

l"he weight of an atom is determined almost entirely by the sum of
the number of protons and neutrons in its nucleus. The physical prop
erties of the atom are determined by the number and arrangement of its
planetary electrons. The number of the planetary electrons of an atom
of an element is known as the "atomic number" of that element. The
order of the elements when listed according to their atomic number is
very nearly but not exactly the same as the order according to the atomic
,veights. If the elements are arranged in a periodic table according to
their atomic weights and chemical affinity (valence), as was done by
Mendelyeev, it is found that elements with similar characteristics are
grouped in columns of equal valence (see Appendix I for a periodic table
of the elements).

The planetary electrons of an atom were shown by Bohr to lie in
restricted orbits. They were further found to lie in shells about the
nucleus, each shell having a maximum capacity for electrons. The
maximum capacity of the successive shells from the nucleus out is 2,
8, 18, 32, 18, 18, 2. Thus the atom of neon, whose atomic number is
10 and ,vhose atomic ,veight is 20.183, has 10 planetary electrons arranged
\vith 2 electrons in the first shell and 8 in the second. These 10 electrons
balance the electrical charge of the nucleus, which consists of 10 protons
and 12 neutrons.

The number of electrons in the outermost shell of an atom determines
its valence and is the principal factor in determining the physical prop
erties of the atom. Atoms \vith an outer shell filled to its capacity are
relatively inactive, ,vhile atoms with only 1 electron in their outer
shell are most active.

The atomic weights of the elements are taken as relative to that of
oxygen, which is chosen to be 16. The fact that the atomic \veights are
not integers is due in most cases to the fact that ther~ exist atoms of the
same element ,vith different numbers of neutrons in the nucleus. The
atomic weight of a sample of an element is then determined by the rela
tive number of these different atoms. Atoms with the same number of
planetary electrons but ,vith different numbers of nuclear neutrons are
known as "isotopes" of the same element. Neon has isotopes with 20,
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21, and 22 nuclear particles mixed in such a way that the atomic weight
is 20.183. Hydrogen has isotopes ,vith 0, 1, and 2 nuclear neutrons.
The first isotope is the common one. The others are the relatively rare
"heavy hydrogen" isotopes.

Combinations of the atoms of the elements form molecules. The
molecule is the smallest particle of a compound which can exist without
losing the characteristics of that compound. Molecules range in size
from those of atomic size to a few large enough to be seen with an elec
tron microscope. The molecules of some elements are not just single
atoms but groups of two identical atoms.

3.5. Ions. An ion is a molecule or atom with a charge of electricity
acquired by the loss or gain of one or more electrons. Electrons in the
outer shell of an atom are rather loosely bound to the atom and so may
be dislodged by impact of a particle or by exposure to X rays. Ioniza
tion of an atom vf an element does not change it from one element to
another. This is because the nucleus of the atom is unchanged and the
form of the nucleus determines the arrangement of the electrons in
neutral form.

Ions are important in vacuum tubes because they constitute a cur
rent \vhen in motion and thus affect the characteristics of tubes, if they
exist in sufficient number. Since even the most completely evacuated
tubes contain billions of molecules per cubic centimeter, ions are always
created by the impact of electrons and depending upon the type of tube
may be a large factor in determining the tube characteristics.

Ions are of most importance in certain special tubes that contain
considerable amounts of a definite gaseous element deliberately introduced
in great quantities and are an important factor in the tube operation.



CHAPTER 4

ELECTRONIC EMISSION

EVERY vacuum tube depends for its action upon a stream of electrons
that acts as a carrier of current. As necessary as the stream of electrons
is the electrode that emits them. Whatever the nature of the tube and
the arrangement of electrodes, an emitting electrode cannot be dispensed
with. Even in cold-cathode tubes, one of the electrodes is treated with
a low-work-function material to facilitate the production of some elec
trons that will initiate the action.

In general, the excellence of performance of a given tube depends
upon the efficiency with which free electrons are produced. When the
emission fails, the tube is useless. We infer correctly then, that the
subject of electron emission is worthy of considerable study.

The types of electronic emission-may be listed as follows:

1. Thermionic, or primary, emission.
2. Secondary emission.
3. Photoelectric emission.
4. Field emission.

The common feature of all types of emission is that energy is imparted
to the free electrons in a solid in an amount sufficient to enable them to
overcome the restraining forces at its surface and thus escape from the
solid.

The types of emission differ only in the way in which the escape
energy is imparted to the free electrons. Thermionic emission occurs
when a material is heated to incandescence in a vacuum. In this case
the escape energy is imparted by heating the materiaL Secondary emis
sion occurs when a high-velocity electron or ion strikes a material in a
vacuum and knocks out one or more electrons. In this case the energy
that enables the free electrons to escape comes from the striking particle.
Photoelectric emission occurs when energy in the form of light falls upon
a surface. Field emission occurs at cold surfaces under the influence of
extremely strong fields.

All types of emission are most effective in vacuum. If the emission
did occur in air, the emitted electrons would not get very far through
the relatively dense surrounding atmosphere. Most metals would burn

23
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up in air at the temperatures to which they must be raised to emit sat
isfactorily. Only primary and secondary emission will be discussed in
this chapter. l:>hotoelectric emission will be discussed in a separate
chapter. Field emission is not yet of much practical importance.

4.1. Theory of Thermionic Emission. Every metal has a crystalline
structure of its atoms, i.e., the atoms have an orderly arrangement in
some sort of lattice pattern. The atoms in this lattice structure have
certain of their outer electrons loosely bound. 'rhese loosely bound
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electrons may move from atom to atom in a relatively unres~ricted

fashion. Such electrons are known as the "free electrons" in the metal
in that they are not bound to anyone atom. rfhe free electrons in a
metal act much like the molecules in a gas. An increase in temperature
increases their activity and average velocity. A potential gradient in
the metal causes them to move progressively in one direction, giving
rise to a conduction-current flow.

Because of the atomic restraints it is not expected that the velocity
distribution in a metal is Mal:\vellian, as is almost exactly the case for
gases. The true distribution was found by Fermi and Dirac from quan
tum-mechanical statistical considerations. For comparison there are
shown in Fig. 4.1 the Maxwellian and Fermi-Dirac distribution of veloci
ties. The distinctive feature of the Fermi-Dirac distribution of velocities
is that at zero temperature only a small fraction of the electrons have
zero velocity. As temperature increases, the velocity and corresponding
energy distribution change so that more electrons have higher velocities.
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(4.1)

The high-velocity electrons that escape from the metal constitute the
emitted current.

The Maxwellian distribution of velocities referred to above and
shown in Fig. 4.1 is one given by the equation

4x2
y = __ E-Z2

y;
This is the general form of the probability y that a particle ,¥ill have a
velocity x times the most probable velocity. It applies perfectly for
most gases but does not give the true picture for electrons in metals.
For large velocities, however, the Max\vellian and Fermi-Dirac distribu
tions differ only by a constant. Thus the electrons emitted from an
incandescent surface do have a Max\vellian distribution, but the energies
of the electrons are (at 30000 K) about 1,000 times those predicted from
the simple Maxwellian theory. Upon converting Eq. (4.1) to a form
involving energy instead of velocity and taking the derivative properly,

the fraction !!.- of the emitted electrons that can move against a retarding
no

field of V volts is given by

(4.2)

where -e is charge of the electron, 1.602 X 10-19 coulomb
k is Boltzmann's constant, 1.380 X 10-23 \vatt-sec per OK
T is absolute temperature, 273+ °C

A nomographic chart of Eq. (4.2) is given in Fig. 4.2. From this it is
seen that about 50 per cent of the electrons emitted from a cathode at
1500oK, typical oxide operating temperature, have velocities greater
than 0.09 volt.

Work Function. The surface restraints that prevent the majority
of the free electrons in a metal from leaving it are the electrostatic forces
produced by the charges in the atoms. These come not only from the
residual positive charges but also from a rearrangement of the negative
charges. A free electron must have a certain minimum kinetic energy
before it can teax itself free from these forces. The work per unit charge
required to free an electron from the influence of the charges in the metal
and thus to escape from it is known as the work function of the metal.
The work function is usually expressed in volts.

The electrostatic forces within a metal are rather complex and not
completely understood. Indications are that the forces are small within
the metal, reach a maximum several atomic diameters outside the metal,
and then decrease according to an inverse-square law at greater dis-
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tances, where an image action manifests itself. It would be expected
that the work function would decrease as the distance between the
atoms in the crystalline structure increased. This turns out to be the
case, and experimentally, a curve of the work function of the alkali
metals of the first column of the periodic table plotted against their
atomic spacing is a smooth one, nearly inversely proportional to the
square root of the atomic spacing, as may be seen in Fig. 4.3. Conclusions
for other metals can hardly be drawn, for there are so few having the

2.5 r-----~---r---,.--~-_r_-,....____,

o
x

R

o PhofoeJecfr/c work funcfion
x Therm/on/c work function

2.0 J-----~O'x~---lf-----+------+--+-----+----i

Na
o
>
c:
o'g 1.5 I------+-------+---+----....+--.-+---t-----I

.:J
~

1.0 3 4 5 6 1 8 q 10
Atomic spacing, Angstroms

FIG. 4.3.-Work function of the alkali metals as a func
tion of atomic spacing. The curve shows that for a
given crystal structure} the further the atoms are apart
the lower is the work function.

same valence and crystalline structure. Since the atomic spacing is a
periodic function of the atomic number, the work function is also a
periodic function of the atomic number.

No completely successful theoretical deterrr.J.nation of the work func
tion has apparently as yet been made. The general nature of the restrain
ing forces is probably very much like that shown in Fig. 4.4. Within
the metal the force has an average value of zero. Near the surface there
are the attractive forces of atoms that have lost an electron by emission
and forces due to rearrangement of residual charges. The forces are
undoubtedly greatest near the surface, where the force-producing
charges are closest and yet not symmetrically disposed with respect to
the surface. Well outside the surface the force is probably one that
varies with the inverse square of the distance from the metal, for in this
r~gion the charges in the metal arrange themselves so as to give the effect
of an image charge of the electron escaping from the metal. The force
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cannot be inverse-square law all the way out from the surface, for then
an infinite energy would be needed for escape. It may be concluded that
the work function depends in some complex way upon the atomic spac
ing, crystal structure, and valence of the metal.

The work function of materials is most accurately determined experi
mentally from observations of the photoele~tricemission of the material,,,

\ ./'Inverse square law
,..P of force,
\
\

FIG. 4.4.-Restraining force on an electron near a metal surface.
At large distances from the metal the force is that due to an image
charge located in the metal.

but it may also be deduced from the thermionic-emission characteristics.
A list of the work functions of the metal emitters most often used is
given in Table 1. 1,2

1 HUGHES, A. L., and 1... A. Dul~RIDGE, "Photoelectric Emission Phenomena,"
McGraw-Hill, New York, 1932.

I BECKER, J. A., Thermionic Emission and Adsorption, Rev. Modern Phys., vol
7, pp. 95-128\ April, 1935.
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Probable cPT, * Average cPP, t l\1eIting temp., I.Jattice const,
volts volts °C angstrom units_ ........- _ ..._--_..- ----_.•

Ag 4.7 4.6 960.5 4.08
AI 3.0 3.0 659.7 4.04
Au 4.8 4.78 1063 4.07
Ba 2.52 850 5.015
Bi 4.1 4.2 271.3 4.75
C 4.7 4.77 >3500 2.455
Ca 3.2 3.0 810 5.56
Cd 4.1 4.0 320.9 2.97
Cs 1.8 1.67 28.5 6.05
eu 4.1 4.3 1083 3.61
Fe 4.7 4.74 1535 2.90
Hg 4.5 4.53 -38.87
K 1.8 1.90 62.3 5.33
Li 2.2 2.21 186.0 3.46
Mg 2.4 2.43 651.0 3.20
Mo 4.3 4.15 2620 3.14
Na 1.9 2.0 97.5 4.24
Ni 5.0 5.01 1455 2.66
Ph 4.0 3.9 327.4 4.94
Pt 6.0 6.3 1773.5 3.91
Rb 1.8 1.82 38.5 5.62
Sr 2.1 2.06 800 6.05
Ta 4.1 4.13 3269 3.28
Th 3.4 3.50 1845 5.07
W 4.52 4.61 3370 3.16
Zn B.3 3.44 419.47 2.66
Zr 4.1 8.73 1900 3.22

* Work function as determined by thermionic measurements.
t Work function as determined by photoelectric measurements.

The Emission Equation. In vie\v of the foregoing discussion it woulc
be expected that the emission from a metal \vould depend upon its tempera
ture and upon the work function. Richardson! and Dushman2 hav~

1 RICHARDSON, O. W., The })istribution of the Molecules of a Gas in a Field of
Force, Phil. Mag., vol. 28 (No.5), pp, 633-647,1914.

"2 DUSHMAN, S., F~lectron Emission from ~.fetals as a Function of Temperature,
Phys. Rev., vol. 21 (No.6), pp. 623-636~ 1923. See also the summarizing SOurce
article, S. Dushman, 'rhermionic Emission, Rev. Modern Phys., vol. 2, pp. 381-476,
October, 1930, which gives a comprehensive survey of the subject as developed to thai
date. See also the book, A. L. Riemann, "Thermionic :B~mission," Wiley, New York,
1934.
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shown this to be the case and have sho\vn specifically that the thermionie
emission from a metal is given by

4 Ir-,-+---+--+-+---+----+----+--+---f..-I---+--+----+--+-----+-f

\
\

2 ~. \
o ~~\
.~~

- 2 ~+__.lIltJlf-or_+_-1--+----f-+--+--+-..............-I----f--I----+--+-~
~-- ~,
~- .....:::~'-

FIG. 4.5.-Characteristics of the common emitters shown
as a curve of log J / T" against 1/T· This type of plot
demonstrates the validity of the Richardson-Dushman
equation (4.3). 'fhe y-axis intercepts give the emission
constant A. The slope of the lines is proportional to

the work function of the emitter.

(4.3)

where J is current density, amperes per cm2

A is 120.4 amperes per em ~ per deg2, a universal theoretical constant
T is absolute temperature, oK (273 + °C)
bo is temperature equivalent of the work function, 11,6004>o,oK
4>0 is work function of the metal, volts

Equation (4.3) may be derived froIP ~ither thermodynamic or quantum-
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mechanical considerations. rI'he resulting equation is the same in either
casc.

:From the form of the emission equation (4.3) it is seen that if the

logarithm of ;2 be plotted against the reciprocal of T there will result a

straight line whose slope is -bo and whose y-axis intercept is l~ A. The
correctness of the emission equation has been verified by so plotting
experimentally determined results. It is found in all cases that the
results produce a straight line. A group of such curves for common
emitters is given in Fig. 4.5. In this figure those lines with the lowest
slope correspond to metals with the lowest work function. Theoretically,
the intercept should be 2.08, corresponding to the log 10120.4. Actually,
it is about 1.78, corresponding to a value of A of 60 instead of 120.4 for
most of the pure metals. Values of A are found higher as well as lower
than the theoretical values so that the theory is not discredited by this
discrepancy. 'There is some evidence that the work function is not
entirely independent of temperature as has been assumed in the deriva
tion of the emission equation. The differences in the value of the work
function as determined by thermionic and photoelectric methods may
possibly be due to temperature. A decrease in the work function of 6
parts per 100,000 per degree would cause the observed discrepancy in
t.he constant A.

The exponential term in the emission equation accounts for most of
the variation of emission with temperature. The variation with the T2
term is so small that the correctness of the exponent 2 can hardly be
verified experimentally. In the case of tungsten at 25000 K a 1 per cellt
change in temperature changes the T2 term by 2 per cent but changes the
exponential term by 20 per cent. This causes the enlission-temperature
function to be one of the most rapidly varying functions found in
nature. Doubling the temperature may increase the emission by a factor
of 107• Halving the work function will have nearly the same effect as
doubling.

The quantities of the curves of Fig. 4.5 are not in very convenient
form for ordinary use, and therefore a better method of representing the
emission characteristics of materials is sought. It is possible to plot
emission current against temperature directly as in Fig. 4.6, but the
variation of current with temperature is so rapid that such a curve is not
very satisfactory. It would also be possible to plot emission against
heating power by making use of the fact that at the high temperatures
required for emission most of the power is lost through radiation accord
ing to the Stefan-Boltzmann law.
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P = KeR 1'4 (4.4)

where P is radiated po\ver, \vatts per cm2

K is 5.73 X 10-12 \vatt per cm2 per deg4, a universal constant
kno\vn as the "Stefan-Boltzmann constant"

eR is radiation effieiency as fractional radiation of a black body or
perfect radiator

Such a plot gives curves that are nearly but not quite straight lines because
of the two temperature factors in the thermionic-emission equation. It

lOOO
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Temperaf"ijre,~K

FIG. 4.6.-The emission-current density of a tungsten
emitter as a function of temperature.

is possible, however, to warp the lines of the emission scale to take account
of the nonuniform temperature variation and get a straight-line plot as
shown in Fig. 4.7. The c.oordinate paper used in Fig. 4.7 is known as
"power-emission paper." On it curves of emission against heating
power are straight lines to the extent that the radiation efficiency of the
emitter remains constant with temperature. Contours of emission effi
ciency in milliamperes per watt are also readily drawn. Since heat-
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cent of black-body, or perfect, radiation. Black-body radiation as given
by Eq. (4.4) is sho,vn in Fig. 4.9. Po\ver-emission paper is manufactured
and sold by the KeuffeI and Esser Compan-y.
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Types oj Emitter.-Because of the dependence of emISSIon upon
temperature and the work function it is not necessarily true that the
metal with the lowest work function is the best emitter. This is shown
by the case of caesium, which has the lowest work function of all the
metals, 1.8 volts. It cannot be made to give much thermionic emission
because it can be raised only to 300oK, slightly over average room tem
perature, before it melts. On the other hand, tungsten, which has a
rather high work function, 4.52 volts, has the highest melting temperature
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FIG. 4.8.-The radiation efficiency of various metals used in vacuum
tube construction as a function of temperature. F~fficiency is given
as a fraction of black-body radiation, which is shown in Fig. 4.9.

of all the metals, 3655°K, and as a result gives the highest emission of all
the pure metals just below its melting temperature. Caesium, however,
is preferred for photoelectric emission and secondary emission where
temperature is not a factor.

It has been found that it is possible to raise some metals to tempera
tures higher than their melting temperatures in the pure state by using
them in various chemical and physical combinations. Thus a monatomic
layer of thorium on tungsten can be operated at or above the melting
temperature of thorium itself. Also, it has been found that small bits
of the pure metal can be made to diffuse out of an oxide in the case of
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the rare-earth nletals so that advantage can be taken of the low work
function of these metals, which \vouJd otherwise melt at low temperatures.

From the above remarks it is seen that three classes of emitters exist.
They are

I. Pure metals.
2. Atomic-film emitters.
3. Oxide emitters.
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FIG. 4.9.-The thermal radiation of a black body or ideal radiator as a function
of temperature as given by the Stefan-Boltzmann law of Eq. (4.4).
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These different types of thermionic emitters will now be discussed
separately.

4.2. Emission of Pure Metals. Tungsten. The pure metals follow
the Richardson-Dushman emission equation as closely as can be deter
mined experimentally. In general, the metals with suitable physical
characteristics for emission have a relatively high work function and
so even at best are not very good emitters. Of all the metals tungsten



36 VACUUM TUBES

is the most extensively used because it can be raised to a higher tempera
ture without melting than any other metal. Although tungsten has a
desirable high melting temperature, its other physical characteristics are
less desirable. It is a hard metal to "vork because of its crystalline
structure. It "vas not until 1908, \vhen (joolidge discovered that tung
sten becomes ductile ,vhen extensively ,vorked, that it became practical
to use the metal at all. 1"'ungsten cannot be dra\vn into wire form as
can most metals but must be hammered into shape, a process known
&s "swaging."

The emission characteristics of tungsten have been extensively
studied, and more is kno\vn of its thermionic behavior than is kno\vn of
any other metal. 1,2

The prin~ipal characteristics of tungsten as given by Jones and
Langmuir are recorded in '"fable II. l"he data in this table are for a ,vire
of unit length and unit diameter. The characteristics for any other
diameter and length are readily determined by the ,dimensional equations
given. The principal features of tungsten emission are given in the
curves of Fig. 4.10. An example of the use of Table II is given in Prob.
4.3.

Because of its relatively low emission, tungsten is not used as an
emitter unless the application is such that other emitters cannot be used.
Tungsten is used almost exclusively for filaments of tubes with plate
potentials higher than 4,000 volts. This is because other emitters can
not stand the positive-ion bombardment at energies corresponding to
this high potential. The positive ions referred to have their origin in
residual gases in the tube. All other emitters have their emission
impaired when subjected to bombardment by these high-energy particles.
Except for the brittleness caused by crystallization at high temperatures,
tungsten filaments are more rugged than any other. Like all emitters,
tungsten is subject to reduction of emission from contamination by
various gases. Tungsten eleans up more readily by heating or bombard
ment than any other material.

Tantalum. The only other pure-metal emitter of any importance is
tantalum. Tantalum cannot be heated to as high a temperature as
tungsten because its melting temperature is 3300oK. Ho"rever, the
work function of tantalum is relatively low, being 4.1 volts against 4.53
volts for tungsten, so that its emission is at least ten times that from

1 JONES, H. A., and 1. I.JANGMUIR, The Characteristics of Tungsten Filaments as
Functions of Temperature, Gen. Elee. Rev., vol. 30, I>art I, pp. 310--319, .June;
Part II, pp. 354-361, July; Part III, pp. 408-412, August, 1927.

2 FORSYTHE, W. E., and A. G. WORTHING, The Properties of Tungsten and the
Characteristics of Tungsten I.Jamps, Astrophys. Jour., vol. 61, pp. 146--185.
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TABLE II
SPECIFIC CHARACTF~IlISl"ICSOF II)EAl, TUNGSTEN FII.JAl\1E1';TS*

(For a \vire 1 em in length and 1 em in diameter)

R' X IO~, I' If !V' X 10', ,I M' M R'T

lV', ;.
vvll I' [6

Rd'XIOI I d~2' _·z- X 103,
, Yd' R'2'~o'

T, OK 6, id'
l ' amps per ( yolts per I g per cm 2 per Rr

watts per em
2 ohm-em cm~2

amp per cm2 sec,
R293°

cm~~ evaporation

-- -- _._------ -~-~.._-

273 ............. 6.37 ........... .1 ••••••• ............... . ........... 0.911

293 0.0 6.99 0.0 0.0 .... ~ ••• iIII ....... .......... 1.00

300 0.000100 7.20 3.727 0.02683 ................ .......... 1.03

400 0.00624 10.26 24.67 0.2530 ........... ,.. . ~ .... " .. ~ .... "' ...... 1.467

500 0.0305 13.45 47.62 0.6404 ............... .......... 1.924

600 0.0954 16.85 75.25 1.268 ................ .......... 2.41

700 0.240 20.49 108.2 2.218 ............... .............. 4.93

800 0.530 24.19 148.0 3.581 ............ " ....... • .... 4 ........... 3.46

900 1.041 27.94 193.1 5.393 ................... ..111 ........ 4.00

1,000 1.891 31. 74 244.1 7.749 3.36 X 10-15 1.16 X 10--33 4.54

1,100 3.223 35.58 301.0 10,11 4.71 X 10-13 6.81 X 10-30 5.08

1,200 5.210 39.46 363.4 14.34 3.06 X 10-11 1. 01 X 10--26 5.65

1,300 8.060 43.40 430.9 18.70 1.01 X 10-9 4.22 X 10-24 6.22

1,400 12.01 41.31 503.5 23.85 2.08 X 10-8 r,88 X 10-22 i 6.78

1,500 17.33 51.40 580.6 29.85 2.87 X 10- 7 r,42 X 10-
20 i 7.36

1,600 24.32 55.46 662.2 36.73 2.91 X 10-6 3.92 X 10-18 7.93

1,700 33.28 59.58 747.3 44.52 2.22 X 10-5 1.31 X 10-16 8.52

1,800 44.54 63.74 836.0 53.28 1.40 X 10-4 2.97 X 10-15 9.12

1,9GO 58.45 61.94 921.4 63.02 7.15 X 10--4 4.62 X 10-14 9.72

2,000 75.37 72.19 1,022 73.75 3.15 X 10-3 5.51 X 10-13 10.33

2,100 95.69 76.49 1,119 85.57 1.23 X 10- 2 4.95 X 10-12 10.93

2,200 119.8 80.83 1,217 98.40 4.17XIO-2 3.92 X 10-11 11.57

2,300 148.2 8.5.22 1,319 112.4 1.28XIO-1 2.45 X 10-10 12.19

2,400 181.2 89.65 I 1,422 127.5 0.364 1. 37 X 10--g 12.83

2,500 219.3 94.13 1,526 143.6 0.935 6.36 X 10-9 13.47

2,600 263.0 98.66 1,632 161.1 2.25 2.76 X 10-8 14.12

2,700 312.7 103.22 1,741 179.7 5.12 9.95 X 10-7 14.76

2,800 368.9 107.85 1,849 199.5 11.11 3.51 X 10-7 15.43

2,900 432.4 112.51 1,961 220.6 22.95 1.08 X 10-6 16.10

3,000 503.5 117.21 2,072 243.0 44.40 3.04 X 10-5 16.77

3,100 583.0 121. 95 2,181 266.7 83.0 8.35 X 10- 6 17.46

3,200 671.5 126.76 2,301 291.7 150.2 2.09 X 10-5 18.15

3,300 769.7 131.60 2,418 318.3 265.2 5.02 X 10-6 18.83

:i,400 878.3 136.49 2,537 3-4:6.2 446.0 1.12 X 10-4 19.53

3,500 998.0 141. 42 2,651 375.7 732.0 2.38 X 10-4 20.24

3,600 1,130 146.40 2,777 406.7 1,173 4.86 X 10- 4 20.95

3~655 11 ,202 149.15 2,838 423.4 1,505 7.15 X 10-4 ! 21.34
i

*The values given are taken from H. A. Jones and 1. Langmuir. The Characteristics of Tungsten
Filaments. Gen. El~. Rw., vol. 30, pp. 312-313, 1927, Table 1. The notation of Jones and Langmuir is

retained in this table.





ELECTRONIC EMISSION 39

tungsten at any temperature less than 2500oK. Tantalum has the advan
ta.ge over tungsten that it can be worked in sheet form to produce
specially shaped cathodes, and the like. A disadvantage is that it is
easily contaminated by residual gases, which form oxides that greatly
reduce the emission.

4.3. Atomic-film Emitters. It is possible to get emission higher than
that from pure metals from an atomic film of one metal on another.
Of the various combinations that are possible, the most extensively used
is that of thorium on tungsten. It was discovered by Langmuir and
Rogers that the small amount of thorium put into tungsten to reduce
the crystallization gave rise to very high emission under certain conditions.
What apparently happens is that a certain amount of thorium" ,in the
metal diffuses to the surface, where it emits much as thorium would,
,vith the advantage that the thorium can be heated above its own melting
temperature and that the work function is reduced by the redistribution
of charges in the tungsten and surface layer of thorium.

Thorium was originally added to tungsten to reduce crystallization.
As now added to increase the emission, the amount is about 172 per cent,
and this amount is quite critical. If more than this amount is added,
the tungsten wire is too hard to work. If less is added, there ma.y not
be enough to produce high emission. The thorium is added in the form
of thoria (thorium oxide, Th02).

A rather intricate schedule of operations is required to produce and
activate a film of thorium on tungsten. The process includes the fol
lowing steps:

1. Reduction of Thoria to Metallic Thorium. This is achieved by
heating the filament to 2800 0 K for 1 or 2 min. During this time, most
of the thorium oxide is reduced to thorium, and such thorium as reaches
the surface evaporates. If the emission is measured at this point, it
will be found to be very nearly the emission of pure tungsten..

2. Diffusion of Metallic Thorium to the Surfoce. This takes place as
the filament is held at a temperature of 21000 K for a period of 15 to
30 min. During this time the emission increases by a factor of about
1,000. The explanation of this behavior is that metallic thorium dif
fuses to the surface, where it builds up a monatomic layer of thorium.
Studies with the electron microscope! show that the thorium arrives at
the surface both through pores in the tungsten and at the grain boundaries,
from which places it spreads over the surface. At this reduced tempera
ture the evaporation is not very large. In the range of temperatures
between 2100 and 23000 K the thorium diffuses to the surface faster than

1 BRUCHE, E., and H. 1\!AHL, Ueber das Emissions bild von thorierten Volfram und
thoriertem Molybdan, Zeit. filr Tech. PhY8., vol. 16, pp. 623-627, December, 1935.
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it evaporates, so that this is a suitable range for activation.. In this
range of temperature the percentage of the surface covered varies from
20 to 85 per cent, decreasing as temperature increases as sho,vn in Fig.
4.11.. The final layer of thorium that forms is believed to be monatomic.

3. Operation. After the above treatment the filament temperature is
reduced to 1900oK, ,vhere it may be operated for long periods of time in
a very stable fashion. At this temperature, both the diffusion and
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}i'IG. 4.11.-The emission of thoriated tungsten as a
function of temperature. 0 indicates operating range
of temperatures; A, activation range; D, diffusion
range, and R, reduction range.

evaporation are lo,v, but there is a sufficient preponderance of diffusion
to maintain a good emitting surface. Any temperature below 19000 K
is suitable for operation. At this temperature, the tungsten surlace is
about 85 per cent covered by thorium, and the life of the coating is
several thousand hours. If the temperature is reduced, the effective
"vork function is decreased, the life is increased, the percentage surface
coverage is increased, but the emission is decreased.

It is interesting to note that the thoriated tungsten filaments are
usually operated at 1900oK, which is nearly the melting temperature of
thorium, something that could not be done with the pure metal because
of its softness at this high temperature. Also, the ,york function of
thoriated tungsten filaments is 2.6 volts for a 100 per cent covered sur
face, and this ,york function is lower than the work function either of



l~LECTRONIC EIVIISSION 41

tungsten, 4.51 volts, or of thorium, 3.4 volts. The ,york function of
thoriated tungsten is a linear function of the surface coverage given by
4> = 4.51 - 1.90 volts, ,,"here () is the fraction of the tungsten surface
covered by thorium. The reason ,vhy the ,york function is reduced by
having the metals in combination is that most of the electrons in the
thorium layer are dra,vn to,vard the tungsten base. This produces a
dipole layer on the surface, ,vith its positive end out,vard. This means
that in most of the suriace region the electrostatic forces are outward,
opposing the image forces and thus reducing the work function.

Thoriated tungsten surfaces are always carbonized to increase the
life. It has been found that if some of the tungsten is converted to
tungsten carbide (W2C) the evaporation of thorium from its surface is
greatly reduced. l l'he rate of evaporation of thorium from a tungsten
carbide surface at 22000 !{ is only about one-sixth of that from an uncar
bonized surface at this temperature. Carbonization may be achieved
by heating the filament to a temperature of 16000 K in a vapor of some
hydrocarbon such as naphthalene or acetylene. It may also be achieved
by heating the filament to red heat in an atmosphere of hydrogen while
in contact with a carbon surface. As the filament is converted to tung
sten carbide, its electrical conductance decreases until when totally con
verted it is about 6 per cent of the original value. rrhe electrical resist
ance is therefore an excellent index of the degree of conversion. In prac
tice, it is found that the conversion cannot be carried beyond the point
,vhere the conductance is reduced to 80 per cent of its original value, for
the tungsten carbide is so brittle that the filament would be dangerously
weakened by further action.

The fact that the layer of thorium on tungsten is monatomic is evi
denced by at least t,vo aspects of the behavior of the composite emitter
surface. (1) If the filament is deactivated by heating to a higher tem
perature after having been activated, the manner in which the errilssion
reduces ,vith time is independent of the length of time the film has been
activated. This indicates that the activation beyond a certain point
does not add any more emitting material to the surface, which can be the
case only if the layer is monatomic and surplus atoms are lost by evapora
tion. (2) There is no discontinuity in the emission characteristics during
the activation process.

Monatomic films other than thorium on tungsten may be used. It is
found that they are not as stable as a thorium layer because of more
rapid diffusion and evaporation, and hence they are not much used.
Curves sho"Wing the emission characteristics of various combinations are

1 KOLI~ER, L. !{., {iThc Physics of Electron lubes," 1st cd., McGraw-Hill, New
York, 1934.
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shown in Fig. 4.12. In this figure the notation o-W means that the
emitting metal is on an oxidized tungsten surface.

4.4. Oxide Emitters. In 1904, Wehnelt discovered that copious
electron emission could be obtained from alkaline-earth oxide coatings.
The entire development of small vacuum tubes is based upon this dis
covery, for oxide coatings are used almost exclusively as a source of
emission in them. The alkaline-earth metals that are readily available
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FIG. 4.12.-The emission of monatomic films on tungsten.
Dushrrwn.)

(After

are barium, strontium, a,nd calcium, and it is their oxides that have been
found to give such high emission. Modern oxide coatings are usually
a half-and-half mixture of the oxides of barium and strontium. Such a
coating will give high emission at low temperatures with a high thermal
efficiency; thus at lOOOoK an emission of 100 rna per cm2 at an efficiency
of 20 rna per watt input is readily obtained. This is about the same
emission ae is given by a tungsten filament at 2300oK, but the emission
efficiency here is only 1 rna per watt. The oxide coatings may be appJied
either to an indirectly heated cathode surface or directly to a filament.
They are particularly well adapted to making specially shaped unipo
tential cathodes.

Theory of Oxide Emission. Oxide emission has been the subject of
extensive study for the last 30 years though it has not been until recently
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that an explanation of the action has been available in fairly complete
form. 1- 5

The accumulated evidence indicates that the emission takes place from
particles of free metal on the surface of the oxide coating. The free
metal is made available by the following mechanisms:

1. Chemical reaction of the oxide with the core metal.
2. Electrolytic reduction by the gradient of potential through the

oxide coating.
3. Reduction of the oxide by positive-ion bombardment.

It was discovered early that the core metal played a part in the elec
tron emission. It was even believed that electrons were liberated at the
core. This was disproved by showing that there was no emission from
the core metal when the coating was removed by mechanical shock.
Further, the emission was shown to be independent of the size and shape
of the core. Also, the photoelectric work function of the oxide surface
was the same as the thermionic work function. However, the most
conclusive evidence that the emission is from the surface is that the same
emission characteristics are obtained from an oxide coating if metal is
vaporized onto the surface as is obtained by the normal process of activa
tion. Different core metals do, however, exhibit different effects upon
the emission. In the order of their reaction titanium, tantulum, nickel,
and molybdenum will react with the alkaline-earth oxides to produce
core-metal oxide and free alkaline earth. The action is evidenced by the
fact that oxides can be activated by heating alone. The titanium reac
tion is probably responsible for the excellent performance obtained with
cores of It Konel" metal, which is an alloy of nickel, iron, cobalt, and
titanium. The metal most used for core metals is nickel, which is pre
ferred because of its excellent physical properties and low cost.

Free alkaline-earth metal is also made available by the electrolytic
action associated with the passage of current through the coating. The
earth oxides dissociate under the usual condition of polarity. The metal
ion goes to the core, and the oxygen ion is liberated. This action can
be detected by the liberation of oxygen.

Dissociation of the oxides is also caused by positive-ion bombardment.
1 BLEWETT, J. P., Properties of Oxide Coated Cathodes, Jour. Appl. Phys., vol. 10,

Part I, October, 1939, pp. 668-679; Part II, pp. 831-848, December, 1939.
2 DUSHMAN, S., Thermionic Emission, Rev. Modern Phys., vol. 2, pp. 381-476,

October, 1930.
3 RIEMANN, op. cit.
4 BECKER, op. cit.
5 BLEWETr, J. P., Oxide Coated Cathode Literature, 1940-1945, Jour. Appl. Phys.t

vol. 17, pp. 643-647, August, 1946.
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Even in the best vacuums there are enough ions present to give an appre
ciable action. The faet that activation is greatly facilitated by applica
tion of a positive potential to the tube in processing is considered sufficient
evidence of the existence of this action.

As \vith the atomic-film emitters the resultant work function is lower
than that of the pure metals alone, and these are already very low.
Reported values of the work function of oxides have shown a tremendous
variation until recently, when improved vacuum techniques and a better
understanding of the mechanism have given rise to some fairly consistent
values. 'rhe ,york functions of the oxides are now believed to lie within
25 per cent of the follo,ving values:

BaO 1. 1 volts
SrO 1.4 volts
CaO 1 .9 volts

BaO + BrO 1.0 volts

Emission from the combination of barium and strontium oxides is
seen to be better than from either one alone. The reduction in work
function over that of the pille metals is again probably due to an elec
trical double layer formed by a monatomic coating of the pure metal on
the oxide. Values of the emission constant A also sho\v a great range of
variation as reported by various observers. It has been found that both
the emission constant and the ,vork function change with the degree of
activation of the oxide coatings. Both decrease \vith activation, and
experimentally it is found that the ,york function is a linear function
of the logarithm of the emission constant. Properly speaking, it is not
correct to ascribe an emission constant to oxide coatings, for the emission
law in this case is slightly different from the Richardson-Dushman law. 1

An equivalent emission constant is of the order of 0.01 amperes per cm2

per deg.
Electron-microscope studies of oxide emission show that there is no

relation between surface irregularities and emission. 2 Variations in
,york function are observed ,vith orientation of crystal faces. The
emission surface does not change much \vith degree of activation though
the emission may change greatly. Emission is improved by reducing
oxide particle size, as may be done by using colloidal particles.

In operation, an oxide cathode has to establish an equilibrium between
rate of production of free emitting metal and evaporation of the same.
This means the establishment of an equilibrium bet,veen electrolysis,
diffusion, and evaporation. This latter ,vill be disturbed if the tempera
ture of the oxide or the amount of current is changed. Under normal

1 BI.I}~WETT, Properties of Oxide Coated Cathodes, Part I, Ope cit.
2 HEINZE, W., and S. WAGENER, Vorgange bei Aktivierung von Oxydkathoden,

Zeit. fur Tech. Phys., vol. 17 (No. 12)~ pp, (l4 S---653, 1936.
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conditions the equilibrium adjusts itself to the current dravvn so quickly
that no change is evident. If, ho\vever, the cathode temperature is low
or if the emission is partly contaminated or partly exhausted, there ,viII
be evident an adjustment of emission over a period of seconds or even
minutes as the current drawn is suddenly changed.

~'he adjustment is of the follo,ving nature: If the voltage on a tube is
increased, the current immediately increases and then drops slowly,
coming to rest at a value bet,veen the previous and initial value. If the
voltage is decreased, the current will immediately decrease and then
slowly rise to a value bet,veen the previous and initial value.

Activation of Oxide Emitters. Since the alkaline-earth oxides are not
stable in air, the coating must be applied to the cathode or filament in
the form of a carbonate or hydroxide. The carbonates are most exten
sively used, being held to the surface with an organic binder. Coatings
of a thickness of 0.010 to 0.020 in. work well. When a coating has been
applied and the tube evacuated, the coating is activated by first heating
it to a temperature of about 15000 K for a few minutes. This reduces the
carbonates to oxides, and during this time copious CO 2 is evolved.
Considerable thermal reduction also occurs, with attendant evaporation
of liberated metal. The oxide coating is then operated at a temperature
of about lOOOoK with a potential of about 100 volts applied to an adjacent
electrode through a protective resistor. Electrolysis and positive-ion
bombardment then occur, and the emission will build up slowly to a
final value, when the filament will be ready for use.

Various other methods of applying coatings may be used. Heating
in air is recommended to eliminate the organic binder. For a water
paste the coating should be baked in an inactive gas to get good adherence.
Hydroxides, which are very good for coating tungsten, may be dipped
and then baked in air to get a so-called "combined coating."

Specifz,c Emission Characteristics. The lines of Fig. 4.5 show the
behavior of oxide coatings in comparison with other emitters. The low
work function is evident from the small negative slope of the curve.
Emission as a function of power is shown in Fig. 4.7 in contrast with
other emitters. The higher emission efficiencies are evident. The
emission obtainable from oxide coatings has increased with the years.
This may continue, though an increase over present values by more than
a factor of 10 is not probable. Some comparative emission efficiencies
are

Ma per Cm2 per Watt
Pure tungsten filament. . . . . . . . . . . . . . . . . . . . . . . . 2-10
Thoriated tungsten filaments. . . . . . . . . . . . . . . . . . 5-100
Oxide-coated indirectly heated cathodes. . . . . . . . . IG-200
Oxide-coated filaments. . . . . . . . . . . . . . . . . . . . . . . . 200-1,000
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Under normal conditions the life of an oxide coating should be several
thousand hours. Cessation of emission is due to exhaustion of free metal
in the oxide. In mixed coatings there is a preferential evaporation of the
barium, which finally leaves the relatively less efficient strontium to give
a greatly reduced emission.

Oxide coatings are more easily damaged or poisoned than any other
type of coating. They are particularly susceptible to poisoning by
oxygen. Emission may be reduced by several powers of 10 by the pres
ence of oxygen at a pressure of 10-4 mm of mercury, while a pressure of
10-3 mm will inhibit emission completely. Oxide coatings are seldom
used on tubes where they will be subjected to bombardment of more than
1,000 volts. Bombardment by particles of higher energy will disintegrate
an oxide coating completely.

Transient Emission. The monatomic layer of barium of the oxide
coating has tremendous instantaneous-emission potentialities. Such a
layer may yield instantaneous emission as great as 100 amperes per
cm2• When short-time high voltages are applied, such large emission
may be realized. 1,2 The high voltage exhausts the available emission in a
time of the order of milliseconds. When this happens, the supply of
free barium must be resupplied through processes of reduction and dif
fusion. Since this takes an appreciable time, a current-voltage plot of a
diode operated under these conditions at 60 cycles exhibits pronounced
exhaustion effects, giving rise to a loop in the retrace characteristic.
When a very sharp pulse of voltage is applied to an emitting surface, the
emitted current consists of a capacitive displacement component as well
as the conduction component. As a result, the current pulse will gener
ally have an initial peak with a subsequent rapid decay.

4.6. Schottky Effect. A departure from the Iuchardson-Dushman
emission equation occurs when the emitting surface is subjected to a
strong positive potential gradient. Effectively the field reduces the work
function. As a result, the current from an emitter increases with the
potential applied even though the temperature is kept constant and the
emission is not affected by the space charge of the electrons.

The action may be understood by referring to Fig. 4.13, in which the
effect of a constant gradient of potential upon the normal potential
barrier at the surface of the emitter is shown. The combination of the
constant gradient and the normal potential barrier is seen to give a new
potential barrier, which has a maximum at a certain distance de from

1 SCHADE, O. H., Analysis· of Rectifier Operation. Proc. I.R.E., vol. 31 (No.7),
pp. 341-361, 1943.

2 COOMBES, E. A., Pulsed Properties of Oxide Cathodes, Jour. Appl. Phys., vol. 17,

pp. 647-654. August, 1946.
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(4.5)

Pofent,i:;r/ wlfh
exterl1fll/ Field

the surface. This distance is known as the "critical escape distance"
because once an electron gets beyond this distance the electrostatic
forces are outward rather than restraining and thus an electron keeps on
moving. Upon equating th.e image field with the gradient, the maximum
of the restraining potential is found to occur at a distance

d
1 j-e

c = 2 \j 41r£oE

where e is the charge on the electron, E is the potential gradient, and Eo

is the dielectric constant of free space of value 8.85 X 10-12 for rational-
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FIG. 4 13.-Diagram of the potential barrier associated
with the Schottky effect.

ized mks units. The crest of the potential barrier has been reduced by
the work the electron would have to do to overcome the image force

from the surface from de to infinity. This amount of work is ; ~~o
volts. The work function is further reduced the same amount owing to
the fact that the potential at the distance de is reduced by the amount deE.

The total reduction in the effective work function is thus e ~4e::o
volts. When this correction is made for the work function in the Rich
ardson-Dushman equation, it is found that the ratio of the emitted current
in the presence of the strong electric field to the normal emission current
is given by

(4.6)
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,vhere J E is the emission-current density in the presence of the strong
electric field, J is the normal emission-current density, e is the Napierian
base 2.718, E is now the negative gradient of potential in volts per centi
meter, and T is the temperature in degrees "Kelvin. This equation may
be verified experimentally by plotting the logarithm of J E against the
square root of E. The experimental results are found to give a good
straight line for all but low values of gradient at which the current drops
more rapidly than this simple theory predicts. The slope of the line is, of

4.403 loglo e
course, T ·

4.6. Contact Difference of Potential. Another factor that occasion
ally enters the emission picture is "contact difference of potential."
This term is given to the effect observed ,vhen two dissimilar metals are
put in good electrical contact. It is found that a small potential differ
ence will exist between the free surfaces of the two different metals.
This difference of potential turns out to be the difference between the
work functions of the metals and arises from the fact that electrons can
move more readily from the metal of low work function to the metal of
high work function than vice versa. The differential action results in
an equilibrium that leaves the metal of low ,vork function positively
charged relatively to the metal of high work function by just the differ
ence of the work functions. In ordinary vacuum tubes contact differ
ences of potential are usually less than 7'10 volt and so do not cause
serious trouble except in speeial cases. Such differences of potential
as may arise from contact of dissimilar metals will be most serious in
such places as the cathode-control-grid circuit.

4.7. Secondary Emission. Another form of emission that plays an
important role in vacuum tubes is secondary emission. This occurs
when a surface is struck by electrons or ions of appreciable velocity.
Secondary emission caused by the bombardment of electrons is the more
important case and occurs whenever the striking electrons have energies
corresponding to a few volts or more. When this happens, the striking
electrons may knock one or more electrons out of the material, giving rise to
a reverse component of current. The electrons knocked out of a material,
known as "secondary" electrons, may number more than the" striking,"
or "primary," electrons. There is no violation of the conservation of
energy law when this happens, for the velocity of the secondary electrons
is for the most part very low. Secondary emission is commonly encoun
tered in multiple-electrode tubes, where it has the effect of altering some
what the normal primary-electron current characteristics. It occurs in
cathode-ray tubes where the beam electrons hit the fluorescent screen,
and is necessary there to complete the circuit for the current flow. It
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is deliberately used in a number of types of olectron-multiplier tubes,
where it makes possible a high amplification of current by a purely elec
tronic action.

Secondary-emission characteristics of materials are measured by
means of the apparatus shown schematically in Fig. 4.14. In the arrange
ment shown a beam of electrons is directed at a target inside of a sphere
at a higher potential, which attracts the secondary electrons liberated
at the target. The ratio of secondary- to primary-electron current can
be read for any primary-electron potential. l For a long time there were
great discrepancies in the reported secondary-emission characteristics of

Co/leefor

~
{,.sphere , Secondary

Pninary . /,' ekctrons
elecfrons, "'T T

Cathode J ,\\/ ~2-~L
-- _i ':'~\I ;-----+---i

,..., ...

FIG. 4.14.-Apparatus for the measurement of secondary
emission characteristics.

the various metals. It "vas evident that small traces of impurities or
surface contaminations made a great difference in the secondary-emission
characteristics. Techniques have no\v been refined to the point where
the values reported by various investigators are fairly consistent. The
average secondary-emission characteristics of the materials commonly
used in vacuum tubes when only the ordinary precautions against con
tamination are taken are shown in Fig. 4.15. 2

Variation of Secondary Emission with Primary-electron Potential. In
Fig. 4.16 are shown the secondary characteristics of the common metals
presented in curve form, giving the ratio of secondary- to primary-elec

1 See KOLLATH, R., Sekundarelektronemission fester Korper, Physik. Zeit., vol. 38,
pp. 202-224, Mar. 15, 1937, for an excellent discussion of methods of measurement
and results obtained up to that date.

2 HARRIES, J. H. OWEN, Secondary Electron Radiation, Electronics, vol. 17, pp.
100-108, 180, September, 1944.



50 VACUUM TUBES

tron current as a function of the primary-electron potential as reported
by Bruining and DeBoer. 1 These results probably are more reliable
than any previously reported, for the investigators used a special appara
tus in which the metal to be tested was evaporated onto the target in
a vacuum just before the measurement was made. The results presented
sho'\v lower ratios of secondary- to primary-electron current than those
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FIG. 4.15.-Secondary-emission characteristics of the metals under ordinary
conditions. The curve shows the ratio of the number of secondary to pri
mary electrons for v3110us primary-electron illpact velocities expressed in
volts. (After Harries.)

previously reported. This is probably due to the fact that with previous
handling the metals became partly oxidized and oxidized surfaces are

1 BRUINING, H., and J. H. })EI30ER, Secondary F~mission, Part I, Secondary Emis
sion of Metals, Physica, vol. 5, pp. 17-30, January, 1938; Part II, Absorption of
Secondary Electrons, Physica, vol. 5, pp. 901-912, December, 1938; Part III, Second
ary Electron Emissh.lll Caused by Bombardment with Slow Primary Electrons,
Physica, vol. 5, pp. 913-917,. December, 1938; Part IV, Compounds with a High
Capacity for Secondary Electron :Emission, Physica, vol. 6, pp. 823-833, August, 1939;
Part V, Mechanism of Secondary Electron Emission, Physica, vol. 6, pp. 834-839,
August, 1939; Part VI, Influence of Externally Adsorbed Ions and Atoms, on the
Secondary F~lectron Emission of Metals, Physica, vol. 6, pp. 941-950, October, 1939.
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known to have higher secondary emission than those which are not..
The curves of Fig. 4.15 show that all the metals have a low secondary
emission at low primary-electron potentials. Most of the metals have
a maximum secondary emission between 200 and 400 volts of primary
potential, which then decreases slowly, becoming constant at a value
between 50 and 95 per cent of the maximum value. Most of the uncon
taminated metals have a maximum ratio of secondary- to primary-elee
tron currents less than 1 though it should be remembered that metals
as encountered in tubes are seldom uncontaminated and will have
maximum ratios of the order of 1 to 5.

Although the complete theory of secondary-electron emission is as
yet not worked out, a great deal is knO\Vll of the mechanism. l ,2 When
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o 200 400 600 800 1000 1200
Primary electron potenti 011, vo fts

FIG. 4.16.-Secondary-emission characteristics of metals with
inappreciable surface contamination. (After Bruining and
DeBoer.)

primary electrons strike a surface at right angles, they may knock electrons
out of the atoms near the surface and those with velocity components
directed toward the surface may be able to overcome the surface-poten
tial restraints and escape from the metal. Each primary electron may
shake up several atoms, thus giving rise to several electrons emitted per
primary electron.. It should be noted that the source of secondary elec
trons lies almost entirely in the electrons of the surface atoms and not in the
free electrons of the metal. If a normally directed primary electron strikes
a free electron, it cannot give it a component of velocity directed toward
the surface. Electrons knocked out of atoms, however, may have such

1 Ibid., Part V..
t WOOLDRIDGE, D. F~" Theory of Secondary Emission, Phys. Rev., vol. 56, pp.

562-578, Sept. 157 1939.
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FIG. 4.17.-The relative velocity
distribution of secondary electrons.
About 90 per cent of the secondary
electrons will have velocities in
range I, 7 per cent in range II,
and 3 per cent in range III.

a component. As the potential of the primary electron is increased, it
will at first knock out more and more secondary electrons. However,
as the potential is further increased, the surface atoms are exposed to
the primary-electron forces for a shorter time, i.e., the so-called "col

lision diameter" decreases, and the pri
mary electron "lill first knock electrons
out of atoms \vhen it has slowed down
upon penetration into the metal. l"'hus
at the maximum of emission it is
believed that the majority of the sec
ondary electrons are liberated a depth
of several atoms into the met aL l

Beyond this potential the primaries
penetrate still farther into th~ metal,
and the probability that the electrons
knocked out of the atoms at this depth
will reach the surface decreases, with
the result that the secondary emission
decreases.

Velocity Distribution of Secondary
Electron8. In Fig. 4.17 is shown a
typical curve of the distribution of
velocities in the secondary electrons

emitted. from a metal. Most of the electrons, about 90 per cent, have
velocities below 20 volts. The electrons naturally fall into three groups
as indicated in the figure. These are as follows:

Group r-o to 20 volts. This group comprises about 90 per cent of
all the secondaries for primary potentials of 50 volts or more.
There is a pronounced maximum in this group at about 10 volts.
These are the electrons which are shaken out of the atoms as a
result of the passage of the primary electrons and do not have much
energy.

Group 11-20 volts to 98 per cent of the primary-electron potential.
These comprise about 7 per cent of the total secondary current.
They represent high-energy electrons knocked out of atoms and
elastic reflections of the primary electrons at a considerable depth
in the metal.

Group 111-98 to 100 per cent of primary-electron potential. This
group comprises only about 3 per cent of the secondary current

1 BRUINING, H., Depth at Which Secondary Electrons Are Liberated, Physica,
vol. 3, pp. 1046-1052, September, 1936.



ELECTRONIC EMISSION 53

~
\,
~

'~
"- r--.....I"---..r--...r--..--~

and has a maximum at about 99 per cent of the primary-electron
potential. This group arises from elastic reflections of primary
electrons from atoms near the surface of the metal, not really
secondary electrons at all.

Another representation of the secondary-electron velocity distribu
tion is obtained if potential between sphere and target of the apparatus
of Fig. 4.14 is made negative instead of positive and the current of the
sphere is measured against the retarding potential. The resultant curve
is shown in Fig. 4.18. This curve is an average for measurements on
various metals with primary-electron

8 ~100
potentials in the range of 275 to 1,000 g.~

volts. Curves like those in Fig. 4.17 e~ 80

are obtained by taking the negative ~ ~
derivative of curves such as those in ~~ 60

~5Fig. 4.18. 0 :d
~~40Variation of Secondary Emission '0 ~

with Angle. When primary electrons J~ 20
strike a surface at right angles, it is ~ ~

found that secondary electrons are ~ BOO 20 40 60 80 100

emitted at all angles. The spray of Retarainq potent;alaspercenmge
secondary electrons seems to follow of primary impact energy
very nearly a cosine law of distribution FIG. 4.18.--Qollector current as a
under all conditions. function of retarding potential of the

When the primary electrons strike secondary-emission measuring appa

a metal surface at an angle, it is ratus of Fig. 4.14.

found that the distribution of the angle on the secondaries is still nearly
a cosine-law variation. More important than this is the fact that the
secondary- to primary-emission ratio increases as the primary electrons
strike more nearly parallel to the surface. Some typical curves showing
the variation of the secondary- to primary-emission ratio are given in
Fig. 4.19. The increase in secondary emission with angle is largely due
to the fact that at angles other than normal the primary electron may
knock free electrons out of the metal as well as electrons out of atoms.
The variation of emission is given quite closely byl

Ro = ROEP(l-cos(J) (4.7)

where (J is angle between normal and direction of primary electrons
Rois ratio of secondary to primary electrons at angle 8
Ro is ratio of secondary to prima,ry electrons at angle zero

E is Napierian base 2.718

1 BaUINING and DEBoER, Ope cit., Part II.



54 VACUUM TUBES

p is a coefficient that increases with primary potential and is pro
portional to the primary-electron penetration

Secondary Emission of Composite IJayers. Certain combination sur
faces have been found to have pronouncedly higher secondary emission
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FIG. 4.19.-Variation of secondary-emission ratio with
angle of primary impact. Note that the secondary-emis
sion ratio increases as the angle of incidence becomes
more nearly grazing. (After Bruining and DeBoer.)

than the pure metals. Such surfaces are the alkalihalides on a base of
the alkali metal and alkali oxides on various metal bases. All these
combinations show the same general secondary-emission characteristics
as do the p~re metals except that the current ratios instead of being
in the vicinity of unity may be as high as 8 to 11. The velocity distribu-
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tion for composite surfaces is much narro,ver than for the pure metals,
i.e., a given percentage of the total electrons are included in a lower
range of velocities, 85 per cent in the first 3 volts. Below are given data
on some of the alkali halides. 1

TABLE III
MAXIMUM SECONDARY-EMISSION RATIOS OF ALKALI HALIDES

Compound Maximum Ratio
LiF 5.6
NaF 5.7
CaF2 3.15
NaCl 6.8
KCl 7.5
RbCl 5.8
CsCI 6.5
NaBr 6.25
NaI 5.5
KI 5.6

Of the alkali oxides, by far the best emitter is caesium oxide,
partly reduced, on a base of silver. Some typical curves for alkali
oxides are shown in Fig. 4.20. This same combination gives very
high photoemission. Photoemissive surfaces are prepared in the same
way.

In connection with composite suriaces it should be noted that a com
bination with a low work function does not necessarily have a high
secondary- to primary-electron ratio, and vice versa. Thus tungsten
with a work function of 4.52 volts has a maximum ratio of 1.5. Con
tamination with oxygen increases the work function to 9.25 volts but
increases rather than decreases thf. maximum ratio.2 This probably
means that electrons are more readily knocked out of the surface atoms
and so give increased secondary emission even though they require more
energy to escape from the surface. For a given combination of elements,
however, the secondary emission usually increases with decreasing work
function. Thus, if caesium on caesium oxide on silver is contaminated
with oxygen, the work function increases and the secondary emission
decreases. Also, in the case of molybdenum partly coated with barium
the work function passes through a maximum with a given percentage
of the surface covered, as is evidenced by the photoelectric emission.
The secondary emission passes through a maximum with the same

1 BRUINING and DEBOER, Ope cit., Part V.
, ZWOBYKIN, V. K., and G, A. MORTON, "Television," p. 32, Wiley, New York.

1940.
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percentage of surface coverage though the maximwn is Dot nearly so
pronounced. 1

Secondary Emission of Insulators. Insulators as well as conductors
may emit secondary electrons. Measurements on insulators are more
difficult to make because the potential of the insulator cannot be meas
ured directly. The characteristics can, however, be deduced from the
potential that the insulator assumes relative to a spherical collect,or
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FIG. 4.20.-Secondary emission of the alkali oxides. (Reprinted
by permission from l'Television" by V. K. Zworykin and G. A.
Morton, Wiley, .New York, 1940.)

electrode when bombarded with electrons of different potentials. The
general features of the secondary emission of insulators may be summed
as follows: 2 Insulators exhibit curves of ratio of secondary- to primary
electron current versus primary-electron potential that are similar to
those of the metals. Ratios usually exceed lover a considerable range
of potentials, a maximum occurring between 300 and 800 volts. As with
the metals, the ratio rises rapidly to a maximum and then drops slowly.
As with the metals, most of the secondary electrons are emitted perpen
dicularly to the surface, following very nearly a cosine law of distribution

1 BRUINING and DEBOER, Ope cit., Part VI.
I KOLLATH, IJY. cit.
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regardless of the direction of the primary electrons. Upon bombard
ment at an angle the secondary- to primary-electron ratio increases as
the primary electrons strike more nearly parallel to the surtace up to a
critical angle, beyond which the ratio drops to a small value less than
unity and remains nearly constant. The critical angle depends upon the
material and is a function of temperature, the angle with the normal
increasing with temperature. The explanation of the sudden drop in
emission with increased angle with the normal of primary-electron bom
bardment seems to be that a layer of negative charge forms on the sur
face which traps, by a space-charge action, the primary electrons and
the secondary electrons they would have freed.

In n0rmal action an insulator will have its potential influenced by its
secondary-emission characteristics. The action will depend upon the
primary-electron energy relative to the secondary-emission characteri&
tics. Action can be divided into three cases as follows:

1. Primary-electron potential below that at which secondary
to primary-current ratio is unity. Here the number of secondary
electrons emitted is less than the number of primaries, and so the
insulator acquires a negative potential that is large enough to repel
most of the primaries. This constitutes a blocking action. The
insulator is finally in stable equilibrium at zero potential.

2. Secondary- to primary-current ratio greater than unity. Under
this condition the insulator gives off more electrons than it acquires
and so becomes more positive than its surroundings. When this
happens, the insulator reattracts the slo,v secondaries and so
remains a few volts more positive than the potential thr()ugh which
the primary electrons have been accelerated.

3. Primary-electron potential greater than that at which secondary
to primary-current ratio has dropped to unity. In such cases the
insulator will gain more electrons than it loses and so "ill become
more negative in potential until the primary electrons are retarded
to the point where the ratio of secondary to primary current is unity.
At this potential, the primary- and secondary-electron Cllrrents
are equal, and the insulator is in stable equilibrium.



CHAPTER 5

DETERMINATION OF POTENTIAL FIELDS

THE fundamental theoretical technique necessary for the study of the
internal behavior of a vacuum tube is that of determining the distribution
of the electric potential within the tube. From the determination of the
electric potential within a tube can be deduced the amplification factor
of the tube, the focusing properties of the electrodes, and the current
voltage characteristics. In short, the determination of the distribution
of the electric potential within a tube is the point of departure for the
study of almost all its characteristics.

The methods of determining the potential fields of vacuum tubes are
rather special. The most extensive information is obtained from con
formal transformations and from solutions of the Laplace differential
equation. The particular transformations and functional forms most
frequently encountered in tubes are ordinarily given only a fraction of
the total space allotted to the entire subject of electrostatics in books
devoted to this subject. For this reason a brief review will be given of
all the standard methods of determining potential fields, including some
numerical and graphical methods, so that the elegance of the special
methods mentioned will be appreciated.

6.1. Units and Dimensions. In this book there will be used the
system of rationalized mks units. For this system the units of length,
mass, and time are the meter, kilogram, and second, respectively and the
electrical units are the usual practical ones-the volt, the ampere, the
coulomb, etc. The term "rationalized" indicates that the factor 4'1r
has been incorporated into the arbitrary constants in such a way that
the greatest over-all simplicity of all relations is obtained. This is done
in such a way that the factor 4'1r does not appear in relations involving
plane geometry and rectangular coordinates but does appear in relations
involving spherical geometry. A further feature of the rationalized mks
system of units is that the equivalent dielectric constant of free space and
the equj,valent permeability of free space are not unity but have some
specific values. These are the only two values that need to be known
in this system to work practical problems, whereas in some of the other
systems a whole table of conversion factors has to be invoked every time
a practical problem is solved.

58
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5.2. Fundamental Quantities and Definitions: Forces between
Charges. All electrostatic relations are based upon the application of the
observed effects of charges upon one another. Qualitatively, the obser
vations are that there are two kinds of charges, that like repel and unlike
attract, that the force between charges decreases as the distance between
them increases. Quantitatively, all this is expressed by Coulomb'8 law,

F = qtq2
4nr2 (5.1)

where F is the radially directed force in newtons (1 newton equals 105

dynes) between charges qt and q2 in coulombs, r is the distance between
(.;harges in meters, and e is the so-called" dielectric constant" of the
medium. The dielectric constant is equal to the product of the relative
dielectric constant and the dielectric constant of free space,

£ = £"£0 (5.2)

where £r is the relative dielectric constant as would be determined by the
ratio of capacity of a condenser using the medium and free space as
dielectric and £0 is the equivalent dielectric constant of free space whose
value turns out to be 8.85 X 10-12 farad per meter in rationalized mks
units.

The region in the vicinity of electric charges is referred to as the
electric fleW. The electric intensity E at any point in such a field is
the force per unit charge on a small test charge placed at the point. The
intensity, which will also be shown to be the negative gradient of the
electric potential, is a vector quantity in that it has both magnitude and
direction.

Intensity at a distance r from a charge q is, by Coulomb's law,

lEI = ~r2

Where more than one charge is concerned,

I q.. cos (x,r..)

Ez = -,,-----
4nrn

2

I q.. cos (y,r..)
Efl =_n _

4nrn
2

(5.3)

(5.4)

(5.5)

The summation must be taken by a summation of component~ where
(x,r,,) is the angle between a line parallel to the x axis and the vector
from the charge qn to the point at which the intensity is being determined.
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A line of force, or a line of flux, is a line drawn so that it has every
where the direction of the electric intensity. Lines of flux originate on
positive charges and terminate on negative charges. In the rationalized
mks system of units one line of flux emanates from every unit positive
charge. The density of the flux lines is known as the displacement or
flux density. Displacement and intensity are related by the expression

D = £E* (5.6)

where D is the displacement, or number of flux lines per square meter,
and t is the dielectric constant of the medium. Equation (5.6) is, for
homogeneous isotropic dielectrics, strictly analogous to the expression
B = jJ.H, which applies for magnetic fields.

The potential at 9Jny point in an electric field is defined as the work
per unit charge required to bring a small positive test charge from infinity
to the point in question (symbol V). Potential is a scalar quantity, i.e.,
completely specified when its magnitude alone is given. Applying this
definition to obtain the potential at a distance r from a charge q,

f T fr q
V = F dr = - -- dr =~

ao ao 4nr2 4'11"£T
(5.7)

The minus sign appears because the work is being done against the force.
The potential obtained above is in volts if q is in coulombs and r is in
meters. The work is independent of the path. The potential at a
point due to a number of charges is equal to the sum of the potentials
due to the separate charges,

(5.8)

(5.9a)

For a continuous distribution of charge over a surface,

V=4~f~oo
where (j is the surface density of charge, da is the element of area, and
the integration h, taken over the a,rea of the surface. For a co"\tinuous
distribution of charge throughout a volume,

(5.9b)

* Bold-faced capitals will be employed to designate vector quantities when used
in the vector sense. Components of vectors are themselves vectors but may usually
be treated as scalar quantities when dealt with separately.
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where p is the volume density of charge, dv is an element of volume, and
the integration is taken over the volume.

The difference of potential bet\veen two points in al~ electric field is
defined as the work per unit charge required to bring a small positive
test charge from one point to the other. This difference is independent
of the path by which it is evaluated.

From the definition of potential it is seen that the intensity is the
negative gradient of potential, the negative sign indicating that the force
is exerted in a direction opposite to that of increasing potential. The
gradient of the potential is a vector having the magnitude and direction
of the maximum variation of potential. Thus

lEI = _ av
08

The force per unit charge in any general direction is given by

BV
E cos a = - iil

(5.10)

(5.11)

where a is the angle between the direction considered and the gradient
of potential. Components of intensity are conveniently related to
potential by

E~ =
av
ax
aV
oy

(5. 12a)

(5.12b)

The form that components of intensity have in tenns of derivatives
of potential depends upon the coordinates in \vhich the potential and
distances are expressed. In all cases the component expressions cor
responding to Eq. (5.10) have the form of the limiting value of the ratio
of an increment of potential to an increment of length in the direction of
the variable considered. Expressions for the intensity as a negative
gradient of potential are given in Appendix II for the coordinate systems
most commonly used.

5.3. Solution of Potential Fields by Summation of Intensities. The
electric field around any distribution of charges may be found by sum
ming the forces due to the charges by means of Eq. (5.4). Forces are
best swnmed one component at a time. The procedure can usually be
simplified by choosing the axes to take advantage of any symmetries.
When an expression for each of the components of intensity has been
found, the resultant intensity has a magnitude that is the square root
of the sum of the squares of the components. The direction cosines of
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the resultant vector are given by the ratio of the respective components
to the magnitude of the resultant.

Example: Find the electric intensity on the axis of a right-circular cylinder of
radius a and length h at a distance Xo from the end of the cylinder if the cylinder
has a charge uniformly distributed throughout its volume of density p. In the
configuration of Fig. 5.1 let x be the distance from the point P to the point on
the axis corresponding to an element of volume in the cylinder. The elementary
volume is given by

dv = r dr dO dx

and the corresponding element of charge is given by

dq = p dv

flv

r----------- x - -----------------,.._-_..-t-- -_.._-- -

~- ----- --- h --------+--------- x o----------

FIG. 5.1.-Notation for the evaluation of the axial intensity due
to a cylindrical distribution of charge.

By symmetry there will be only an x component of intensity at the point P on
the axis to which the element of charge will contribute

dE _ pr dr de dx x _1_
;jz - r2 + x2 (r2 + X2)~2 4n

which will be recognized as being of the form

dq cos a--ni -

This differential expression must be integrated with respect to its three variables,
8 from 0 to 211'", r from 0 to a, and x from Xo to Xo + h. When this triple inte
gration has been performed, the resulting expression for the intensity on the
axis is

E = fun [h - y(xo + h)2 + W + yx + a2J~

5.4. Summation of Potentials. The potential at any point in a field
may similarly be obtained by application of Eq. (5.7). This procedure
is in general easier to apply than the direct evaluation of the intensity,
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for the swnmation for potentials is algebraic, whereas that for intensities
must be vectoriaL The expression for the components of intensity is,
of course, derivable from the expression for potential.

Example: Find the potential at a distance c from the center of a spherical
shell with inner and outer radii rl and r2 and with a charge uniformly distributed
throughout its volume of charge density p.

The element of volume in spherical coordinates is

dv = r 2 sin 8 dr dO dep

where the symbols have the significance indicated in Fig. 5.2 and ep is the azimutb-

p
","

-- c ------~::---
,.".".""""

".'"
.,.,.""" Y.,.,.

FIG. 5.2.-Notation for the evaluation of the potential due
00 a charge uniformly distributed throughout a spherical
shell.

al angle. Then the potential at the point P due to the element of charge
associated with the above element of volume is

dV = fYT'2 sin 0ydr dO de/>~

It is convenient to use the distance y instead of the angle 8 as a variable. The
two quantities are related by the law of cosines

y Jt: (c2 + r2 - 2cr cos 8)H

80 that, for constant f)

d cr sin 0 d8
Y= Y

1tiaking this substitution into the expression for the element of volume,

pr 1
dV = c dy dep dr 4n

so that

v = ef,r~ {27r {c+r r dy dep dr -.!..-
c T1 Jo Jc-r 4a'e
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The result of this integration gives

From this it is seen that the potential at the point P is the same as though the
entire charge of the shell were concentrated at its center.

5.5. Gauss's Law. Gauss's law is one of the most useful relations in
electrostatics. I t enables one to
determine quickly the field and
potential around any symmetrical
distributions of charge. The law
may be stated as follo"\vs: The
integral of the normal outward com
ponent of electric flux over any closed
surface is equal to a constant times
the total charge enclosed by the sur-
face. For rationalized mks units,
the constant is unity.

FIG. 5.3.-Notation for the evaluation
Consider a closed surface Sof Gauss's law, Eq. (5.17).

enclosing a single point charge q as
shown in Fig. 5.3. Then the outward component of electric flux for the
element of area dS is

D~ dS = D cos a dB

D n dS = 4:r2 cos a dS

(5.13a)

(5.13b)

(5.14)

It will be recognized that d~ cos a is the element of solid angle about the
r

point charge intercepted by the area dS, since solid angle is measured by
area intercepted on a unit sphere just as linear angle may be measured
by arc length on a unit circle. Thus

dO == dk'l, cos a
r2

where dO is an element of solid angle. Then

(5.15)

If this is integrated over the entire surface surrounding the point charge,

(5.16)

since there are 41r units of solid angle around a point.
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Since the law of superposition holds for the potentials due to charges,
the integral of the outward normal component of flux is equal to the
total charge enclosed when the closed surface contains more than a single
charge.

For a volume distribution of charge the law can be written

JD cos a dB = Jpdv (5.17)

where p is the volume charge density, v indicates volume, and the other
symbols have the previous significance.

Example: Consider the case of a uniform distribution ot charge on a circular
wire of infinite length. From considerations of symmetry it is evident that the

D

---t--.....D

/
I

I
I
, /"1........,
I / \ I

/ ...-\ / /\ 0/ /"/, ,,/
\ ,

'", ........... -----
FIG. 5.4.-The flux associated with a linear distri
bution of charge.

electric field will everywhere be radial and will be constant along the length of the
wire. The equipotential surfaces will be cylinders concentric ab~ut the wire,
and the flux lines will be straight radial lines.

Let the charge be uniformly distributed along the wire with a density of X
units per unit length. Draw a cylinder of radius r about the wire of radius a.
Then the electric flux D = £E is everywhere outwardly directed as shown in
Fig. 5.4. The integral of normal component of flux per unit length of this wire
is equal to the product of the displacement and the area of the cylinder per
unit length. This product must be equal to the linear charge density, so that
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~his gives the intensity at any distance r from a ",rire with a linear charge density.
The potential at any distance T from the wire is found by integrating the

negative of the field with respect to T, giving

A
V= -2nlnr+C

The constant is necessary to adjust the potential to a prescribed value at some
particular distance since the potential about a cylindrical wire, unlike that about
a point charge, does not vanish at an infinite value of the radius.

In the case of two concentric cylinders of radii T2 and Tl having potentials
V 2 and V l , respectively, the potential between them is

If
VI = 0

r
V 2 1n

11VCr) = _.~
1

T2
n

Tl

From Gauss's L'1w it may also be deduced that the field adjacent to a

plane with a surface charge density q is given by ~ and is normal to the
E

plane. It may also be verified that a charge uniformly distributed
throughout a sphere or over the surface of a sphere looks to an observer
outside the sphere as though the charge were all concentrated at the center
of the sphere so that the laws for point charges hold.

The above results are summarized in the following table:

)
Plane Cylindrical Spherical

Geometry

~ @) @
-...,»X

Total positive charge ............. q X area :\ X length q
Charge density .................. q per unit area X per unit axial _.ll_

length area

Intensity E . ....................
q A q- 2nr 4nr2I:

Potential V ......... ............. -~+C -~lnr+C q
£ 2n hEr

-
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6.6. Poisson's and Laplace's Equations. Poisson's and I..iaplace's
equations are differential expressions of Gauss's law applied to an ele
ment of volwne. Poisson's equation applies to regions containing charge.

+z

Az
+'1

Ay

+x
FIG. 5.5.-Notation used in the derivation of Laplace's
equation in rectangular coordinates, Eq. (5.24).

Laplace's equation is the same equation for the case of no charge. The
equations are derived as follows:

Consider an element of volume in an electric field as shown in Fig. 5.5. If
the intensity at the origin is E, then

Flux into back face = r.E~ Ay Az
• iJE

Flux out of front face = e (E~ + a;.1x) iiy liz

Net outward flux through front and back faces = e a::• .1x iiy liz

Similarly

Net outward flux through left and right faces = E a~" Ax iiy liz

and

Net outward flux through bottom and top faces = e a~•.1x iiy liz

Upon combining these, the outward flux through all faces is

(5.18)

by Gauss's law where p is the volume charge density.. The above equality is
abbreviated

Divergence E = V .. E = e.
E

(5.19)

in which the element of volume has been cancelled and the term "divergence" has
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been applied to the limiting value of the net outward flux per elenlent of volurne
as the element of volume approaches zero.

But
E = negative gradient of V

frequently abbreviated
E = - Vv

or in component form

E
__ av

:& - iJx

av
E lI = - iJy

av*
E. = - iJz

Making these substitutions into Eq. (5.18),

iJ2V a2V a2v _ e
iJx2 + "ai.ii + iJz2 = t

which is Poisson's equation. This is abbreviated

In a region free of charge, p = 0 so that

a2v (J2V (J2V

ax2 + iiy2 + dZ 2 = 0

which is Laplace's equation. This is abbreviated

V 2V = 0

(5.20a)

(5.20b)

(5.21)

(5.22)

(5.23)

(5.24)

(5.200)

If the derivation is made in terms of general coordinates Ul, U2, and 1ia

with scale factors h., h2 , and h3, respectively, so that an element of arc
length is related to the coordinates and scale factors by

ds2 = h 1
2 du." + h2

2 dU22 + hS
2 dU32

then I.Japlace's equation assumes the general form

v 2V_ 1 [(J (h 2h3 av) + (J (h1h3 av)
- h1h2h1 au! ~ au. (JU2 h; dU2

+ a~3 e~~2 ::)] (5.25b)

Interpretations of Laplace's Equation. As has been mentioned before
and as is evident from the development of the equation, Laplace's equa
tion is a differential expression of Gauss's law for an element of volume.

• See Appendix II.
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In the language of differential equations it says that the net electric flux
emerging from an element of volume in a region free of charge is zero.

Another interpretation that can be given to IJaplace's equation in the
t\vo-dimensional case is that it is an equivalent way of saying that the
potential at any point in a field is the average of the potentials at four
equally spaced surrounding points. Thus if there is given a set of curves
of equal potentials in the vicinity of some electrodes, known as a "con
tour representation of potentials," then the potential at any point, say
the point (2,2), is the average of the potentials at the four surrounding
coordinate points, for the case assumed, the average of the potentials
at the points (2,1), (3,2), (2,3), and (1,2). This property will be proved
in a subsequent section.

Laplace's equation can also be interpreted in terms of the curvature
of the potential profiles of a field configuration. Two-dimensional fields
can be represented either by contours of equipotential or by potential
profiles just as we can draw either a contour map or a set of profiles for
a topographic representation of terrain. In the profile representation
,ve dra,v potential as an ordinate against distance along some line as
abscissa. It will be remembered from elementary calculus that the
curvature of any curve is given by

(5.26)

(5.27)

from which it is seen that the sign of the curvature is determined by the
sign of the second derivative in the numerator since the denominator is
always positive. If we now examine Laplace's equation in t,vodimensions,

a2~ + a2V = 0
ax2 a2y

,ve see that the t,vo terms may be interpreted as giving the sign of the
curvature of the profiles in the x and y directions. By Eq. (5.27) the
curvatures must be of opposite nature since the sum of the terms is
zero; and hence if the profile in the x cut at some point in the field is
concave upward, then the profile in the y cut at the same point must be
concave downward.

Examination of a simple case will illustrate the property described
above. In Fig. 5.6a is sho\vn the contour representation for the case
of a concentric line with a circular inner conductor and a rectangular
outer conductor. The solid lines represent the equipotential lines or
contours. In Fig. 5.6b is shown the potential profile along the line 00,
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and it will be seen that the profile is curved away from the axis at the
point e. In Fig. 5.6c is shown the potential profile along the line cd,
and it will be seen that the profile is curved toward the axis at the point e.

Solutions of Laplace's Equation in Two Dimensions. The form which
the solutions of Laplace's equation take depends upon the coordinates
in which the equation is expressed. For rectangular coordinates Laplace's

c
I

a-----~--b
I
I
I

d
(a)

a b
d

(cJ

c

h

d

(5.29)

(6)

FIG. 5.6.-Exarnple showing the relation between the
curvatures of the profiles of a potential field.

equation has the form of Eq. (5.27). The solutions of this equation have
the form

v = (A cos kx + B sin kx)(C cosh ky + D sinh ky) (5.28a)

or
v = (A cos ky + B sin ky)(C cosh kx + D sinh kx) (5.28b)

The above results are arrived at by assuming that V has a solution of the
form XY where X is a function of x alone and Y is a function of y alone.
If the product XY is substituted for V in Eq. (5.27), there results upon
differentiation and rearrangement

1 d2X 1 d2y
X dx'l. - - y dy'-

It is seen that the left-hand member is a function of x alone and that the
right-hand member is a function of y alone. These can be equal only
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(5.30)

(5.31)
and

if each equals the same constant. If this constant is taken as - k 2, then
we may write two component equations in the place of Eq. (5.29),

!d"X=_k2

X dx 2

l- d"Y = +k2
Y- dy 2

The solution of Eq. (5.30) is

x = A cos kx + B sin kx

and the solution of Eq. (5.31) is

Y = C cosh ky + D sinh ky

(5.32)

(5.33)

(5.34)

Thus V is given by the product of X and Y, resulting in the solution of
Eq. (5.28a) where multiple values of k as
determined by imposed conditions are
allowed. If the separation constant is chosen
as +k2 instead of - k 2

, then the solution of
Eq. (5.28b) results.

For the polar coordinates of Fig. 5.7
Laplace's equation has the form

1 a ( av) + 1 a2
V _ 0rar r ar T2 iJ02 -

when the problem is one of axial symmetry.
This has a solution in the form

FIG. 5.7.-Polar coordinate
notation.

v = (a cos nO + b sin n8)(crn + dr-n ) (5.35)

as may be shown by the method demonstrated &,bove using n 2 as the
separation constant. When n equals zero the second factor in Eq. (5.35)
is c + d In r.

For the cylindrical coordinates of Fig. 5.8 Laplace's equation, for cases
of axial symmetry, has the form

! i (r av) + a2

v = 0 (5.36)
r ar ar az2

This has a solution of the form

v = [aJo(kr) + bNo(kr)](c sinh kz + d cosh kz) (5.37)

where J 0 and N 0 are the zero-order Bessel and Neumann functions.
Since the Neumann function of zero is infinite, this term is not often
encountered in electronics problems. Most potential configurations have
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z

r

a finite potential along the axis of symmetry, as in electrostatic electron
lenses where there is no conductor along the axis.

In order to apply the above solutions to definite problems it is neces
iary to evaluate the constants in such a way that the potential function

fits the prescribed boundary condi
tions. If the constants can be selected
so that the function fits all the bound-
aries (electrodes), then it will define
the potential at all points in the field.
The potential solutions frequently
appear as a series summation of terms
of the form indicated above.

Difference Form of Laplace's Equa
tion. We may write Laplace's equa
tion in the form of a difference equa
tion of which the differential equation

FIG. 5.8.-Cylindrical coordinate no-
is the limiting form. To do this

tation.
we shall assume that the potential is

known at a number of points whose spacing is finite though small.
We shall assume that the points are at the intersections of a rectangular
lattice as shown in Fig. 5.9 and that the spacing between the points is
h,1-3. The conclusions that we shall draw from the difference equation
set up on this basis will apply also to the differential equation and its
solution.

Consider the first derivative of potential at the point (0) in the xy
plane. The difference operators corresponding to the partial derivatives
are given by

av 1
--=-(V1 - Yo)
iJx h
av 1-- = - (Vo - V 3)ax h
av 1
-- = - (V 2 - Yo)
iJy h
av 1
- = - (Vo - V 4)ay h

(5.38)

(5.39)

(5.40)

(5.41)

1 MORSE, P. M., and HERMAN FESHBACH, "Methods of Theoretical PhysicE,"

Massachusetts Institute of Technology, 1946, pp. 139-147.
2 SHORTLEY, G. H., and R. WELLER, The Numerical Solution of LaPlace's Equa

tion, Jour. Appl. Phys., vol. 9, pp. 334-348, May, 1938. Probably the best single
reference on this subject.

3 FROCHT, M. M., and M. M. LEVIN, A Rational Approach to the Numerical Solu
tion of LaPlace's Equation, Jour. Appl. Phys., vol. 121 pp. 596-604, August, 1941.
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The difference operators corresponding to the second derivatives are
given by

(5.42)

(5.43)

Upon substituting these values in Laplace's equa
tion there results

2

3
0 '1

4 - ..... h ~--

FIG. 5.9.-Arrange
moot of net points for
the difference form of
Laplace's equation in
two-dimensional rec
tangular coordinates,
Eq. (5.44).

(5.44)

which states that the potential at the center of a
square is the average of the potentials at the cor
ners of the square.

It is possible to obtain numerical values of
potential for various electrode configurations by
means of Eq. (5.44). The procedure is to break
up the field whose potential is desired into a suit
able lattice, assume reasonable values of potential
at each point in the lattice, and then apply Eq.
(5.44) successively to each of the points, always
using any new values of potential obtained.
Successive applications of this procedure will correct any errors in the
original assumptions, and the values of potential at any point will con
verge quite rapidly to the correct value. It is well to start with a coarse
net,vork and then make it finer.

Z ' 1
"3 0

4

FIG. 5.10.-Arrangement of net points for the difference
form of Laplace's equation in two-dimensional cylindrical
coordinates, F~qs. (5.45) and (5.46).

The expression given in Eq. (5.44) was derived for two-dimensional
rectangular coordinates. For two-dimensional problems of axial sym
metry expressed in terms of the cylindrical coordinates of Fig. 5.8 that
hold for electrostatic electron lenses, and the .like;; the corresponding
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expression for the lattice of Fig. 5.10 is

(5.45}

(5.46)

(5.47)

(5.48)

(5.49)

Y = r!r2l7

then the Laplace equation reduces to

02y 02y Y
or2 + OZ2 + 4r2 = 0

It will be noticed that Eq. (5.45) reduces to
Eq. (5.44) for large values of T.

The above manipulations for the cylin
drical case can be simplified by a change of
variable. If as a new variable there be taken

The corresponding net-point equation is

Yo = Yl + Y2 + Y3 + Y.

( 4 -~)
4r2

which is much simpler to apply than Eq. (5.45).
The case of two-dimensional polar coordi

nates can be reduced to the rectangular coordi
nate treatment by changing the variables
according to

Plafe 100 v

in which the points 1 and 2 are on a line parallel to the axis and point 3
is closer to the axis than point 4. The expres
sion [Ji~q. (5.45)] works for all parts of the field
except points on the axis for which

~5.50)

(5.51)v=8

FIG. 5.11.-The potential and
field of a triode, calculated
from the difference form of

Laplace's equation, Eq. For a lattice of equal increments of u and v,
(5.44). Eq. (5.44) applies directly. The reasons for
this will become evident when the transformation W = InE Z has been
studied.

In Fig. 5.11 is shown the potential field inside a half section of a
plane-electrode triode as calculated from repeated application of the
difference form of Laplace's equation, Eq. (5.44).
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5.1. Elastic-membrane Models of Potential. It is possible to repre
sent two-dimensional potential problems having a z-axis symmetry by
the elevation of a deformed elastic membrane. If an elastic membrane
is uniformly stretched in all directions and leveled when suspended in a
plane frame and is then deformed from its original plane by displacing
the membrane distances proportional to electrode voltages with blocks
shaped like the electrodes to be studied, then the displacement of the
membrane at any point from the original plane is proprotional to the
potential at that point in the field. In other words, the membrane is a
topographic model of the potential field with vertical displacement pro
portional to potential. The deformed surface that is obtained is a very
good representation of the potential field. This is because the surface
will deform itself so that its area \vill be a minimum. Analytically this
is expressed by making

s = f f ~1 + (:=y + (~;YdxdY = min (5.52)

where z is the elevation and x and yare the coordinates in the horizontal
plane. This is a problem in the calculus of variations that is converted
into a problem in differential equations by applying to the equation for
S that is in the form

s = f f F (X,y,Z, ;;, :;) dx dy

The Euler differential equation

(5.53)

(5.54)

where the subscripts indicate differentiation with respect to the folJo\ving
factors:

oZ
Zz = ax

oZ
Z=-

'II ay

aF
Fzz = -;

VZs

aF
Fe" = ~

vZ'II

F
z

= aF
iJz
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(5.56)

Application of the Euler equation yields as the differential equation of
the deformed surfacel - 3

[ 1 + (az)2J a2z+ [1 + (az)2J a2z. + 2 a2z 0.;' az = 0 (5.55)
ay ay2 ox ax2 ax ay ax ay

w'hich reduces to Laplace's equation,

iJ2z + a'2z = 0
iJx2 iJy2

az az .
for - « 1 and ~ «1. If the angles of all hnes on the surface are keptax uy
belo,v 6 deg ,vith the horizontal, the departure in deformation from that
repre8Cnting the true potential at any point will be less than 1 per cent.
Some practical considerations are of importance. A No. 30 rubber
surgical dam makes a good membrane. It should be stretched enough
so that it will be tight and not sag and yet not be too close to the rubber's
elastic limit. A linear stretch of about 7~ works well. It helps in
obtaining a uniform stretch to mark eoordinate lines on the sheet before
stretching and then stretch so that these are straight and of the proper
spacing.

The applications of the elastic-membrane model of potential are
somewhat limited, for it is accurate only for small deformations, it can
be used to represent only two-dimensional problems with a z-axis (stack
ing) symmetry-it cannot exactly represent problems with a rotational
symmetry about an axis-and it cannot be modified to include space
charge effects. In spite of these limitations, models of this sort have
been used extensively by various laboratories in their studies of potential
fields and electron paths; in the latter regard it yields much information
in a short time. The use of the membrane in determining electron
paths will be mentioned in a later section. Figure 5.12 shows the elastic
membrane model used in the Electrical F~ngineering Department of
Stanford University.

5.8. Current-flow Models of Potential. rrhe lalNs \vhich govern the
'flow of current in a uniformly conducting medium are the same as those
which govern the "flow" of electrostatic-flux lines in a vacuum. This

1 KLEYNEN, P. H. J. A., Motion of an Electron in Two Dimensional Electrostatic
Field, Philips Tech. Rev., vol. 2 (No. 11), pp. 338-345, 1937. Original article on this
subject.

2 STRUTr, M. J. 0., "Moderne Mehrgitter-Elektronenroehren," pp. 3-6, Springer,
Berlin, 1938.

3 ZWORYKIN, V. K., and J. A. RAJCHMAN, The :Electrostatic E]ectron IVlultJplier,
PrQc. I.R.E., vol. 27, pp. 558--565, September, 1939.
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makes it possible to set up current-flo'v models of electrode systelns and
to measure the potential at any point.

The equations for the components of current density in a continuous
and uniform medium such as some electrolyte are given by Ohm's la,v in
terms of the gradient of potential as

av
J:z; = -g ax (5.57a)

aV
J u = -g - (5.57b)

iJy

for the two-dimensional case, \vhere J is current density and g is the
specific conductivity of the medium.

FIG. 5.12.-Elastic-membrane model of potential.

Since the flow of current in a medium of constant conductivity corre
sponds to an irrotational flow of an incompressible fluid, as much current
will flow into any element of volume as flows out of it. Tills condition
is sometimes expressed by saying that the divergence of the current is
zero, which may be expressed mathematically as

OJ-=. + ~~ = 0(5.58)
iJx ay
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(5.59)

Substitution of the components of Eq. (5.57) into Eq. (5.58) yields
Laplace's equation in the form

a2v + a2v = 0
iJx 2 ay 2

Upon comparing the above equations with those developed for the elec
trostatic field it is seen that an exact correspondence can be established.
The relations may be tabulated in one-to-one correspondence as follows:

Currents

J Current density
g Specific conductivity

V Potential

Quantities
Electrostatic Fields

D Displacement flux
£1' })ielectric constant
V Potential

av
J lI = -gay

Relations
aVD,,:: -£
ay

From the above tabulation it is seen that the correspondence between
the current flow and electrostatic field is quite complete. I t is thus

P/OIle--_ .

Grid _4 _. l-.-_ _ -.,

Cathode -- _

- .- -_. Electrolyte -..

FIG. 5.13.-Current-flow model of a cylindrical triode.

necessary only to set up a current-flow model with electrodes geometrically
similar to those of the electrostatic problem whose solution is desired and
to measure the potential contours. The model is easily set up for two
dimensional problems by means of a flat tank. A weak solution of
copper sulphate may be used as an electrolyte. This has a fairly good
conductivity and has no polarizing action with copper electrodes. The
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equipotential contours can be traced with a probe connected to two
resistances forming two arms of a bridge. The other arms of the bridge
are in the electrolyte. By setting the external resistances any equipo
tential contour can be traced by observing the points at which a null
indication is received. Tanks may be made of wood cemented to a glass
plate. A large sheet of coordinate paper may be put under the glass to
identify the location of points and thus facilitate their transfer to another
sheet for plotting. It is also possible to use a pantograph for plotting
directly. In using a flat tank it is absolutely necessary that the liquid
be of the same depth at all points. Placing the tank upon a board with
leveling screws makes it easy to level.
Figure 5.13 shows a tank of the type
describeu. This particular tank rep
resents a section of a cylindrical elec
trode triode.

The arrangement of res is tor s
used with triode current-flow models
is shown in Fig. 5.14. The resistors
Rp and Rg are used to set the rela
tive positive plate and negative grid
potentials. The resistors R1 and
R2 in the bridge arms are used to deter
mine the potential of the contour
to be traced. H the resistors R2 and
R1 are set in the ratio of 2 to 8,
the probe will trace out the contour FIG. 5.14.-Circuit arrangement for
having ,80 per cent of the plate- measuring potential contours on a
cathode potential, since the percent- current-flow model of a plane-elec-

trode triode section.
age voltage of the, contour is given

by R
1
~ R20 Headphones are conveniently used as balance detectvrs.

It is also possible to use a cathode-ray oscilloscope. H the probe and
Rt,R2 junction are connected to the vertical plates and a voltage in
phase with the electrode potentials is connected to the hOrl,zontal plates,
there will result a straight-line Lissajous figure whose slope will be zero
when the probe is in the proper position. The advantage of this arrange
ment is that the slope of the line will be negative or positive according
to whether the probe is to one side or the other of the proper position.
A low frequency of the order of 50 to 100 cycles should be used. H the
frequency is too low, it is difficult to detect a null. If it is too high, the
distributed capacities affect the balance.

It should be observed in the mod~l of Fig. 5.14 that the proper
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:FIG. 5.15.-Arrangement for
measuring potential contours on
a current-flow model of an elec
tron lens. The lens electrodes
are cylinders of revolution that
require a tilted tank to represent
a wedge-shaped portion of the
potential field. The edge of the
wedge-shaped portion of electro
lyte corresponds to the axis of the
electrodes.

conditions of symmetry are obtained along the nonconducting boundaries
which are indicated by dotted lines. Here the current flow must be
parallel to the boundary, which ensures that the potential contours are
at right angles to the nonconducting boundaries, since the equipotentials
are perpendicular to the flow lines. It will also be true that the equipo
tentials will be perpendicular to all lines of symmetry running in the
direction of the flo,v~ Flow lines will be perpendicular to conducting

surfaces. The flow will also be parallel to
the top and bottom of the liquid layer
since the air above and the glass below

~
are nonconducting.

For problems involving axial symme
try such as are encountered in electron
optics, a slightly different arrangement
of electrodes must be used. lrere it is
necessary to reproduce conditions of axial
symmetry and it is not correct to use a
uniform depth of electrolyte as in Fi:;. 5.14
without special electrodes. To obtain
correct results, either the electrodes or
the volumetric shape of the electrolyte
must be changed. It is possible to use a
deep flat tank if the electrodes are shaped
like portions of half cylinders with their
edges at the surface of the electrolyte.
For such an arrangement the probe should
be kept at the surlace of the electrolyte..
A more convenient arrangement is to use
a wedge-shaped electrolyte. Use of such
a section corresponds to a pie-shaped
section of small angle cut out of th6 field
of revolution as shown in Fig. 5.15. The

wedge-shaped volume of electrolyte is obtained by simply tilting
a flat tank. Properly speaking the electrodes should be portions of
cylinders, but if the angle of the electrolyte wedge is small enough, say
less than 5 deg, they may be portions of planes without introducing any
appreciable error.

5.9. Sketching of Flux and Potential Fields. The properties of
electrostatic fields are such that, with a little practice, it is possible to
sketch fields with considerable accuracy without recourse to mathematical
methods. It is known, for instance, that flux and potential lines are
everywhere at right angles to each other. Flux lines emerge at right
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angles from conducting surfaces. Potential lines near conductors tend
to have the same shape as the conductor. These and other useful prop
erties may be summarized as follo,vs:

PROPERTIES USEFlJL IN SKETCHING FI}i~LDS

1. Flux and potential lines form orthogonal families of curves.
2. Flux lines are perpendicular to conductors at conductor surface.
3. Potential contours close to conductors tend to have the same fom:.

as the conductors.

Conductor .surFace
FIG. 5.16.-Sketch of flux and potential lines in an inside
right-angled corner. l-'his sketch was made by the method of
Sec. 5.9 without mechanical or numerical aids.

4. Potential lines are parallel or perpendicular to lines of symmetry;
constructional bisectors may exist.

5. Flux-potential patterns should be drawn \vith curvilinear squares,
i.e., a four-sided figure, with right angles at the corners and with
equal average lengths of opposite sides, which maintains these
properties upon infinite subdivision.

a. Same potential difference exists across each square.
b. Same flux passes through each square.
c. Each square has the same attraction for the conductor face.
d. Each square has the same energy storage.
e. Each flux line represents the same increment of capacity between

electrodes.

Most of the above properties are self-evident. In Fig. 5.16 is shown
a plot of the flux and potential inside of a right-angled corn~r. This
plot was sketched, not calculated. It will be observed that all the curvi-
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(5.60)

linear squares upon infinite subdivision "rill still be curvilinear squares.
The principal line of symmetry is shown by the center line. The con
structional bisectors are shown by dotted lines.

A flux plot to be of value should include

1. Shape of fields at large distances as well as small distances from
the charges (conductors).

2. Location of all conductors and· charges.
3. Geometrical symmetries of any kind.
4. All singular points, i.e., "saddle" points, giving rise to a crossing

of equipotential contours.

The above enumeration is actually quite general, and all these inclu
SIons are not always necessary in electronic problems. Singular points
occur where there is an apparent intersection of potential contours.
This occurs only where the equipotential surface is saddle-shaped. 1,2

5.10. Method of Conformal Transformations. The method of con
formal transformation is based upon solutions of Laplace's equation in
two-dimensional rectangular coordinates and functions of the complex
variable z = x + iy. Most functions of the complex variable of the
form

W = fez)

are separable into real and imaginary parts

W = E(x,y) + iF(x,y) (5.61)

in which each part is a solution of Laplace's equation. The two parts
of the complex function, E(x,y) and [l(x,y), further represent orthogonal
families of curves. They may hence be taken as representing flux and
equipotential lines. 'rhe functions having the above properties are
known as analytic functions (to be defined more explicitly).

Every analytic function of the complex variable may thus be con
sidered to represent the flux and potential field of some set of electrodes.
Fields may further be transformed by means of analytic functions from
one form to another. Thus, given a function that gives the field cor
responding to one set of electrodes, the application of another function
will transform this field into one corresponding to another set of elec
trodes. In the course of this transformation all the properties of flux
and potential fields are preserved.

Analytic functions when used for making transformations have the
property of preserving the angles between lines and of making corre

1 MOORE, A. D., Mapping of Magnetic and Electric Fields, Elee. Jour., vol. 23,
pp. 355-362, July, 1926.

2 STEVENSON, A. R., and R. H. PARK, Graphical Determination of Magnetic
Fields, Trans. A.I.E.E., vol. 46, pp. 112-135, February, 1927.
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sponding incremental a·reas similar in shape. It is for these reasons
that the transformations are called" conformal."

Application of the method of conformal transformations usually
takes the form of finding a transformation which converts the electrodes
(equipotentials) of some simple field to the structure of which the field
is desired. The field of the simple electrodes can usually be determined,
and then the transformation converts the entire field to that of the more
complex arrangement.

Conformal transformations are familiar to everyone in the form. of
maps. The surface of the earth may be mapped in many ways, which
give apparently different shapes to the land masses. The different shapes
are, however, merely different representations of the same thing. Most
maps could be transformed from one form to another by means of con
formal transformations, since the transformations would preserve the
angles between river tributaries and keep the shape of small areas the
same. An example of this idea is found in the logarithmic transformation,
which, as will be shown, is capable of transforming a polar azimuthal
equidistant projection of the Northern Hemisphere into what is approxi
mately a Mercator projection of this hemisphere.

Complex Functions Satisfy Laplace's Equation. In studying conformal
transformations it will first be shown that functions of the complex
variable z = x + iyare solutions of Laplace's equation in two-dimensional
~oordinates,

,vhere

This follows since

Similarly

f(x,y) = I(x + iy) = fez)

(5.62)

(5.63)

(5.64)

(5.65)

of = df iJz = i df (5.66)
iJy dz ay dz
d2f d2fay2 = - dz2 (5.67)

It is evident that these partial derivatives are such as to satisfy Laplace's
equation in the form of Eq. (5.62). The converse of this property is
also true, viz., that solutions of Laplace's equation in two-dimensional
rectangular coordinates are expressible as functions of the complex
v~riable.
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Example: Let

Then

And

VACUUM TUBES

fez) = A Z2 + Bz
= Ax2 + 2Aixy - A y 2 + Bx + iBy

:~ = 2Ax + 2Aiy + 0 + B + 0

iJ2f = 2A
iJx2

:~ = 0 + 2Aix - 2Ay + 0 + iB

iJ'lj
- = -2AiJy2

Laplace's equation is seen to be satisfied.
It is also true that the real and imaginary parts of the function are solutions

of Laplace's equation.
fez) = E(x,y) + iF (x,y)

where
E(x,y) = Ax2 - A y2 + Bx

and
F(x,y) = 2Axy + By

It is evident that

and that

Definition of Analytic Functions. The properties of functions of the
complex variable will now be considered. It was mentioned above that
a large group of functions had the desired properties, and such functions
were referred to as "analytic functions." It will be remembered that,
in the study of functions of the real variable, attention is usually restricted
to functions which are continuous and functions of which the derivatiye
at any point is independent of the direction in which we approach the
point as we take the limit of the ratio of the increment of the function
to the increment of the variable. Similarly in studying functions of the
complex variable we shall restrict attention to functions having a deriva
tive that is independent of the direction of approach to the point in
question. This is necessary because only functions having this property
also have the desired properties of potential functions. Mathematicians
use the term analytic to describe such functions.

Consider
W = f(z) = f(x + iy) (5.68)
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Such a function is said to be analytic if it has a derivative that is
independent of the direction of the increment of the variable az as it
approaches zero.

For a single real variable

f'(x) = lim f(x + ~x) - f(x) = lim D.f
dx---+O Ax .:1x~O Ax

For the complex variable z = x + iy

j'(z) = lim j(z + dZ) - j(z) = lim N
.6z-+O Az ~-+O D.Z

Let
w = u + iv = f(x + iy)

If the function is analytic,

lim aW = lim aW = lim ~W
&-+0 Llz dx---+O Llx .6.y-+O 't Lly
&=ax+i~y &=Ax+iO 6.%=O+iay

In derivative form

dW oW .oW
(JZ = ax = -1, iJy

But
w = u + iv

Therefore

oW =ou + i Ov
ax ax ax

and

-i aw = -i (au + i av)
ay ay iJy

. oW iJv . au
--z,-- = - - 't-

ay iJy iJy
Hence

·~u + i iJv = iJv _ i iJu
ax . ax ay ay

Equating real and imaginary parts,

au iJv
ax = ay

ov au
iJx = - iJy

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

rrhese equations are known as the "Cauchy-Riemann conditions" and
serve to identify analytic functions.
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(5.79)

(5.80)

Dividing Eq. (5.77) By Eq. (5.78),

au au
ax ay
au - - av
ay ax

which is the orthogonality condition for two functions since the deriva
tive of a function of x and y is

af
dy ax
dx = - at

ay

and curves are perpendicular if the derivative of one curve is the negative
re~iprocal of the derivative of the other. If we take derivatives of the
Cauchy-Riemann equations with respect to x and y, respectively, then

(5.81)

(5.82)

(5.83)

Subtracting these gives
a2u (J2U
dX2 + iJy2 = 0

or Laplace's equation holds for the real part of the function. Similarly 11

Laplace's equation holds for the imaginary part.
To summarize, an analytic function is one ,vhose derivative is inde

pendent of the direction of the increment of the variable as the increment
approaches zero. For such a function the Cauchy-Riemann conditions
hold. Analytic functions have real and imaginary parts which are orthog
onal to each other and each one of which is a solution of Laplace's
equation.

It will be recognized that functions may be analytic except at certain
points just as functions of a real variable may be continuous except at
certain points. Such points are frequently those at which the function
has a pole, i.e., assumes an infinite value. It is possible to use such func
tions if the regions in which the function is not analytic are excluded
from consideration.

A serious limitation of the method of conformal transformations is
that it is not always possible to find the transformation which will con
vert one set of electrodes to another. In general, there is no definite
method by which the transformation which fits a set of electrodes can be
found. An exception to this remark is the Schwartz-Christoffel trane-
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formation, which transforms the real axis in the W plane into any poly·
gon in the Z plane, but this transformation does not find much use in the
field of electronics. However, it is also possible to use methods of
successive approximations and series expansions. Fortunately, the trans
formations necessary for the most important vacuum-tube problems are known.

The Logarithmic Transformation. The transformation that solves the
problem of determining fields in the plane-electrode triode is known. It
is the logarithmic transformation

(5.84)

where E = 2.718 is the Napierian base.
This is analytic for all finite values of x and yother than zero.

The nature of the logarithmic transformation can best be understood
by studying its component relations. It is most convenient to use polar
coordinates in the Z plane and rectangular coordinates in the W plane.
Thus let

and

In these coordinates
W=u+iv

u + iv = InE r + i8

(5.85)

(5.86)

(5.87)

so that the component equations relating the real and imaginary parts
are

Of, solved for rand 8,

u = InE r
v = 8

o = v

(5.88)
(5.89)

(5.90)
(5.91)

This function is readily proved to be analytic for finite values of the argu
ment by application of the Cauchy-Riemann equations.

Examination of the v component of W shows that it is multiple
valued, in fact infinitely so. This occurs 'Pecause any angle in the Z
plane can be written as an angle less than 2r plus any integral multiple
of 2r. The angle 8 can be written as 8 + 2rn, where n is any positive

.or negative integer. Thus, corresponding to any point in the Z plane
there are an infinite number of points in the W plane evenly spaced by a
distance 21r along a vertical line.

From Eq. (5.88) it is seen that any circle about the origin in the Z
plane, r = k, transforms into a line parallel to the v axis in the W plane,
u = In k. * Circles with radii less than 1 give lines in the left half of the

• Hereafter, the notation]n r will be used to designate the naturallogaritbm of ",
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W plane since the logarithms of numbers less than 1 are negative, and
circles with -radii greater than 1 give' lines in the right half of the W plane
since the 'logarithms of numbers greater than 1 are positive. Any radial
line" through the origin, (J := k, transforms into a set of lines in the W
plane parallel to the u axis and spaced a distance 2r, v + 27m = k.
These relations are shown in Fig. 5.17. From this it is seen that a single

point in the Z plane su~h as r = 1.5, 8 = i transforms into a series of

points u = In 1.5, v = i + 2nr in the W plane. Thus a single point in

the Z plane that may be taken as representing a line, charge transforms

~-v
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........ t+v . ......./
II ~ ,II
~~' ~
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~

I
II

(Z)

Z PLANE WPLANE
FIG. 5.17.-The logarithmic transformation, W = InE z.

into a row of line charges evenly spaced in the W plane. This gives the
arrangement corresponding to a grid of evenly spaced parallel wires and
is the basis for the plane-electrode representation.

The nature of the logarithmic transformation is better understood if
the transformation be effected in a series of steps. Imagine the Z-coordi
nate plane to be a stretched elastic memb~rane. If the polar-coordinate
diagram of the Z plane shdwn in Fig.5.18a be split along the negative x
axis and the upper and lower edges be rotated clockwise and counter
clockwise", respectively, the pie-shaped section of Fig. 5.18b will result.
If now the point on the pie is stretched to the left and the outer edge is
compressed, the configuration shown in Fig. 5.l8e results. Finally the
left and right edges are made the same length and are stretched to nega
tive an:d positive infinity, respectively, to give a strip of the W plane as
shown in, 'Fig. P!l8d. / - . .
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The nature of the logarithmic transformation is also well illustrated
by relationship between certain types of maps. Thus, if the Northern
Hemisphere on a polar azimuthal equidistant projection be taken as the
Z plane, then the Northern Hemisphere on a Mercator projection corre
sponds very closely to the W = InE Z plane. It will be recognized that
each of these two common maps is but a different representation of a
part of the earth's surface. In Fig. 5.19 is shown a polar azimuthal
projection of the Northern Hemisphere. In Fig. 5.20 is shown a Mer
cator projection of the Northern Hemisphere.

The polar azimuthal equidistant projection is made by unfolding
the earth's surface and stretching it out until it is a plane tangent to the

(a) (6)

:3-----1"-E
WPLANE

(c) (dJ
FIG. 5.18.-Steps ina progressive transformation from the Z to the mE Z plane.

pole with distances from the pole made equal to the great-circle distances
on the actual sphere. This is indicated in Fig. 5.21. The longitude lines
become straight lines through the pole, and the latitude circles remain
circles.

Mercator's projection is approximated by surrounding the earth with a
circular cylinder tangent to the earth at the equator as in Fig. 5.22 and
extending to infinity in both directions. Points on the earth's surface
are then projected onto this cylinder by dra\ving a line from the earth's
center through the point in question and extending it until it hits the
cylinder. The cylinder is then cut and unfolded to give a plane surface..
The latitude circles on the sphere become a series of parallel straight
lines on the Mercator projection. The longitude circles become another
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set of equidistant parallel straight lines perpendicular to the latitude
lines.

It is easily seen that the latitude tircles, r = k, in the polar azimuthal
equidistant projection become straight lines parallel to the equator,
u = In k, in the Mercator projection. The longitude lines through the
pole in the polar azimuthal equidistant projection, 8 = K, become a set
of evenly spaced lines perpendicular to the equator in the Mercator

IDOW &O'l'J

FIG. 5.19.-The polar azimuthal equidistant proiection of the North
ern Hemisphere. This may be considered as a polar-coordinate
representation of the Z plane.

projection, v = K. The pole, which is the center of things in the polar
azimuthal equidistant projection, recedes to infinity in the Mercator
projection. Distortions in the different representations are evident.
The polar azimuthal equidistant projection gives its most accurate repre
sentation near the pole but stretches out the equator disproportionately,
causing Africa to be too wide. The Mercator projection is most accurate
in the band around the equator but causes areas near the poles to be
disproportionately large. Greenland on a Mercator projection looks
larger than South America but is actually only one-tenth as large.
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Observe, however, that angles and the similarity of small areas are
preserved.

The Function W = Zl/n. The simple power function given by raising
Z to some rational fractional power is the function that gives the fields
inside of a cylindrical triode. As usually written, this function is

It may also be written
W = Zl/n (5.92)

or
(5.93)

1In W = -In Z
n

(5.94)

(5.95)

(5.97)

(5.98)

W = ZH

z = x + iy

w = u + iv
and

or
Z = W 2 (5.96)

Using rectangular components for both Z
and W,

FIG. 5.21.-Construction of
the polar azimuthal equi
distant projection.

but the form of Eq. (5.92) is preferred.
The nature of the power function may

best be understood by examining the form
of the function for a specific value of n.
Consider the case of n = 2. Then

Making these substitutions,-

x + iy = u 2 + i2uv -v2 (5.99)

from which, by equating real and imaginary parts, the component equa
tions are

and
y = 2uv

(5.100)

(5.101)

These component equations satisfy the Cauchy-Riemann conditions

· ax ay 2 d oX ay 2 L· dSInce - = - = u an· -;- = - ~ = - v. ettlng x an y assumeau av uV uu

various constant values, it is seen that the component equations (5.l00)
and (5.101) represent two families of orthogonal hyperbolas previously
shown in Fig. 5.16. For a better comparison the Z and W planes are
sho,vn in Fig. 5.23, in which corresponding flux and potential lines are
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indicated. It will be seen from this figure that the upper half of the Z
plane transforms into the first quadrant of the W plane. The trans
formation is double-valued, i.e., one point in the Z plane tran~forms into
two points in the W plane. For example, the point (0,4) in the Z plane

C'\.J .......
~ ...... ~, 1 IIII .. II

~~ ~ ~ ~

y=3

y=2

y=/

y=o
I 1 I J
I 1 I I

--1--1-- --+-4-'" y=-/
I J I J

FIG. 5.22.-Construction of the Mercator projection.

transforms into the point (1.414,1.414) ~nd also the point ( -1.414, -1.414)
in the W plane. For most purposes only the first, or "principal," value
of the multiple values is used, though all of them have the correct mathe
matical properties. It can further be seen that if the polar representa-

J- <::> ~
II n "
~ ~ ~

I
I
I--t--

/.... ...;..
/ .....-

/
/

y=2

y::l
"'- --.l..,_--+-,-- y=O

\ I
\ _.1-- y=-/

....... \ \
// \ \

Z PLANE W PLANE
FIG. 5.23.-The transformation W = ZH.

tion of points is used the angle of the point in the W plane is half the
angle of the corresponding point in the Z plane and the radius vector
of a point in the W plane is the square root of the radius vector of the
corresponding point in the Z plane.
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In the general case of the function W = Zl/", the function is n-valued
if n is an integer. As a result, the upper half of the Z plane transforms

into a segment of the W plane having an angle!· Angles in the W plane
n

are !th the corresponding values in the Z plane (principal values), and
n

radius vectors have a magnitude in the W plane that is the nth root of
the radius vector of the corresponding points in the Z plane.

~ ~
~ ~

~o

~10

tit
\9'

t40

at'
atl

~\

oS'
o~

~
~
~

~
~ ~

t
~~~~~g

FIG. 5.24-Polar azimuthal equidistant projection of the North-
ern Hemisphere transformed by W = Z~.

The component relations are not readily written in rectangular com
ponents for any general integral value of n. In polar form, however,
they are quite simple. Let

Z = rLfJ = TEi8

as before; and let

Then the component equations in polar form are

R = r I/
"

(5.85)

(5.102)

(5.103)
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and
8

t/>=n
(5.104)

The nature of the transformation W = Zl/n may be indicated as a
kind of deformation of the Z plane. Upon comparing the W- and Z-plane
representations in Fig. 5.23, it is seen that if the upper half of the Z
plane be cut along the negative x axis and if the upper edge of the nega
tive x axis be swung clockwise 90 deg and the lower half of the negative

FIG. 5.25-Polar azimuthal equidistant projection of the North
ern Hemisphere transformed by W =: Z~.

x axis be swung counterclockwise 90 deg then the W-plane representation
will result if the intermediate regions are allowed to deform accordingly.
A set of polar maps can also be drawn to illustrate the nature of the
transformation. In Fig. 5.24 are shown maps illustrating the nature of
the transformation W = Z~. It is seen that the representation is
double-valued and that the scale of distances from the pole in the W-plane
representation is quadratic rather than linear; the land areas are pushed
out from the pole toward the equator though the map as a whole differs
surprisingly little from the usual representation.
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In Fig. 5.25 are shown maps illustrating the nature of the trans
formation W = Z~. This transformation is quadruple-valued, i.e.,
every point in the Northern Hemisphere is repeated fOUf times in the
W-plane representation. The scale of distances from the pole is quartic
in the W plane, with the result that the land masses are compressed
strongly near the equator.

An inkling of how this transformation is used is obtained if we con
sider that in the polar azimuthal equidistant or Z-plane representation
a cathode wire be located at the North Pole, a grid wire be located at
Iceland, and the equator be a circular plate surrounding both. Then
we have a simple tube structure with one cathode "'ire, one grid wire,
and one plate. If then the transformation W = Z~ be used, the corre
sponding W-plane representation has one cathode wire at the pole as
before, a surrounding plate at the equator as before, but four grid wires
located at the four Icelands, which are evenly spaced around the 660

latitude circle. If the potential field can be found in the Z plane, then
it can be transformed into the W plane just as the land outlines have
been transformed. This is what Chap. 7 is mostly about.



CHAPTER 6

LAWS OF ELECTRON MOTION

ALL electronic devices depend for their action upon the effect of applied
electric or magnetic fields upon electron flow within the device. The
applied fields may control the direction or the magnitude of the current
flow or both. In this chapter there will be studied the effect of fields
upon the electron paths when the electrons are present in small enough
num.ber so that their presence does not change the applied fields. In a
subsequent chapter there will be studied the effect of fields upon electron
flow when the electrons are present in sufficiently large numbers to
influence the fields.

6.1. Electron in a Uniform Electric Field. An electron in a uniform
electrostatic field experiences a constant force in the direction of increas
ing potential. As a result, the laws governing an electron starting from
rest are the same as those which apply to a body falling freely under the
influence of gravity until very high velocities are reached. From Ne,v
ton's second law,

d2x
m dt 2 = -Ee

where m is mass of the electron, 9.107 X 10-31 kg
x is distance, meters
t is time, sec

-E = ~~ is gradient of potential, volts per meter

e is magnitude of the charge of the electron,

(6.1)

1.602 X 10-19

A first integration of Eq. (6.1) gives

v = dx = - !- Et
dt m

coulomb

meters per sec (6.2)

the constant being zero because the velocity is taken as zero when time
is zero. A second integration gives

x = - !!!...Et2

2m
97

meters (6.3)
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in which the constant is again zero for an electron starting from rest at a
point of zero potential.

If time is eliminated between Eqs. (6.2) and (6.3), there results

(6.4a)

where V = - Ex is the potential through which the electron has fallen.
Equation (6.4a) states that the kinetic energy acquired by an electron
starting from rest is equal to the potential energy which it has lost.
Solving for v,

meters per sec (6.4b)

The relation between Eqs. (6.2), (6.3), and (6.4a) and the correspond
ing equations for a falling body is evident. It is seen that the quantity

eE. h . 1 f h .. I- - IS t e equlva ent 0 t e gravltatlona constant.
m
If the values for charge and mass be substituted and all quantities

be expressed in practical units, then

(6.5)
(6.6)

(6.7a)

meters per sec
meters
meters per sec

v = 1.758 X 101lEt
x = 0.879 X 101lEt2

v = 5.93 X 105 VV
where v is velocity, meters per sec

E is gradient, volts per meter
V is potential, volts
x is distance through which the electron has been accelerated

The above expressions are not accurate for potentials exceeding 30,000
volts.

The ratio of the charge to the mass of the electron is so high that a
small voltage will impart a tremendous velocity to the electron. It
takes only three-tenths of a microvolt to give an electron a velocity of 700
mph which is approximately the velocity of sound. Although the speeds
of electrons are very high, their energy is low because of their minute
mass.

Electron speeds are frequently expressed in terms of the corresponding
voltage. Energies are also designated in terms of electron volts, 1 elec
tron volt being equal to 1.602 X 10-19 watt-sec. An electron that has
"fallen" through 1 volt of potential is said to have acquired an energy
of 1 electron volt.

If an electron enters a region of uniform field at a poiqt Xo with an
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initial velocity Vo parallel to the field, then

99

e
v = - - Et + Vom meters per sec (6.8)

e
x = - 2m Et2 + vat + Xo meters (6.9)

where Xo is the initial distance in meters.
Eliminating t between Eqs. (6.8) and (6.9),

72m(V2 - vo2) = e(V - V o)

or
(6. lOa)

v = 5.93 X 105 -Vv - Vo meters per sec (6.10b)

Equations (6.4), (6.7), and (6.10b), which give velocity in terms of
potential, are not restricted to uniform fields or to one-dimensional fields.
This is due to the fact that these equations express the conservation of
energy and hence are independent of the electron path and the nature
of the potential field.

6.2. Initial Velocity Not Parallel to Field. When an electron enters
a region of a uniform field with an initial velocity that is at an angle with
the gradient of potential, the electron follows a parabolic trajectory.
This is because it experiences a constant force in the direction of the
gradient and no force at right angles to this. The case is analogous to
the mechanical case of a projectile fired from a gun in the absence of
friction. The projectile is subjected to a constant downward force but
has no force affecting the component of velocity parallel to the earth's
surface ..

The differential equations for the components of electron motion when
the electron meets a retarding component of field are

and

d2y _ e
--E&2 - m (6.11)

(6.12)

The initial conditions that determine the solution of these equations
are as follows:
When t = 0,

dy
- = Vo cos 8
dt

dx . 8- = Vo SIn
de

y=O

x=o
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where (J is the angle that the initial velocity makes with the gradient
of potential and Vo is the initial velocity.

A first integration gives

dy _ e
dt - - mEt + Vo cos (J (6.13)

and
dx .- == Vo SIn 8
dt

(6.14)

A second integration gives
e

y = - 2m Et2 + Vo cos (} t (6.15)

(6.16)

_E!=dVdB

x = Vo sin (J t

~""~v= vo+Ect '.."
'\\'\'\

I I
: I
l I
: i
: I
d I
: I
: I
: I
: k·B
: I
I I

and

Elecfron
gun

FIG. 6.1.-Parabolic electron trajectory in a uniform elec
tric field. This case results from the injection of an elec
tron with an initial velocity into a region where the electric
field has a uniform retarding action.

Elimination of the time factor between Eqs. (6.15) and (6.16) gives
the equation of the parabolic trajectory

-Ex2 x
y = 4Vo sin2 (} + tan 8 (6.17)

where Vo is the potential corresponding to the initial velocity. This is
observed to be the equation of a parabola in x and y and to be independent
of the system of electrical units used. The notation used in all the above
equations corresponds to that shown in Fig. 6.1.
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The slope of the trajectory at any point is given by

-Ex 1
tan a = 2V · 2 () +-t0o SIn an

101

(6.18)

where a is the angle that the tangent to the parabola makes with the
horizontal axis.

The maximum height to which the electron rises is

Vo cos2 0
Ym = -~ (6.19)

and the horizontal displacement corresponding to this is

2Vo sin (J cos (J
Xm = E (6.20)

6.3. Electrostatic Deflection of Cathode-ray Beams. An application
of the situation analyzed in the last section is found in the deflecting plates

I

a -
IL ...? ~

~----------------------l----------------------

FIG. 6.2.-Electrostatic deflection of an electron beam. The electron enters the
region of deflecting field at right angles to the field. The trajectory is parabolic
between the plates.

of the ordinary cathode-ray tube. Here a stream of electrons enters a
region of a uniform field, traverses a parabolic path while under the
influence of this field, and leaves the region between the plates at a
different angle from that at which it enters.. It then travels in a straight
line until it hits the fluorescent screen.

In this case, as may be seen by reference to Fig. 6.2, the electron
enters the deflecting field at right angles, making the angle 8 equal to
90 deg. The potential gradient is Vd/a. For this condition the slope
of the trajectory upon emerging from the plates after a distance of travel
b in the horizontal direction is, by Eq. (6.18)

tan a = Vd b + l.- (6.21)
2aVr) 00
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where Vd is the potential between plates and Vo is the potential corre
sponding to the initial velocity_ But

tan a ~ Yd (6.22)-l

so that

l bVd (6.23)Yd =--2aVo

This expression is only an approximate one, for it neglects the fringing
effect of the flux lines around the end of the deflecting plates.

In most cathode-ray tubes the deflecting plates are not parallel but
slope apart so that the electron in passing between them is subjected
to a constantly decreasing gradient. When this is the case, the expres
sions obtained previously cannot be used and the problem must be
solved anew. This is readily done by setting the gradient between the
plates equal to

(6.24)

where al and a2 are the separations of the ends of the deflecting plates
where the beam enters and leaves, respectively. Other symbols have
their previous significance. The expression for the crosswise acceleration
involving this factor is then integrated to obtain the crosswise component
of velocity at the point where the beam emerges from between the
deflecting plates. The ratio of the crosswise to the axial velocity multi
plied by the distance to the fluorescent screen is then equal to the screen
displacement. This has the form

1 (a 2
)

blVd n al
Y=--2VOUl (~ _ 1) (6.25)

which reduces to Eq. (6.23) when at = a2. From this it is seen that the
effect of spreading the deflecting plates at one end is to decrease the
deflection. If the separation of the plates is increased 50 per cent at
the far end, the deflection is decreased to 81.2 per cent of its value for the
parallel plates having the near-end spacing. The deflection for divergent.
plates is, however, slightly greater than for parallel plates having their
spacing equal to the average spacing of the divergent plates. EquatioI:r
(6.25) is still in error because it takes no account of the flux fringing at
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the ends of the deflecting plates. 1•2 The effect of the fringing is to
increase the effective length of the plates.

6.4. Relativity Correction for Velocity. The general expression
developed in Sec. 6.1 giving electron velocity as proportional to the square
root of potential is valid only for velocities low compared with the
velocity of light. This is due to the fact that according to the theory of
relativity the mass of a particle changes with its velocity, and in the
derivation of the expressions of Sec. 6.1 the mass was assumed constant.

One of the postulates of the theory of relativity is that nothing can
move with a speed greater than the velocity of light. As a consequence of
this upper limit on velocity, it is seen that a body subjected to a constant
force must have its Inass increase as it is accelerated, or otherwise its
velocity would increase indefinitely and finally violate the postulate by
exceeding the velocity of light. If, however, the mass of the particle
increases as its velocity increases, a constant force produces an accelera
tion that decreases with velocity and permits the possibility of an upper
limit to velocity.

Another conclusion of the theory of relativity is that matter and energy
are equivalent. Mass may be considered a manifestation of energy. To
relate this to the remarks of the previous paragraph, the energy expended
in accelerating an electron manifests itself as an increase in its mass.
From this idea, the law for the change of mass with velocity and the cor
responding law for velocity in terms of potential are readily deduced.

Mass and energy are related by a factor c2, where c is the velocity of
light.

w = c2m (6.26)

where w is energy in watt-seconds, c is the velocity of light, 3 X lOs
meters per sec, and m is mass in kilograms.

Consider the increase in mass that an electron experiences as it is
accelerated. Then

c2 dm = dw = F ds (6.27)

where dm is the increase in mass, dw is the energy expended in accelerating
the particle, F is the applied force, and s is the distance factor.

According to Newton's second law,

d
F = ~ (mv)

dt
(6.28)

1 See also BENHAM, W., Inclined Deflecting Plates, Wireless Eng., vol. 13 (No. 148)
pp. 10-13, 1936.

t HINTERBERGER, 0., Corl:·ection for End Effects in Oscilloscope Deflecting Plates,
~eit. fur Phys., vol. 105, pp. 501-512, July, August, 1937.
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(6.29)

this being the general statement of the law when a variation in mass is
encountered. Making this substitution into Eq. (6.27), and integrating

c2 f dm = f d(:v) ds = f vd(mv)

Equating the integrands and separating variables,

dm vdv
m = c2 - v2

\vhich integrates to give

[In m]: = [In (2 1 2)~~]'
o C - v . 0

giving the result sought,

(6.30)

(6.31)

(6.32)

where rno is the rest mass of the electron.! It is seen that at low velocities
the mass is practically the rest mass. As the velocity increases, the mass
increases, slowly at first and then quite rapidly. At one-tenth the
velocity of light (2,600 volts) the mass has only increased by Y2 of 1 per
cent. The mass tends to become infinite as the velocity of light is
approached. .

The expression for mass as determined by the velocity can now be
applied to obtain an expression for velocity as a function of potential.
This is best done by equating the expressions for potential and kinetic
energy, the latter involving the general expression for the mass as a
function of the velocity.

But

Potential energy, Ve = kinetic energy, -e JE ds

f E ds = f Ed~s dt = f Ev dt

(6.33)

(6.34)

1 This is what is known as the "transverse mass" of the electron because it is the
effective mass of the electron to transverse deflection where the magnitude of the
velocity is not changed appreciably. It should be distinguished from the "longitu-

dinal mass," which has the value ( m:2 %' which is the effective mass that an
1 --)c2

electron presents to longitudinal acceleration where the mass as well as the velocity
changer,.
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In this expression
d dv dm

-eE = - (mv) = m - + v-
dt dt dt

Hence

f dv f dmVe= m(jjvdt+ v(jjvdt

Ve = Jmvdv + fv 2 dm

105

(6.35)

(6.36)

(6.37)

If now the general expression for m as a function of velocity be sub
stituted and the integrals be evaluated between the limits of 0 and v on
the variable v, there results

This is readily solved for velocity.

v = c ~1 - (1 + 1.965
1

X 1O-6V)2

The corresponding expression for mass as a function of potential is

m = mo(1 + 1.965 X lO-6V)

(6.38)

(6.39)

(6.40a)

The results of the above analysis deserve considerable study. Con
sider first the way in ,vhich the mass varies. Referring to Eq. (6.32), it is
seen that at very small velocities the mass is practically the rest mass.
As the velocity is increased, the mass at first increases parabolically ,vith
the velocity,

(
1 V

2
)m = mo 1 +--2 c2 (6.40b)

This expression is approximately correct until the velocity reaches one
tenth the velocity of light. At this velocity the mass has increased only
~ of 1 per cent.

From Eq. (6.40a) it is seen that the mass increases linearly with the
potential. This happens because of the energy relation, which requires
that the potential energy acquired manifest itself as an increase in mass.
At about 500,000 volts the mass of the electron has doubled. Thi~_

voltage is not ordinarily reached in ordinary tubes. At 5,000 volts the
mass has incI'eased by 1 per cent.

The velocity of the electron follows the low-voltage law of Eq. (6.7)
until very large voltages are reached. Even at 100,000 volts the velocity
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has dropped only 7]4 per cent from the low-voltage value giYen by Eq.
(6.7a), which may be written

(6.7b)

By 1,000,000 volts, however, the velocity has reached 93 per cent of the
velocity of light. Above 1,000,000 volts the velocity becomes closer and
closer to the velocity of light but experiences no rapid change with voltage.

The above relations are shown in Fig. 6.3. On this log-log plot it is
seen that velocity follows the half-power law of potential well up to about
100,000 volts. Between 100,000 and 1,000,000 volts the change from the
half-power law occurs, and above 1,000,000 volts the velocity is practi
cally constant. Several convenient reference points may be taken from
this curve. An electron reaches one-tenth the velocity of light at about
2,600 volts. If there were no change of mass with velocity, the electron
would reach the velocity of light at about 260,000 volts.

6.5. Two-dimensional Electric Fields. Electrons are frequently
exposed to fields that are not uniform but that are two-dimensional or
more. It is generally quite difficult to determine exactly what the elec
tron path is by analytical methods.

The fundamental differential equations involved are quite simple,
but they are usually difficult if not impossible to solve. In rectangular
coordinates the differential equations are

d2x e
(6.41)dt 2 = - m Ez(x,y)

and
d2y = e

(6.42)
dt2 - m Ey(x,y)

where

E z =
av (x,y)

(6.43)ax
and

EfI=
av (x,Y)

(6.44)
iJy

When these equations can be solved, they give the components of electron
displacement parametrically in terms of t.

When the potentials are given in two-dimensional circular-cylinder
coordinates with an axial symmetry, as is the case in most electron
optical problems, the equations have the same form as those above. It
is necessary only to substitute r for x and z for y to get the corresponding
equations for this case.
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~'or two-dimensional polar coordinates, such as ft,re used for the
cylindrical triode, the equations are quite different and still more difficult
to solve. In terms of a radial variable r and an angular variable 8 the
differential equations of motion are

d
2
r _ r (dO)2 = !!- dV

dt2 dt m ar
d28 + 2 dr dO = ! ~ aV

r dt2 dt dt r m dO

(6.45)

(6.46)

These equations are most readily obtained by applying the Lagrangian
operator to the energy equation, which in these coordinates has the form

[( )2 ()2]m dT 2 dO _
"2 dt + r dt - eV (6.47)

The difficulty in solving these two-dimensional problems arises from
the fact that the variables in the component equations are rarely separable.

Example: One of the few two-dimensional problems that can be solved exactly
is that of an electron released from a point on the &ide of an interior right-angled
conducting corner at zero potential. The potential configuration is shown in
Fig. 5.16. The equation for the potential is V = kxy so that the components
of electric intensity are Ex = ~ky and E lI = -kx. The differential equations
of motion are then

d2x e
(6.48)dt2 = mky

and
d2y e

(6.49)- =-kx
dt 2 m

It is convenient to make the substitution!!... k = w2• If each equation is differ
m

entiated twice and the relations from the original equations substituted, there
result

(6.50)

and
d4y
dt 4 = w2y (6.51)

in which a separation of the variables has been achieved. When these equations
are solved subject to the initial conditions that when

t = 0
x=o
y:z:::a
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dx = 0
dt
dy _ 0
dt -

a
x = 2 (cosh wt - cos wt)

a
Y = '2 (cosh wt + cos wt)

109

(6.52)

(6.53)

The above solutions may be obtained either by standard meth0ds or by the
operational calculus. The nature of the solution is more apparent if the com
ponent displacements are referred to the line y = x, that is, if the system be
rotated 45 deg clockwise. When this is done,

a
Xl = V2 co~h wt

a
YI = vI2 cos wt

(6.54)

(6.55)

This same result may be obtained more quickly if the original potential field
be rotated 45 deg clockwise before formulating the differential equations. When
this is done, the field has the form shown in Fig. 6.4 and the potential is

and E:e = -kXl,

The differential equations are then

d2xl
([i2 = WXl

d2Yl
([i2 = -WYl

(6.56)

(6.57)

Here the variables are already separated in equations of lower order; and when
these are solved subject to the conditions that when

t = 0
a

Xl = V2
a

Yl = V2
dx::. = 0
dt

dYl _ 0
dt -

the same solution as was obtained above results"
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Examination of the solution shows that the eiectron oscillates about the line of
symmetry while moving outward at a constantly increasing rate. It is also seen
that the shape of the trajectory is independent of the strength of the field and
also of the charge and mass of the electron. This is a general characteristic of
such problems. The transit time, however, does depend upon all three of these
factors. This means that a heavier particle starting under the same conditions
will trace out the same path but be slower in doing so.

" / If. I
" 1 .........1-............ I ..........,.. ....... "-/ .

I ,---- Flux line

FIG. 6.4.-Path of an electron released from a point on the wall of a right-angled
corner. Note that the electron does not follow a flux line but, because of ita
finite mass, overshoots the line of symmetry and subsequently oscillates about
it.

If the general differential equations (6.41) and (6.42) are combined
,vith the energy equation

(6.58)

and the factor t be eliminated between them, there results a differential
equation in the coordinates x and y alone,

d2
y [dY J[ (dy)2J2V(x,y) dx2 = Ex dx - E y 1 + dx (6.59)

This equation is no easier to solve than those previously given, but several
important properties of electron trajectories can be deduced from it.
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1. The mass and charge of the electron do not appear in the equation.
This means that the path taken will be independent of these factors.

2. The equation is not changed if either voltage or distance is changed
by a constant factor. This means that the path will be the same
for all magnitudes of voltage as long as the form of the field is
not changed.

3. If the tube structure is enlarged by any factor, then the trajectory
will be enlarged by the same factor.

6.6. Electron in a Uniform Magnetic Field. An electron in motion
constitutes a minute electric current of magnitude -ev, where e is the
magnitude of the charge on the electron and B~

v is its velocity. As such, an electron in a ~

magnetic field experiences a sidewise force
just as does a wire carrying current. The
magnitude of this force in newtons is Bev sin 8,
where B is the magnetic-flux density in
,vebers per square meter (1 weber per meter2

equals 104 gausses) and 8 is the angle
between the vectors representing the field
and the velocity, the latter being in uniti of

meters per second. When the electron enters FIG. 6.5.-The direction of
the field at right angles to it, the force is the force on an electron rela
simply Rev directed at right angles to the tive to the velocity and mag
velocity. The relative directions of field, netic field that produce it.
velocity, and force are shown in Fig. 6.5. The force is the vector prod
The force changes the direction but not the uct of the magnetic-flux
magnitude of the velocity and in this case is density and the velocity. If
continuously exerted at right angles to the B is turned into v, then F
instantaneous velocity because the direction advances like a right-hand

of the force changes with the direction of the screw.

velocity. This fulfills the conditions necessary for a circular motion of
the electron in a plane normal to the magnetic field.

The force developed by the magnetic field may be considered as a
centripetal force that must equal the centrifugal force developed by the
circular motion of the electron. Equating these forces,

mv2

Bev = R newtons (6.60)

where R is the radius of the circular electron path. From this the radius
Qf the circular path is

R=m!!
e B

meters (6.61)
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It is more convenient for application of this formula to express the
physical quantities in numerical form and to use the potential correspond
ing to the velocity. With these changes the expression for the radius of
the circular path becomes

ITT

R = 3.37 X 10-6 j/ meters (6.62)

where V is the electron velocity in equivalent volts and B is the magnetic
flux density in webers per square meter (104 gausses). This relation
shows that, the stronger the field and the smaller the velocity of the
electron, the smaller the circle in which it moves. The results of this
relation are compactly presented in the nomogram of Fig. 6.6.

If the particle is not an electron but an ion of mass mp and with n times
the charge of the electron, the radius is given by

R = 3.37 X 10-6 ~mp ~ meters (6.63)
P B me n

(6.64)sec

where me is the mass of an electron and B is magnetic-flux density in
webers per square meter.

Since the radius of the circle follo,ved by the particle is proportional
t.o the velocity, the period corresponding to one loop is independent of
the initial velocity and depends only upon the magnetic field. The
period is given by the circumference of the circle divided by the velocity,

T = 27rm!
e B

In practical units this is

T = 35.5
B

m::.cromicroseconds (6.65)

The value of the period can be obtained from the nomogram of Fig. 6.6
by observing that the period in microseconds is the same as the radius in
centimeters ,vhen the potential is 11.22 my.

For particles ,vith a mass mp and having n times the charge of the
electron the period is

T = 35.5 m p

nB me
micromicroseconds (6.66)

The fact that the period is independent of the velocity is significant
and useful. If a number of electrons of different velocities be injected
into a uniform magnetic field, they ,vill trace out circles of different size
but they \~"ill all return to the starting point at the same time. Use IS

made of this property in magnetic focusing of electron beams.
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FIG. 6.6.-Nomographic chart giving the radius of the circular path of an
electron in a uniform magnetic field as a function of the magnetic field strength
and the electron energy in volts, Eq. (6.62). The chart also gives the period
of a single rotation as a function of magnetic field strength, Eq. (6.65).
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(6.67)meters

If an electron enters a magnetic field at an angle (J with the field,
then there is a component of velocity parallel to the field, v cos 0, that is
unaffected by the magnetic field. The other component of velocity,
that normal to the field, v sin (), produces a circular motion which com
bines ,vith the parallel motion to give a helical path. The radius of the
helix is given by

R = 3.37 X 10-6 -vv sin ()
B

where V is in volts and B is in units of webers per square meter (104

gausses). The pitch of the helix is given by the product of the parallel
component of velocity and the period as determined from Eq. (6.65).

21.2 X 10-6 -vv cos (J
P = -----=B---- meters (6.68)

It will be observed that for small angles the pitch does not vary much
with the angle. Hence, if a magnetic field is placed parallel to a beam of
electrons in a cathode-ray tube, the electrons will return to positions cor
responding to their original relative position in a distance p along the
beam. This is the principle of magnetic focusing, which is used to keep
electron beams from spreading. All the electrons trace out helical paths
of different radii but of the same pitch. Magnetic focusing cannot do
more than reproduce the original beam diameter, and the field must be
adjusted to produce this effect at the point desired.

6.7. Behavior of Electrons in Nonuniform Magnetic Fields. The
paths followed by electrons in nonuniform magnetic fields are extremely
complex. Little can be said about them except in certain simple limiting
cases. In all cases the magnitude of the velocity will be unchanged because
no ene1'gy is added to or taken from the electron when subjected to the influence
of a steady magnetic field alone. In contrast, the direction of the velocity
can experience very involved changes. The general form of the force
equation depends upon the components of field and velocity. An x
component of force results from a y component of field and a z component
of velocity and also from a z component of field and a y component of
velocity. Upon writing the components of force in terms of components
of acceleration the general differential equations for three-dimensional
rectangular components are

m d2x dz dy
e dt 2 = By dt - B z dt

m d2y dx dze dt2 = B z dt - B x dt (6.69)

'!!! d 2z = B dy _ B dx
e dt2 x dt 11 tit
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When the components of field vary from point to point, these equa
tions are practically insoluble.

In electron-optics work, circular cylindrical coordinates r, 8, and z
are used where the coordinates specify radial distance, angle, and axial
distance, respectively. Here the equations have the same general form
as Eqs. (6.69) but are quite different in their specific appearance. They
are

m [d2r (d8)2] dz r dOe dt 2 - r dt = B o dt - B z dt

m[!~( 2
dO)J = B dr _Bdz

e r dt r dt z dt r dt

!!!: [d
2zJ = B rd8 _ B dr

e dt 2 r dt (J dt

(6.70)

where the terms in the brackets on the left-hand side of the equations are
the components of a~celeration in the T, 8, and z directions, respectively.

Example: It is a known property that low-velocity electrons in a strong
magnetic field will describe a tightly coiled spiral path which wraps itself around
one of the flux lines and will thus follow the magnetic field. This property will
be proved in the case of the magnetic field around a long, straight wire carrying
current.

In this case there is only a 0 component of field of magnitude ;~, where I is

the wire current. The rand z components of field are zero. For this condition,
neglecting constants, Eqs. (6.70) become

d2r (dO) 2 Idz
dt2 - r dt = r dt

! ~ (r 2 dO) = 0
r dt dt

d2z I dr
df,2 = - rdt

(6.71)

(6.72)

(6.73)

(6.74)

These equations cannot be solved exactly~ but the nature of the path can be
closely determined by some judicious approximations and observations. Inte
grating Eq. (6.73) with respect to time,

: = -Iln (fo)
where ro is a constant of integration. Integrating Eq. (6.72)

dB
r 2 - = Co

dt
(6.75)
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where Co is a constant of integration. Substituting Eqs. (6.74) and (6.75) into
Eq. (6.71),

d'Jr = ~ [-1 In (!...)] + C8
2

dt 2
, '0 r 3

(6.76)

(6.77)r = '1 - a sin kt

FIG. 6.7.-The motion of a low
velocity electron about a mag
netic flux line. In the absence
of strong electric fields, low
velocity electrons will spiral
about magnetic flux lines.

This expression would be difficult to integrate exactly, but the form of the varia
tion in , can be determined. It is seen that there is a value of , for which the
acceleration is zero and that for values of r slightly less than this the acceleration
is positive, while for values of , slightly greater than this the acceleration is
negative. This means that, if the initial r component of velocity is small, the

electron will oscillate about the value of , for
which the acceleration is zero. Hence the
expression for the r component of position is of
the form

With this variation of , the z component of
velocity is also seen to be periodic of small varia
tion from Eq. (6.74), and hence z oscillates
about its original value. Similarly the (J com
ponent of velocity is periodic and of small varia-

tion from Eq. (6.75) so that the value of ~~ is a

constant with a superimposed periodic variation.
The net result of these component displace
ments is that the electron will spiral around a
flux line in some fashion, keeping a constant
average value of rand z, and progress in the ()
direction with a constant average velocity as
shown in Fig. 6.7. Use of this property is made
in television pickup tubes of the Orthicon type.]

6.8. Combined Electric and Magnetic
Fields. When an electron is subjected to
the combined action of both electric and
magnetic fields, the paths tend to become

quite complex. Some simple cases can be studied, ho\vever.
When an electron starts from rest under the influence of parallel

electric and magnetic fields, the electron moves in the direction of the
electric field and is unaffected by the magnetic field. The path in this
case is a straight line, and the electron behaves as though the magnetic
field did not exist.

If an electron with a given velocity is injected into a region containing
electric and magnetic fields at right angles to each other and each at right

1 ROSE, A., and H. lAMS, Television Pickup rrubes Using Low-velocity Electron
Beam Scanning, Proc. I.R.E' 1 vol. 27, pp. 547-555, September, 1939.
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angles to the initial velocity, then there is a certain ratio of electric- to
magnetic-field strength for which the electron is not deflected in its path.
This occurs \vhen the force due to the electric field is equal and opposite
to that produced by the magnetic field. For this condition

E -B = 5.93 X 105 v'Vo = v meters per sec (6.78)

where v is the original velocity and Vo the potential that produced it.
As long as the above relation holds, the electron moves in a straight line.
If any of the quantities involved is changed, the electron will be deflected
from the straight-line path.

If an electron starts from rest in the presence of uniform electric and
magnetic fields that are mutually perpendicular, it first experiences a
force in the direction of the electric field and is unaffected by the magnetic
field because of the low velocity. As it acquires velocity, it is deflected
side\vise by the magnetic field. This action turns it around and brings
it to rest at a point corresponding to its original position but displaced
to one side. If the electron is then free to move, the action is repeated
and the resulting path is a cycloid. The cycloidal nature of the path can
be seen by considering that, if the magnetic field were moving in a direc
tion mutually perpendicular to the electric field and to itself at a velocity
given by Eq. (6.78), then to an observer moving with the magnetic field
the effects of the two fields ,vould cancel as far as forces parallel to the
electric field were concerned. To this same observer the electron would
behave as though it were injected into a magnetic field alone with a
velocity given by Eq. (6.78) in a direction opposite to that of the observ
er's motion, and the resulting path \vould be a circle to this observer. To
someone standing still relative to the fields the motion would be a circular
motion combined ,vith a translational motion, which in this case because
of the equality of the velocity components gives rise to a cycloidal path.

For the relative position of the fields shown in Fig. 6.8, where B is in
the negative z direction, the differential equations of motion are

and
d 2x _ Be dy
dt2 - m dt

These equations are more simply \vritten in the form

y = (a - wx)
x = wi;

(6.79)

(6.80)

(6.81)
(6.82)
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where the dots indicate derivatives with respect to time and a = .! dd
V

m y

Be
and w = -. The initial conditions are that, \vhen t is zero, y, x, y, and

m
:t are also zero.

Integrating Eq. (6.82) with respect to time,

x = wy (6.83)

------------ ------ - X o -- ---._---- --- -- --J

,'",,
/,

I
I

Ym

dV

i lY
" , ,,

'\
'\

\
\

\

FIG. 6.8.-The cycloidal path resulting when an electron is
liberated at zero velocity in crossed uniform electric and mag
netic fields. The electron progresses in the positive x direction
when the gradient of the electric field is in the positive y direc
tion and the magnetic field is in the negative z direction.

since, when t equals zero, j; and yare also zero. When this value of x is
substituted in Eq. (6.81), there results

y = a - w2y (6~84)

This can be solved either by standard methods or by the operational
calculus to give

a
y = 2 (1 - cos wt)

w
(6.85)

and the corresponding expression for x is from an integration of Eq. (6.83),

x = !!- (wt - sin wt)
w2

(6.86)

The last two equations above give the motion of the electron para
metrically in terms of t. The motion is seen to consist of a uniform trans
lation in the x direction with a superimposed circular motion.
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The maximum displacement in the y direction is

dV

= 2a = 1 138 X 10-11 dyYm w2· B2

119

(6.87)

The displacement in the x direction corresponding to one cycle of the
motion is found by substituting the value of time that restores the value
of y to zero. This occurs for wt equal to 2n- so that

Xo = 7fYm (6.88)

(6.90)

\vhich is also to be expected from the ratio of the circumference to the
radius of the generating circle that produces the cycloidal motion.

When an electron is injected into a region ,vith uniform electric and
magnetic fields at right angles to each other but 1vith a finite initial
velocity normal to the magnetic field, it will follow a trochoidal path in a
plane normal to the magnetic field. Geometrically the trochoidal path is
generated by a point on the rim of a ,vheel that is rolling along a straight
line on a smaller diameter hub. The cycloid is the special case of the
trochoid for ,vhich the diameters of the rolling and tracing circles are
the same.

The differential equations for the case of an initial velocit)T are the
same as for the cycloidal case [Eqs. (6.81) and (6.82)]; but in this case
the initial conditions are different, and the form of the solution is hence
different. When t is zero, y and x are zero, but iJ = VOy, x = VOz • Hence
the first integration of Eq. (6.83) for the configuration of Fig. 6.8 gives

x == wy - VOx (6.89)

When this substitution is made in Eq. (6.81) and this expression inte
grated twice to obtain the value for y, there results

(a - wvox)(1 - cos wt) + VOy •
Y == 00 2 ~ SIn wt

Substituting this in Eq. (6.89) and integrating to get the corresponding
expression for x,

at + (1 ) VOy a - WVOx •x = - - cos wt - - SIn wt
00 W w2 (6.91)

The two equations (6.90) and (6.91) determine completely the nature
of the trochoidal path. The corresponding expressions for the COIDJ

ponents of velocity are

. a - wVOx •
y = VOy cos wt - SIn wt

w

. a +. a - WVoxx = - v~ Sin wt - cos wl
00 w

(6.92)

(6.93)
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From the velocity-component equations it is seen that there is a constant

x component of velocity of magnitude!!.. This corresponds to the
w

translational velocity of the circles that generate the trochoidal motion.
To achieve this translational velocity the radius of the rolling circle must

be a2 since the angular velocity of the velocity vectors is w. The initial
w

conditions also require that the instantaneous velocity of rotation of a
point on the tracing circle be equal to the vector difference of the initial

y

Second elecfrode

-E=tdV
dy

, , ,
----.... --l------7-----.1-- --

\ J \- Ro/linqsurFace, ...._,
\ \ROllinqclrcle(Vt!w)
7racln9 circle (Vr/w)

FIG. 6.9.-Trochoidal electron path resulting when an electron is
injected with a finite velocity into a region of uniform crossed electric
and magnetic fields. The electron will progress in the positive x
direction when the gradient of the electric potential is in the positive
y direction and the magnetic field is in the negative z direction.

velocity and the translational velocity. This relation is sho\vn by the
vector diagram of Fig. 6.9.

If the scale of the velocity-vector diagram be taken the same as that
of the diagram sho\ving the generating circles and the resulting path,
the electron path can be constructed graphically in quite a simple manner.
It will be observed that the terms in Eqs. (6.90) and (6.91) giving the
instantaneous displacements are the same as those in Eqs. (6.92) and
(6.93) for the component velocities except for the w factors. The center
of the generating circles in the initial position is given by rotating t.he
rotational vector Vr , 90 deg in a clockwise direction. The radius of
the tracing circle is then given by the length of the rotational vector
Vr , and the radius of the rolling circle is given by the length of the vector
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Vt, the translational velocity. With the rolling and tracing circles and
their initial position given, the path is readily constructed gecmetrically
for any case. This construction is also illustrated in Fig. 6.9.

6.9. Approximate Numerical and Graphical Methods for Determining
Electron Paths. The number of cases in which the motion of an electron
under the influence of applied fields can be determined exactly is actually
quite small and restricted to very simple cases. Hence the need exists
for methods that will give an approximate answer when the fields are
more complex, as they usually are.

Method of Joined Circular Segments. When an electron is moving
through a potential field, the instantaneous radius of curvature of its
path is determined by its velocity and by the sidewise force that is
exerted on it by the field. 1 The side,vise force exerted on the electron
depends upon the component of the gradient of potential normal to the
instantaneous direction. This component of the gradient will be desig
nated by VnV. The actual sidewise force is eVnV. This force must
equal the centrifugal force of the electron in its instantaneous circular

2

motion, and this is given by n; ,where R is the instantaneous radius of

curvature. Equating these two forces and substituting 2eV for mv2,

(6.94)

from which

(6.95)

This is the instantaneous radius of curvature of the electron path at
'tny point in the field, as sho\vn in Fig. 6.10, on the assumption that the
electron started froln rest at a point of zero potential. It will be observed
that the radius of curvature is independent of the mass and charge of the
electron and also of the scale of potential, checking the conclusions drawn
from the differential equations of the electron path.

By calculating the radius of curvature at a point in the field by Eq.
(6.95), drawing a small segment of arc, and then applying this process
repeatedly a good approximation to the actual curve traced by the elec
tron is obtained. The potential at any point in the field is easily obtained,
and the normal component of gradient is the projection of the vector
giving the magnitude and direction of the greatest variation of potential
upon a line normal to the electron's path. The method is subject to
cumulative error unless the average potential and average normal

1 SALINGER, H., Tracing Electron Paths in Electric Fields, Electronics, vol. 10,
pp. 50-54, October, 1937.
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gradient over each segment of arc is used. If the segment of arc dra\vn
at each step is kept a constant fraction of the radius of curvature, say
one-twentieth, the error will not be great. It is also possible to derive
simple expressions for the position of the next step in terms of the dis
placement and change of angle when the radius of curvature is so large
ihat the arc segment is not easily drawn, as is frequently the case.

FIG. 6.10.-The instantaneous radius of cur
vature of an electron path in a region of
varying potentiaL The instantaneous radius
of curvature is equal to twice the potential at
the point in question divided by the compo
nent of the gradient of potential perpendic
ular to the path.

Several ingenious gadgets have been devised that make the applica
tion of the principle outlined above purely a mechanical one. 1,2 These
make use of a double probe in a current-flo\v model that has been set up
to give the electric field involved. The double probe picks up a voltage
proportional to the component of gradient in the direction of its align
ment, and the average potential of the probes gives the potential at the
point. The probe is connected to a small cart attached to a pantograph.
The cart is steered in such a way that the instantaneous curvature of
path which it is tracing is determined by the rel~tionEq. (6.95). Adjust-

1 GABOR, D., Mechanical Tracer for Electron Trajectories, Nature, vol. 139, p. 373,
February, 1937.

2 LA.NGMUIR, D., Automatic Plotting of Electron Trajectories, Nature, vol. 139,
pp. 1066-1067, June 19, 1937.
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ments on the steering are made as continuously as possible from the
information picked up by the double probe as it traces out th.e path.
These de"lices are capable of considerable accuracy.

Use of Elastic-membrane Model of Potential to Determine Electron
Paths. In a previous chapter it was pointed out that the elevation of the
surface of a stretched elastic membrane approximated closely the solu
tion of Laplace's equation when the deformations Were smalL Actually
such a model of potential fields is of more use in determining electron
paths than in solving potential problems. This is because it is found
that the laws governing the motion of a small sphere rolling on the mem
brane are strictly analogous to the laws governing the motion of an elec
tron in an electric field, and hence the path of such a sphere is a good
approximation of the path of an electron in the corresponding electric
field.

Except for frictional effects the kinetic energy picked up by a small
sphere, say a ~i6-in. ball bearing, is equal to the potential energy it has
lost o,ving to its change in elevation. This is exactly \vhat happens to
the electron. In the case of the mechanical model, however, the kinetic
energy is divided between translational and rotational components. As
long as the sphere rolls with a given circle of contact, the proportionality
between these two components of the kinetic energy is constant and the
path of the sphere will be similar to that of the electron. Although it is
difficult to prove mathematically, it can readily be shown by experiments
with a large sphere on a hard, curved surface that the sphere will tum
relatively sharp corners and finish with the same rolling circle of contact
as it had initially. The sphere can actually change its direction by about
300 deg without losing its original circle of rolling contact. If the angle
is more than 300 deg, the turn introduces a spinning action that spoils
the energy relations indicated above. Actually, it is the radius of curva
ture of the path rather than the angle that matters. Roughly, the
limiting radius of the path is five times the radius of the sphere.

Application of the Principle of Least Action. In many electron
trajectory problems use can be made of the principle of least action.
This principle states that in a potential field of the type encountered in
vacuum-tube problems a particle will move between two points by such
a path that the action, defined as the integral of momentum with distance,
,vin have a minimum value. This means that, if the paths are known and
conditions are such that only one electron goes through each point, con
tours of constant action calculated from the defining integral will be
everywhere perpendicular to the electron paths. Hence, if the electron
paths ale kno,vn, contours of constant action can be found that give the
path of all electrons. If the electron paths are not known, as is generally
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the case, it is still possible to calculate the contours of constant action by
methods involving successive approximation.

This is done by assuming a path of the electrons that is kno\vn to be
close to the true path and then calculating the action along the assumed
path. The process is easy, for the square root of potential can be sub
stituted for velocity so that action is given by

A = Jmv ds = V2eni JvV ds (6.96)

When the action along the assumed paths has been calculated, a first
q,rproximation to the action function has been obtained and correspond
ing contours of constant action can be drawn. If now curves be dra\vn
normal to these contours of constant action, these will give a more accurate
representation of the electron paths than those originally assumed. The
second approximation to the action function can then be calculated along
the improved paths and the process repeated to give any desired degree
of accuracy. This is seen to be a perturbation process bet,veen action
and potential.

In actual application in cases where the electron deflections are slight
the first step of the process gives results that are sufficiently accurate. 1,2

The errors involved compensate because of the fact that, ,,,hen the
assumed path is shorter than the actual path, the potentials involved are
smaller. In the determination of electron paths in tubes the assumption
of straight-line paths initially is usually sufficiently good for cases in
,vhich the electron deflections are slight. The method is not accurate in
the vicinity of any line of symmetry.

1 LANGE, H., Current Division in Triodes and Its Significance in the Determination
of Contact Potential, Zeit. fur Hochjrequenz., vol. 31, pp. 105-109, 133-140, 191-196,
1928.

2 SPANGENBERG, KARL, Current Division in Plane-electrode Triodes, Proc. I.R.E.,
voL 28, pp. 226-236, May, 1940.



CHAPTER 7

ELECTROSTATIC FIELD OF A TRIODE

7.1. Method of Solution. The electrostatic fields ,vithin tubes are
most readily obtained by means of the conformal transformations given
in a previous chapter. These transformations give potential configura
tions that represent closely the fields encountered in tubes, ,vhose elec
trode configuration is some\vhat idealized. The cathode is assumed to be
a plane or cylindrical surface, which it rarely is in practice. The elec
trodes are assumed to be infinite in length and breadth so that tube con
stants per unit area evaluated on this assumption do not include end
effects.

It should be pointed out that, since the solutions obtained are not
mathematically exact, various degrees of approximation are possible.
In general, the more accurate the solution, the more complex and cum
bersome the expressions obtained. Where extreme accuracy is desired,
the method of conformal transformations is used as a starting point for
series representations. Imaging or series procedures may also be used,
but these have not proved of great value as a general method.

In spite of the above-mentioned departures from exactness the for
mulas obtained by the application of the method of conformal trans
formations meet the accuracy requirements of modern engineering.

7.2. Electrostatic Field of a Plane-electrode Low-mu Triode. The
field of a low-rou triode may be determined by a method outlined by
Max,vel1. 1 Vacuum tubes had not yet been invented in Maxwell's time,
but his analysis of the electrostatic field about a shielding screen of parallel
,vires is readily applied to the problem of the triode field.

The field analysis is based upon the Z-plane configuration sho,vn in
Fig. 7.1a. This consists of two line charges located within a large cylin
der. One line charge is located at the origin and has a linear-charge
density of +qc. The other is located at the point (1,0) and has a linear
charge density of +qg. The field at great distances from these lines is
nearly circular and may be fitted to that of a circular electrode ,vhose
radius is large compared ,vith the distance between the line charges. It
may be seen that the Z-plane representation represents a simple tube

1 MAXWELL, J. CLERK, "Electricity and Magnetism," 3d ed., Vol. I, Sec. 203,
Cambridge, London) 1904..
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with a cathode wire at the origin and a single grid wire at the point (1,0)
surrounded by a circular plate. This simple tube has electrical charac
teristics the same as those of the plane-electrode and cylindrical-electrode
structures that may be derived from it.

To obtain the field within the plane-electrode tube it is necessary
to obtain an expression for the field in the Z plane of Fig. 7.1a and then
transform this expression by the logarithmic transformation to fit that
of the electrode configuration of Fig. 7.1b, which closely represents
the structure of a practical tube. The potential at any point in the Z

I I
I I
I tv I
I I

I :
I J
I I
I Ir-l-- ---__ --J

I : I
I I

I I
I

(a) ~)

Z PLANE W PLANE
FIG. 7.1.-Elementary triode and equivalent plane-electrode triode.

'plane is given by the sum of the potentials resulting from each of the line
charges. Polar coordinates will be used in the Z-plane relations.

The potential at any point (p,8) is given by

Vz = - !l!!- In PI - .!l!!- In p + C (7.1)
2r£o ~o

where PI is the distance from the point in question to the grid-wire charge
at the point (1,0) and C is a constant that adjusts the level of potential,
and In will be used hereafter to denote the natural logarithm. Making
use of the law of cosines,

V z = - A~ In (p2 + 1 - 2p cos 8) - A~c In p2 + C (7.2)
~o ~£o

The logarithmic transformation with a suitable coefficient will be
used. The coefficient is selected so that in the plane-electrode structure
of Fig. 7.1b the grid wires are spaced a distance a.
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a
~W = 2r In Z (7.3)

The component parts of this equation are

or

a
u=-lnp

2?r
a8

v = 27r

21f'U

or p = E a

8 = 27rv
a

(7.4)

(7.5)

(7.6)

(7.7)

in which u and v are the real and imaginary parts of W, respectively, and p

and 8 are the polar coordinates in the Z plane. Making the above sub
stitutions in Eq. (7.2),

(

411"U 2ru 2,rv) 4'3J"U

VW = - ~ In f a + 1 - 2E a cos~ - ~ In f a + C
411'"£0 a 411'"£0

The above expression gives very closely the potential inside of a plane
triode. Examination of its form will show that the equipotential lines in
the vicinity of the origin and the points (0, ±na) are circles, one set of
which may be fitted to the grid wires. For large positive and negative
values of u the equipotentials are almost planes that may be fitted to the
plate and cathode planes, respectively. The general potential expression
of Eq. (7.6) gives potential in terms of the chargesqg, qc, and the constant
C. For application it is also necessary to evaluate these constants in
terms of the electrode potentials.

To evaluate the constants of Eq. (7.6) let the plate plane be located
at u = +dgp where dtJp ~ a. When this relation bet\veen dgp and a
holds, the second and third terms of the argument of the first logarithm
\vill be less than 1 per cent of the first term and may thus be neglected.
Making the substitution u = +dgp into Eq. (7.6),

V p = - dgpqg _ dopqc + C
a£o a£o

Let the cathode plane be located at -deq, where deg ~ a. In this
case the first and third terms of the first logarithm argument will be small
compared with 1 so that the first term is substantially zero. Making
the substitution v· = -dcg into Eq. (7.6),

V c = 0 + dcgqc + C (7.8)
a£o

Let the grid wires be located at the points (0, ±na) and be of radius

Tg and potential Vgo If Tg ;£ ~, the potentials at points (O,Tg) and (rg,O)
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differ by only a fe\v per cent. Into Eq. (7.6) substitute the values u = 0,

Vg= - ~o In (2 sin :g) + c (7.9)

If the cathode potential is set at a reference level of potential of
zero, then

c = _ dcgqc
a£o

from which Eqs. (7.7) and (7.9) become

V
p

= _ dgpqg _ (dcy + dgp)qc
ato af.o

and

In (2 sin 1f'a
rg

) qg
_-'--__-----=--__ ~cuqc

~to ato

(7.10)

(7.11)

(7.12)

It is already possible to obtain the amplification factor of the tube
from Eqs. (7.11) and (7.12). The amplification factor of a tube is the
ratio of the plate voltage to the negative of grid voltage for a condition
of cutoff.! In terms of the electric field within the tube, cutoff exists
when the gradient of potential at the cathode is zero, which in turn
occurs when the cathode charge is zero. If qc is made zero in the above
two equations and the ratio taken as indicated,

(7.13)

(7.14a)

(7.14b)

If Eqs. (7.11) and (7.12) are solved for qc and qg in terms of V p and V g

and the expressions simplified by use of Eq. (7.13),

toa(Vp + jlVg )

(dgp + dag + p,dcg )
and

£oa~[(dgp -t- dcg ) Va - dco V p]
qg =

dgp(dyp + dcg + /J-dCg)

The expression for J.L of Eq. (7.13) given above is the simplest expres
sion that adequately gives the amplification factor of a plane-electrode
triode. Examination of this expression sho,vs that the amplification
factor increases as the grid-plate distance increases. This is in accord

1 ~"or a more general definition of the amplification factor see the chapter on

Triode Characteristics.
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with physical reasoning since the more remote the plate is the more
influence the grid has. Amplification factor is also increased if the grid
wire spacing is decreased since this makes the grid more effective in
controlling the off-cathode gradient of potential. Amplification is also
increased if the grid-\vire radius is increased, as ,vould be expected. It
,vill be observed that according to Eq. (7.13) the amplification factor is
independent :of the cathode-grid distance. This is approximately true
as long as the approximations made in deriving the expression are not
exceeded, i.e., as long as the cathode-grid distance is not less than the
grid-\vire spacing. This may be understood by considering that the
cathode charge is zero at cutoff. Thus for a cutoff condition all the flux
lines originating on the grid terminate on the plate, and though some of
them start to\vard the cathode they turn and end on the plate so that
as long as the cathode is not too close to the grid the field pattern is not
disturbed and the amplification factor is independent of cathode-grid
distance. This interpretation ,vill be discussed further in connection
with equipotential contours and potential-profue plots.

Contour Representation of Potential Field. The form of the potential
field resulting from the equations developed above may be best studied
by examining the plots of the equipotential lines. A group of these
equipotential contour plots of a typical plane triode are shown in Fig.
7.2 for various potentials. The contours of Fig. 7.2a show the field
configuration for the case of the grid biased beyond cutoff. It will be
observed that the gradient of potential at the cathode is negative. In
the line of the grids the potentIal is increasingly negative in moving from
cathode to grid. Along this same line the potential is increasingly posi
tive in moving from grid to plate. Along the line from cathode to plate
midway between grid ,vires the potential is at first negative and then
positive. The dotted lines shown represent the boundary between the
various types of equipotential lines. In the area within the dotted lines
including the grid wires the equipotential lines ale closed curves about
the grid wires. In the other areas the equipotential lines run continu
ously from one section of the triode to adjoining sections, always on one
side of the grid plane.

The other equipotential plots may be interpreted in a similarfashion.
It will. be observed that all the plots have some features in common.
The equipotential lines close to the grid wires are nearly circular in all
cases. The equipotential lines close to the plate and cathode are nearly
straight lines. The equipotential lines may be divided into two groups,
those which completely enclose the grid and those which run along from
section to section. It will be observed that in some cases the equipo...
tentiallines of the second type listed above cross the grid plane between
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FIG. 7.2.-Equipotential contours in the plane-electrode triode: (a) grid beyond
cutoff potential; (b) grid at cutoff potential; (c) grid negative at half cutoff
value: (d) grid at zero p(\tential~ (e) grid positive.
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FIG. 7.3.-Equipotential con
tours in a plane-electrode triode
with equal positive grid and
plate potentials.

grid wires but always pass the grid wires on the same side in moving
from section to section. This behavior is observed in the case of the
10 per cent contour for Vg = O. In all the cases shown the equipotentials
are bowed toward the cathode through the grid plane. Only if the grid
is more positive than the potential that gives a uniform positive potential
gradient from plate to grid will the contours
that cross the grid plane be bowed toward
the plate. The equipotential plots shown in
Fig. 7.2 were obtained with an electrolytic-
trough model of potential. The equipoten-
tials calculated from Eq. (7.6) would be
almost the same in shape. For comparison
a contour plot calculated by Eq. (7.6) is
shown in Fig. 7.3. This plot represents an
extreme condition of potential and dimen
sions. The grid-wire radius is ~'2'o of the
grid-,vire spacing. It will be observed that
the grid-wire contour is not quite circular.
It is of proper width in the plane of the grid
wires but is longer in the direction at right
angles to this. Because of this distortion
of shape, which increases as the ratio of grid
wire diameter to grid-wire spacing increases,
the formula for the amplification factor of
Eq. (7.13) becomes inaccurate when the
above ratio, known as the screening fract£on,
becomes greater than 710. In the following
section a more accurate formula is given,
which is good up to screening fractions of ~~.

Profile Representation of Potential Field.
The potential fields of a low-mu triode may
also be studied by reference to profile repre
sentations of potential. These curves show
how the potential varies along certain lines
within the tube. The most common profile
representations are shown along lines running from cathode to plate.
In particular, two profiles are particularly informative. These are the
profiles through the grid wire in a line running from cathode to plate at
right angles to each of the latter, and in a line midway between grid
wires. Such profiles are shown in Fig. 7.4.

In Fig. 7.4a are shown the profiles for a condition of a tube biased
beyond cutoff. Here it is seen that the gradient of potential at the
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cathode is negative, thus making it impossible for electrons to leave the
cathode.. This is true because most electrons that do succeed in getting
away because of some initial velocity are driven back by the negative
gradient of potential. In the line of the grids the potential goes strongly
negative until it reaches the negative grid potential. Beyond the grid
the gradient is positive. In the line between the grid wires the potential
is pulled negative at first by the presence of the negative grid, and it
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FIG. 7.4a.-Potential profiles of a plane-electrode triode, with
grid at twice the cutoff value of potential.

then becomes positive. It ,vill be observed that the potential profiles
are straight lines near the cathode and also near the plate. Further, it
is only in the vicinity of the grid that there is a great variation in the
value of potential in moving parallel to the cathode and plate planes.

In Fig. 7.4b are shovvn the potential profiles for the case of the grid
biased to approximately cutoff. Here it is seen that the gradient at the
cathode is zero. In the line of the grid wires the potential first goes
negative to the value of grid potential and then positive. In the line
between the grid wires the potential becomes increasingly positive in
moving from cathode to plate. In this representation the amplification
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factor of the tube is given by the ratio of positive plate to negative grid
potential. It is evident from these profiles why the amplification factor
is independent of the cathode-grid distance provided that this is not too
smalL Up to a distance of about half the cathode-grid spacing the poten
tial on both profiles is substantially zero for the particular dimensions
shown. Hence in this particular case a cathode at zero potential

roo

could be put at any distance greater than half the cathode-grid distance
sho\vn ,vithout changing the shape or position of the potential profiles
to the right of the profiles. The curves of Fig. 7.4b show the potential
conditions that ,vill just allow current to flow.

In Fig. 7.4c are sho\vn profiles for a negative grid potential greater
than that which gives the cutoff condition. Here the gradient of poten
tial at the cathode is positive even though the grid is negative. The
curves shown represent the potentials that would exist in the absence
of current, say in a cold tube. Although this condition of potential
would permit current to flo,v, the actual flow would depress the profiles
in the vicinity of the cathode, as will be described in a later chapter.
In Fig. 7.4d the grid is at zero potential, and it is now possible for elec
~rons to reach the grid, which has not previously been possible for nega-
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tive grid potentials. In Fig. 7.4e is shown an extreme condition of
positive grid potential. Here the grid is as positive as the plate.. This
condition may be reached at the peak of the cycle in Class C power
amplifiers.

In all cases the profiles are straight lines in the vicinity of the cathode
and plate. For a condition of grid potential more negative than that

JOO

20

cs
:+:
1:
Q)

040
Q..

80

-~ -m 0 +W +~ +ro
Distance from grid. mils

FIG. 7.4e.-Potential profiles in a plane-electrode triode, with
grid and plate at the same positive potential. This condition
may exist at the peak of the current pulse in a Class C amplifier.

of cutoff the slope of the straight-line portion at the cathode is negative.
Above cutoff it is positive. The general form of the profiles corresponds
to that which one would expect from a deformed elastic membrane..
In each case the grid pushes a hole in what would otherwise be a straight
line profile from cathode to plate. Curvature requirements are met here.
It will be observed that when one profile is concave upward the other is
concave downward.

7.3. Electrostatic Field of a Low-mu Cylindrical-electrode Triode.
The same fundamental tube configuration as was used for the plane
electrode triode in Fig. 7.1a can be used to develop the cylindrical-electrode
triode. In this case, however, the transformation equation takes the
form

W = SgZl/N (7.15)

to give the electrode arrangement of a cylindrical triode with N grid
wires as shown in Fig. 7.5b. Let the coordinates in the Z plane be ,
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and fJ and in the W plane 8 and cP; let 8 g be the radius of the grid-wire
circle. Then the components of the transformation equation in polar
coordinates are

and
8 = Ncb

(7.16)

(7.17)

PIlAte

ZPLANE WPLAN£
~ ~

FIG. 7.5.-Elementary triode and equivalent cylindrical-electrode triode.

As before, the equation for the potential at any point in the Z plane
IS

V z = - 4
qg

In (p2 + 1 - 2p cos fJ) - 4
Qc In p2 + C (7.2)

1r£0 11'"£0

Substitution of the component transformation equations gives

Vw = - ~:o In [(tYN + 1 - 2 (t)N cos N~]

_ 2qc In (~)N + C (7.18)
41r£0 So

This gives the equation of a potential field in \vhich the contours are
circles close to the origin and at great distances from the origin. The

contours are also circles about the points (s = sa,~ = 2;/} where k

assumes integral values from zero to N.
The three sets of circles can be fitted to the cathode, plate, and grid
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(7.19)

wires, respectively. To fit the cathode to one of the circles close to
and about the origin let S = Se « Sg. Then

Ve = 0 - 2qcN In (~) + C
4no Sg

To fit the large circles centered at the origin to the plate electrode
let 8 = sp» Sg. Then Eq. (7.18) becomes

Vp= - 2Nqg In (sp) _ 2Nqc In (sp) + C (7.20)
4~o Sg 4no Sg

To fit one of the small circles about the point (so,O) to one of the

grid wires let S = Sf} and ep = Rg
, ,vhere R g is the grid-wire radius. Then

8 g

V - 2qg I (2 · NRo) + C- - -- n SIn--
a 41r£o 2sg

(7.21)

The three equations (7.19), (7.20), and (7.21) express the elec
trode potentials in terms of the cathode and grid-wire charges. For
the W-plane representation the charges are those of one pie-shaped

section of angle '-;.

As before, the amplification factor may be found by setting the
cathode charge and potential zero and taking the ratio of plate to nega
tive grid potential. From this operation

(7.22)p,=
Nln(~)

In (2 sin NRo)
2sg

The way in ~~hich the amplification factor of a cylindrical triode varies
with the various electrode dimensions can be seen by inspection of Eq.
(7.22). As the number of grid wires is increased, the amplification factor
increases since N appears as a linear factor in the numerator and as a
logarithmic factor in the denominator. This is to be expected from
physical reasoning since an increase in the number of grid wires increases
the effectiveness of the grid in controlling the off-cathode gradient and
hence in controlling the current. The amplification factor increases as
the plate radius is increased, also to be expected since this makes the
plate less effective in controlling the current. The amplification factor
increases as the radius of the grid-wire cylinder decreases since the fa.ctor
in the numerator is more effective than that in the denominator. The
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amplification factor also increases as the grid-wire radius is increased.
Because of the way in which the factors combine, high amplification
factors may be obtained more readily with cylindrical-electrode structures
than with plane-electrode structures.

PATE

FIG. 7.6.-Equipotential Jontours in the cylindrical-electrode triode:
(a) grid beyond cutoff potential; (b) grid at cutoff potential; (c)
grid negative but above cutoff potential; (d) grid at zero potential;
(e) grid at "natural" potential; (f) grid at positive plate potential.

As in the case of the parallel-electrode tube it is desirable to express
the charges in terms of the electrode potentials. This is done by setting
the cathode potential equal to zero and solving for qc and qu.

2no [ V
gIn (::) - ~ In (2 sin ~~g)]

(7.23)

(7.24)



ELECTROSTATIC FIELD OF A TRIODE 139

Potential Contours of a Cylindrical Triode. Contour representations
of potential are shown in Fig. 7.6 for various relative electrode potentials.
'The contours of the cylindrical triode exhibit the same general charac
teristics as those of the plane-electrode triode. In each case the con
tours near any electrode have the same shape as the electrode. This
means that the contours about the cathode and just inside the plate are

IOO...---~---r~----r----..,.....--...,..

801----->od-i-t--"'t'-----t------..----t...

-20 --a_"__ ""'--- ""'--- ___

o 100 200 300 315
ROidial cJistQnce,lT1ils

FIG. 7.7a.-Potential profiles in a cylindrical triode,
with grid at twice the cutoff value of potential.

circles concentric about the center of the tube. There are also circles
about each of the grid wires. The circles inside the plate have a non
linear spacing in the case of the cylindrical triode. This is better under
stood by reference to the potential profiles.

Potential Profiles of a Cylindrical Triode. Reference to the potential
profiles of Fig. 7.7 reveals several striking differences between the plane
electrode and cylindrical-electrode cases. Although the profiles have the
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same general trend, they are characterized by different curvature char
acteristics. In the plane-electrode case the profiles through and bet\veen
the grid wires coincided near the cathode and plate and were nearly
straight lines there. In the case of the cylindrical triode they do again
coincide but are curved instead of straight. The coincident profiles
near the plate tend to be logarithmic in shape, as would be the case in a

IOOr---~r-'T"'T""'lir-----.,..----~--'1II,

80 t----r-'t--+-f'o.-;J----+----_~--_f\.

20t---~I--~t--I_--f--.---_+_--_I"

100 200 300 375
RG1diaJ oIist~nce,mifs

FIG. 7.7b.-Potential profiles in a cylindrical triode,
with grid at the cutoff value of potential.

cylindrical diode. The same is true for the profiles near the cathode,
though in the particular case of the relatively high-mu tube sho,vn, the
region in which the profiles coincide near the cathode is small because of
the short cathode-grid distance.

Below cutoff in Fig. 7.7a the cathode gradient of potential is negative.
At cutoff as in Fig. 7.7b it is zero, and it can again be seen that this
condition of zero cathode gradient is independent of the grid-cathode
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distance provided that the distance is not too small. In the particular
figure shown any larger cathode-grid distance would not change the
amplification factor of the tube. The remaining figures show the profiles
for a grid negative, but above cutoff in Fig. 7.7c, for a grid at zero poten
tial in Fig. 7.7d, and for an extreme condition of positive grid potential
in Fig. 7.7e.

801-----M----4-Po1------+e-----A----I.

60 1---...-.M~....fo.I----+~~--+------J.

20J.--~___I~__1_--fo----+-----i

100 200 300 375
Rc.cliGlI distance, mils

FIG. 7.7c.-Potential profiles in a cylindrical triode,
with grid at half the cutoff value of potential.

The curvature conditions that were noted in the case of the plane
electrode triode are no longer valid in the case of the cylindrical triode.
It is no longer true that if one profile is concave upward the other is
concave downward. This follows from the fact that the Laplace equa
tion for polar coordinates can no longer be interpreted so simply in
terms of curvatures. If the coordinates were changed so that the profile~

were plotted against the logarithm of T, then the curvature conditions
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that held for the plane-electrode case would be fulfilled. This follows
because with this change of variables the Laplace equation becomes iden
tical with that for Cartesian coordinates. In Fig. 7.8 are shown the
potential profiles of Fig. 7.7a plotted with a logarithmic scale of radius.
It is seen that the profiles become straight lines in the vicinity of the

IOO,.....--~""'--r-r-r----......------,

80t---~t--+-P+-----l~---+-4------I...

___ --..0_- ......._~oIo---~

601----~lf--~J__--4____#_--_+_--.........

20 t---~~+Pooit-"1llJ---_-+----.....J-----1

I
I
I
I
·1

-20~--:l--"-----~---~-----'o . 100 200 300 315
Rt1di~1 c;4istlilnce,mils

FIG. 7.7d.-Potential profiles in a cylindrical triode,
with grid at zero potential.

cathode and plate and thus resemble the plane-triode profiles in this type
of plot.

7.4. Analysis of the High-mu Triode. Potential Contours and Profiles.
The method of Maxwell discussed in the previous sections has some
limitations that make the results inaccurate when the attempt is made
to apply them to a high-mu triode. In the previous analysis it was
assumed that the equipotentials about the grid line charge in the funda
mental tube of the Z-plane representation were circles concentric about
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the line. This is very nearly true provided that the circles are not too
large. But if we examine the shape the grid wire in the Z plane must
have as determined by circles in Fig. 7.1b transformed hack to the Z
plane, it is found that departures from small circles centered about the
point (1,0) are soon encountered as the grid-wire radius is increased.
Consider the grid wires of Fig. 7.1b, and let the grid-wire radius be
increased from a small value to a fairly large value without changing the
other dimensions. This is equivalent to increasing the screening frac-

IOO-------.,..--.---.....-------~....

80 t---~t___+_t_ftoH__--_t_---_+_--__I.
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ROldi~f distance, mils

FIG. 7.7e.-Potential profiles in a cylindrical triode,
with grid and plate at equal positive potentials.

tion and increases the mu of the tube. As the grid-wire radii are increased,
the corresponding contours in the Z plane, which are at first small
circles with centers at the point (1,0), become larger curves that are nearly
circular in shape but that are shifted in position so that their centers are
not at the point (1,0) but to the right of this point. This applies as the
screening fraction is increased from 0.1 to 0.2. The progressive changes
in shape encountered are shown in Fig. 7.9. In the analysis indicated in
this section another line charge is introduced to take account of the shift
in position of the circular grid-potential contour~ As the screening frac-
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tion is increased beyond 0.3, the transformed contour of the grid "ire
lases its circular shape, becoming dented on one side, and the improved
analysis is no longer valid. The accuracy of the formulas developed can
be extended, however, so that they may be used for tubes having screen-

x

FIG. 7.9.-The shape of large transformed
grid wires in the Z-plane representation
of Fig. 7.1. The transformed grid wires
are nearly circular for screening fractions
as large as 0.2. Beyond this value, the
grid contour is noncircular and cannot
be represented by two line charges.
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FIG. 7.8.-Potential profiles of a cylin
drical triode plotted with a logarithmic
scale of radius. On such a plot the
profiles are straight lines in the vicinity
of the cathode and plate. Also shown
is the graphical construction for deter
mining the equivalent diode radius.

ing fractions as low as % instead of merely 710. The resulting expres
sions are considered the most accurate simple expressions available. 1,2

As before, use the plane-electrode transformation equations,

a a i8a
W = 27r In Z = 21r In p + 2n- (7.3)

1 VODGES, F. B., and F. R. ELDER, Formulas for the Amplification Constant for
Three-element Tubes, Phys. Rev., vol. 24, pp. 683-689, December, 1924.

2 Dow, W. G., "Engineering Electronics," pp. 24-53, ~Tiley, New York, 1937.
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which have the component t.ransformation equations given by Eqs.
(7.4) and (7.5), P being Z-plane radius. Then the points a and b~ in Fig.
7.10b which have the coordinates (rg,O) and (-rg,O) respectively, trans
form into the points a and {3, which in Fig. 7.10a have the coordinates

21rTo 211"1'0

(ea,O) and (e -a,O). If the screening fraction is less than 0.16, the
transformed grid wire is nearly a circle through these t,vo points. The

p

~
~:g

h a

Pc -u +u

-v
Z PLANE W PLANE

(a) (6)

FIG. 7.10.· -W- and Z-plane representations of a high-mu plane-electrode triode.
This is the basis of the analysis of Vodges and Elder.

radius of the grid wire in the Z plane is half the difference of the P com
ponents of a and {3 and is given by

R = sinh 27rrg (7.25)
a

The location of the center of the grid-wire circle is given by the average
of the values of a and f3 and is given by

h 27rrg
Po = cos a

It is now necessary to locate line charges so that this circle ,vill be an
equipotential contour for all combinations of cathode, grid, and plt:\.Jte
potential.

In the analysis given for the low-mu triodes a single line charge was
placed within the circle at its center. When the analysis is extended so
that the circle is no longer small, this is not adequate. A line charge at
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the center of the circle will still give an equipotential contour that will
fit the circle if this charge is the only one present, which is not the case.
However, it is also possible to find another position within the circle such
that a line charge placed there together ,vith a line charge at the origin
,vith an equal charge of opposite sign will give an equipotential contour on
the transformed grid-wire circle.! This follows from the well-known con
figuration of potentials about a two-wire transmission line, which is
equivalent to these two line charges. Here the equipotential contours
are all circles, enclosing the charges, but with their centers successively
displaced.

If a line charge with a linear-charge density - qc is placed at a point
(b,O) within the circle having its center at (p",O), then the potential at any
point C on the circle due to it and to a linear charge with density qc
located at the origin is given by

v = - ~ 1n [ Pu
2 + R2 + 2pR cos 1/1 J

c 41r£0 (Po - b)2 + R2 - 2(p - b)R cos if;
(7.27)

where"" is the angle between the line joining C and (Pu,O) and the axis.
It is required that this expression be independent of the angle 1/1. It is

easily shown by substitution that if b has the value 1.- this condition is
Pu

fulfilled. The two line charges with the above positions take care of the
charge on the cathode and part of the charge on the grid. If now a
charge of magnitude -qp be placed at the center of the transformed grid
wire circle, it will be the source of flux lines that will extend in all directions,
becoming radial at great distances and terminating on a large plate circle.
Since any value of either qc or qp gives rise to an equipotential circle of
radius R with center at Po, this circle can be made the grid-wire circle
for any combination of charges and hence of potentials. With this
location of line charges it is easy to write the potential at any point in
the tube.

At any point (p,8) within the tube the potential is given by

V = - _1_ [qC In p2 - qc In (p2 + -; - 2p cos 0)
~o Po Pu

- qp In (p2 + Pll2 - 2pPII cos 8) + c] (7.28)

in which the constant C is introduced to adjust the level of the potential.
In most tubes the cathode can be fitted to a small circle about the origin.

1 This attack on the problem was first successfully applied..bY W. G. Dow.
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Let P = Pc, (J = 0; then

1[ (1)2 .,Vc = - 411"£0 qc In Pc 2 - qc In pc - pg - qp In (Pc - pg)2 + CJ (7.29)

If the cathode potential be taken as zero and the value of C then obtained
from Eq. (7.29) be substituted into Eq. (7.28), the expression for the
potential along the axis through the grid wire simplifies to

v = _1 !qc In [(p - :g) ,!!!]2 + qp In (p ~ PU)21
47r£o 1 p pc Po

pc --
Po

(7.30)

(7.31)

(7.32)

This has been obtained by setting (J equal to zero and gives the potential
along the axis through the grid wire and also through the grid ,vires in
the plane- and cylindrical-electrode tubes, which may be derived from the
simple fundamental tube. To get the potential between the grid wires,
8 is set equal to 7r, and the resulting expression is like Eq. (7.30) except
that the negative signs within the brackets become positive.

To find the potential of the grid wire let P = Po - R. Then making
use of the fact that pg 2 = 1 + R2 from the hyperbolic relations, and that
Pc is much smaller than Po or its reciprocal,

Vg = 4~0 [ qc In (Rpc)2 + qp In (~)2J

Similarly, to find the plate potential let p = pp, and make use of the fact
that pc is much less than 1, which in turn is much less than pp. Then

V p = 4~0 [ qc In (Pcpg)2 + qp In (~:YJ

Equations (7.31) and (7.32) give the grid and plate potential in terme
of cathode and grid charges. In order to calculate potential profiles it is
desirable to kno\v the charges in terms of the potentials. The above
equations are readily rearranged to give this form.

[
Vg In (pp) - VpIn (R) ]

q - 2n Po Po

c - 0 In (Rpc) In G:) -In (~) In (PCpg)

0_ [ V p In (Rpc) - V oIn (PcPo) ]
qp = mrto R

In (Rpc) In (~:) - In (pg) In (PCpg)

(7.33)

(7.34)
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(7.35)

Amplification Factor of a High-mu Plane-electrode Triode. Again the
amplification factor is given by the ratio of plate to negative grid potential
for zero cathode charge. It will be noticed that the cathode charge is a
linear function of plate and grid potentials. In multielectrode tubes the
cathode charge is a linear function of all the electrode potentials. In
the case of a pentode, for instance, the cathode charge can be written

V
g
+ VI + V 2 + Va

ILl IL2 ILa-Ie = -------D-----·----

in which the various IL'S indicate the relative effectiveness of the control
grid and the electrode in question in controlling the off-cathode potential
gradient. In the case of the triode considered here, the amplification
factor is

p,=
In(~)

In(~)
(7.36)

(7.37)

Substitution of values from Eqs. (7.3), (7.25), and (7.26) gives the ampli
fication factor of a plane-electrode triode as

(2K:gp
) _ In cosh (~g)

p,=~_----=:....-_--_------:_--:....

In coth (~g)

Making use of the definition of the screening fraction as the percentage
of the area in the grid-wire plane occupied by the grid wires, numerically

'equal to 2ro, and denoting the screening fraction by S, the expression for
a

the amplification factor can also be written

_(2K:gp
) _ In cosh ...S

JL (7.38)- In coth trS

From this it is seen that the amplification factor depends upon only two
factors, the screening fraction and the ratio of grid-plate distance to
~id-wire spacing. The way in which the amplification factor varies
with these two factors is shown in Fig. 7.11. I t is seen that the amplifica
tion factor increases with the screening fraction and increases as the ratio
of grid-plate to grid-wire spacing increases. The upper solid curve
represents the limit of accuracy of the formula given by Eq. (7.38).
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If the screening fraction is small, then Eqs. (7.37) and (7.38) reduce
to the same expression that results from Eq. (7.13) so that these two dif-
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FIG. 7.11.-Chart giving the amplification factor of a plane-electrode triode. The
solid curves were obtained from Eq. (7.38), which is accurate up to screening frac
tions of 0.16. Dotted curves were obtained from Eq. (7.71), which is accurate up to
screening fractions of 0.4.

ferent expressions give substantially the same numerical result "then the
screening fraction is less than 71 o.

Amplification Factor of a High-mu Cylindrical Triode. When the
transformation relations of Eqs. (7.16) and (7.17) are applied to Eq. (7.36),
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the expression for the amplification factor of a cylindrical triode is
obtaineda This development requires some intermediate justification
because for the cylindrical triode the transformation is that of Eqa
(7.15) instead of Eq. (7.3). It is readily sho,vn, however, that expres
sions similar to Eqs. (7.25) and (7.26) are obtained.

In the notation of Figs. 7.lOa and 7.5b the points a and {3 are given by

( R)N ( R)N R1 + -.!!.. and 1 - -! · Usually the factor ---!!. is much smaller than
~ ~ ~

1 so that series expansions for these expressions can be used to simplify the
development. Great care must be used in approximating these expres
sions by terms of the series expansions; for the difference between the
expressions is desired, and two terms of the series are not sufficient. The

expressions for a and fJ are given very closely by exp (~~a) and exp

(- ~RI1)- The series expansions for these exponential terms are identical

with those for the binomials given above for the first two terms and differ

only by a factor of 1 - ~ in the third term. Using the difference of the

exponential terms to get the radius of the transformed grid wire,

R . h NRg= SIn --
80

and, using the average to get the location of the grid-wire center,

h NRo
Po = cos --

80

(7.39)

(7.40)

It is seen that Eqsa (7.39) and (7.40) are the exact counterparts of
Eqsa (7.25) and Eq. (7.26).

If now Eqs. (7.39), (7.40), and (7.15) are substituted into Eq. (7.36),
the expression for the amplification factor of the cylindrical triode results.

_ N In (~) - In cosh (~)

p, - (NR')
In coth -s: (7.41)

Since the screening fraction for the cylindrical triode is S = NRa, the
7rSg
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(7.42)

above expression may be written

N In (~) - In cosh rS

J.L = In coth 'irS

The amplification factor is seen to depend upon three factors, the
screening fraction, the ratio of plate to grid-wire circle radii, and the

100

3l51.3 2
Values of a,/~,

FIG. 7.12.-Amplification factor of a cylindrical triode.
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number of grid wires. This is much more difficult to plot but may be·
done by using a number of axes each corresponding to a different number
of grid wires. Such a plot of the amplification factor of the cylindrical
triode is shown in Fig. 7.12. I t is seen that the amplification factor
increases with the screening fraction, with the number of grid wires, and

with the ratio sP. The upper solid curve represents the limit of an
Sa

accuracy of about 2 per cent. The formulas of Vodges and Elder given_
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(7.43)-qc = VgC Cg + V pCep
and

in Eqs. (7.38) and (7.42) are considered the best practical formulas avail..
able for the amplification factor of triodes from the standpoint of siro.,
plicity and accuracy.

~ r.5. The Equivalent Electrostatic Circuit of a Triode. Examination
of Eqs. (7.33) and (7.34) sho,vs that these expressions have the form of

equations for a delta of capacities. A delta of capacities
G p such as could be used to represent a triode is sho"\vn in

Fig. 7.13. If the cathode is considered to be at zero
potential, then the relations bet,veen the potentials and
charges are

(7.44)c qp = (Vp - Vg)Cgp + VpCcp

which can be arranged into the simpler form
FIG. 7.13.~Delta

of triode inter- qp = - VgCgp + Vp(CQP + Ccp) (7.45)

electrode capac- Equations (7.43) and (7.45) are the exact counter-
ities. parts of Eqs. (7.33) and (7.34). Equation (7.43) can
'Pe rearranged to give

(7.46)-qc = Ceg (VU + Vp)Ceg

Ccp

from which, by comparison with Eq. (7.35), it is evident that the ampli
fication factor is given by the ratio of the grid-cathode to plate-cathode
capacity.

JJ = Ceg (7.47)
Cep

This is physically reasonable since the ratio of these two capacities is a
measure of the extent to ,vhich the cathode is electrostatically shielded
from the plate by the grid. The capacities involved can be evaluated by
reference to Eqs. (7.33) and (7.34) if it is desired to kno,v them in terms
of the geometry of the tube. The capacities in the above expressions are
in farads per unit length (meter) per grid-\vire section of the elementary
tube in the Z plane of ~""\ig. 7.10. When the dimensions are transformed to
other planes, the capacities of the corresponding tubes result.

Reference to any tube manual will show that the numerical ratio of
the grid-cathode to grid-plate capacities listed there differs considerably
from the amplification factor of the tube. This is because the capacities
listed in the manual include the capacities of the leads and supports as
well as those of the parts of the tube in which the electrons are effective.
In most triodes the cap~~itie~ bet,veen the leads and supports may be as
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large as those of the active portions of the tube or larger, the apparent
discrepancy being thus accounted for.

7.6. Equivalent-diode Spacing of a Triode. In the case of the plane
electrode triode, examination of the potential profiles showed that the
profiles were straight lines in the vicinity of the cathode for all conditions
of potential. This means that the potential distribution in a triode as
seen from the cathode is the same as that in a diode. The cathode has
no data by which it can tell whether it is part of a diode or triode. It
was further shown in Eq. (7. 14a) that the off-cathode gradient of potential

depended upon an equivalent voltage, V g + V P
• It would be expected,

JL
therefore, that for every triode there ,vould exist an equivalent diode
which ,vould have the same off-cathode gradient ,vhen the equivalent
triode voltage is applied to its plate. To find such an equivalent diode
it is necessary only to find the equivalent-diode spacing.

The equivalent-diode spacing of any triode may be found graphically
by extending the straight-line portion of the potential profile in the vicin
ity of the cathode until it reaches a potential equal to the equivalent..

triode potential, Vg + Vp. The distance from the cathode at which this
JL

potential is reached is the equivalent-diode spacing. This construction is
shown in Fig. 7.4c. Once this equivalent-diode spacing is found it can
be used for all combinations of plate and grid potential.

The concept of the equivalent diode and the equivalent-diode spac
ing is useful in the study of the current characteristics of triodes. Since
the current law for space-charge-limited diodes is kno,vn, the current law
for a triode can be approximated from the equivalent diode. Triodes
with equal equivalent-diode spacings and equal amplification factors
have approximately the same mutual conductance and plate resistance.
Actually, the triode and its equivalent diode are truly equivalent only
for a condition of no current flow, ,vhich means cutoff or beyond for the
triode since the flow of current changes the potential distribution. The
concept is, however, sufficiently useful to justify its inclusion here.
The subject of current flow and mutual conductance will be discussed in
the chapter on Space-charge Effects.

Diode Equivalent to a Plane-electrode Triode. An analytical expression
for the equivalent-diode spacing can be found from the expression for
cathode charge in terms of the equivalent-triode potential and the geome
try of the tube. Since the cathode charge ,vas taken as +qc per grid-wire
section, the off-cathode gradient of potential is given by

(dV) -qc
dx c = lZ£o
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(dV) = _ [Vg + (-!f)] ~
dx c D (1£0

(7.49)

(7.51)

in which all the symbols have the previous significance and D is the
denominator of Eq. (7.33) or (7.35) when the equivalent-voltage factor is
extracted.

For a plane-electrode diode the electrode spacing is the ratio of the
potential difference to the gradient. For the triode the equivalent-diode
spacing is the ratio of the equivalent-triode potential to the off-cathode
gradient. Thus, from Eq. (7.33)

[
In (PCpg) In (~) ]

d. = ;,. In (pp/p~t - In (peR) (7.50)

where de is the equivalent-diode spacing in terms of the Z-plane dimen
sions. It is desirable to express de in terms of the cathode-grid distance,
the grid-plate distance, and the amplification factor. If the expression
for the amplification factor [Eq. (7.36)] is used to eliminate R, then

d. = ~a [G + 1) In (PCpg) -; In (~) ]

If now the plane-electrode transformation is applied to insert the triode
dimensions,

d. = dcg + d
gp ~ dcg - ;,. (1 +;) In cosh 1fS (7.52)

(7.53)

For tubes in ","hich the screening fraction is less than 71 0, the last term of
Eq. (7.52) is negligible so that the expression reduces to

d. '" dcg [1 + dcgp.!gd
gp

]

Examination of Eq. (7.53) shows that the plate of the equivalent diode
always lies beyond the actual grid of the triode. The distance beyond is
relatively less if the amplification factor and cathode-grid distance are
large and relatively more if the grid-plate distance is large. The mutual
conductance of a tube is an inverse function of the equivalent-diode
spacing so that the influence of the various tube dimensions is readily
determined from Eq. (7.53).

Diode Equivalent to a Cylindrical-electrode Triode. The procedure that
was used to find the equivalent-diode spacing of a plane-electrode triode
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is quite general and may be applied to cylindrical triodes as well, though
the form of the resulting expressions is quite different, as may be expected
from the fact that the potential profile for the plane-electrode diode is a
straight line, while for the cylindrical diode it is a logarithmic curve.
For a cylindrical diode the relation between cathode and plate radius,
potential difference, and electrode charge per unit length of outer elec
trode is

In (~) = 21r£oV
r c q

For the cylindrical triode the equivalent-diode radius is given by

(7.54)

(7.55)

where Be is the equivalent-diode radius and qc is the cathode charge per
unit length for each of N grid-,vire sections. Substitution of the value of
qc from Eq. (7.33) and using Eq. (7.36) gives

In (~) = - [In ~epg) + In (PeR) ] ~ (7.56)

Eliminating R by means of Eq. (7.39) and making the substitutions of
Eqs. (7.16), (7.40), and Eq. (7.42),

In (~) = [! (In Sp - 1.. In cosh 7rS)
Se J.L 80 N

- (1 + ;) (In ~ + ~ In cosh 11"8)] (7.57)

For tubes with screening fractions less than 71 0 the terms involving the
hyperbolic cosine can be neglected so that the expression takes the form

(7.58)

'rhe same remarks that applied to the diode spacing for plane electrodes
apply here. The equivalent-diode plate lies outside of the grid-wire
circle. The equivalent-diode radius for the cylindrical triode is readily
obtained by graphical construction. If the profiles of Fig. 7.7 are plotted
against a logarithmic abscissa as in Fig. 7.8, then the profiles are straight
lines in the vicinity of the cathode and plate. The equivalent-diode
radius can be found by projecting the straight-line portion of the potential
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profile at the cathode until it reaches a potential equal to the equivalent
grid potential.

7.7. Application of Amplification-factor Formulas to Actual Triodes.
'The amplification-factor formulas previously developed have been derived
for simple idealized structures not always encountered in actual tubes.
It is, however, possible in most cases to interpret these formulas so that
they will apply to tubes whose structure departs somewhat from that for
which the formulas were derived.

'The formula for the amplification factor of the cylindrical triode
[Eq. (7.42)] was given for a grid in which the wires had a squirrel
cage structure of evenly spaced ,vires parallel to the axis of the tube.
In this expression the quantity N is the number of grid wires and
is also the active length of grid wire per unit axial length of the tube.
The expression may therefore be generalized by letting

(7.59)

where LQ is the active length of grid ,vire per unit axial length of the
tube.!

In case the grid structure differs from that postulated in the deriva
tion of the amplification-factor formula, the screening fraction S may
al,vays be interpreted as the ratio of the actual area of the grid structure
to the total area of the surface containing the grid.

If the cylindrical grid consists of a square mesh of fine wires, then

(7.60)

where d is the spacing of the square mesh and Sg is the radius of the grid
,vire circle. If the diameter of the ,vires in the square mesh is appreciable,
then

L g = ~SQ (1 - ~) (7.61)

where r g is the radius of the grid ,vires as sho,vn in Fig. 7.14a. For a
cylindrical grid of parallel rings having supports parallel to the axis,

L
ll

= 2n-sg + N s - 2Nsrs (7.62)
s s

where N, is the number of supports and r s is the radius of the support
wires and s is the spacing of the grid wires as shown in Fig. 7. 14b.

If the grid is a helix of diameter 2sg and of pitch d as in Fig. 7.14c,

1 KUSUNOSE, Y., Design of Triodes, Proc. I.R.E., vol. 17, pp. 1706-1749, October,
1929.
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(7.63)

(7.64)

The screening fractions for the cases listed above are readily evaluated.
In general if all the ,vires have the same radius,

'irS = L ~
g Sg

For parallel grid rings ,vith supports,

'irS = 2rg (Lg - N.) + 2N.r. (7.65)
2sg

in which the symbols have the same significance as in Eq. (7.62). Equa-

(e)

Helical grief

(aJ
Square mesh

(6)
Supported parallel

grid rings

FIG. 7.14.-Practical grid structures: (a) square mesh; (b) grid rings with
supports parallel to the axis; (c) helical grid.

tion (7.64) also holds for a helical grid. Equation (7.65) reduces to
Eq. (7.64) for rg = rs•

The generalized amplification-factor formula for the cylindrical
electrode triode is

L g In ~ - In cosh 'irS
Sf)

Jlc = In coth 'irS (7.66)

The generalized amplification-factor formula for the plane-electrode
triode is

27rdf);Lo' - In cosh 'irS
Jlp = In coth 'irS (7.67)
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The relation of this to Eq. (7.38) is evident. L o' is the length of grid wire

per unit area of the grid plane. For parallel grid wires, Lu' = .!.
a

In many tubes the structure is neither plane nor cylindrical but some
thing intermediate. In such cases it has been found empirically that a
combination of the plane and cylindrical amplification-factor formulas
gives very nearly the amplification factor of the tube. 1 The combination
formula is

(7.68)

where J.Lp is the amplification factor as calculated by the plane-electrode
formula, }lc is the amplification factor as calculated by the cylindrical
electrode formula, K is a constant depending upon the tube structure,
and }l is the amplification factor of the actual tube. The constant K
for a number of tube types ranging progressively from a plane to a cylin
drical structure is given by the following table:

TABLE IV
CONSTANT OF EQ. (7.68) FOR THE CALCULATION OF THE AMPLIF1

CATION FACTOR OF TUBES OF NONIDEAL FORM
Tube Type K

2A3

26
76
75
6K5
6B5
100TL

o.00 plane electrode
0.11
0.22
0.33
0.44
0.55
0.66
0.77
0.88
1 .00 cylindrical electrode

The results of Table IV are shown graphically in Fig. 7.15. The
empirical constant K given here includes the effect of the grid supports.

1.8. More Accurate Amplification-factor Formulas. The amplifica
tion-factor formula of Vodges and Elder given in Eq. (7.38) is accurate
only for certain ranges of electrode dimensions. Specifically, the formula
breaks down if

(a) dgp < a
(b) S > 0.16
(c) dco < a

In general, the formula breaks do,vn if any of the electrodes are too
close together. Since many modern tubes are built with very close-

t JERVIS, E. R., Amplification Factor Chart, Electronics, vol. 12, p. 45, June, 19~9.
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spaced electrodes, it is desirable to extend the range of the above rela
tions. Various formulas have been \vorked out that extend the range of
any of the three limitations listed above, but as yet no formula has
appeared that is valid over the complete range of all variables.

Formulafor Small Grid-plate Spacings. When the grid-plate spacing is
small, an improved amplification-factor formula may be worked out by

1.0

0.8

~ 0.6
'o

+0
U
~ 0.4

0.2

o

/
V

/
/"

/
V"

./

/
V

V
V

m~~~~®®@,@
2A3 26 76 75 6KS 685 27

Tube type

FIG. 7.15.-Value of the constant K of Eq. (7.68) for calculating the amplifi
cation factor of tubes with geometries t}1at are intermediate between plane
and cylindrical geometries.

placing an image set of grids outside of the plate position and- then fitting
the plate to the equipotential curve midway bet\veen. 1 The resulting
expression is

(7.69)
In cosh 1rS - 2n- dgp

a
IJ=

In tanh 'IrS - In [1 - cosh2 'IrS exp ( - 4;dop
) ]

This expression is valid for grid-plate spacings as low as one-quarter of
the spacing between grid wires but still assumes that the cathode-grid
spacing and the screening fraction are large.

1 SALZBERG, BERNARD, Formulas for the Amplification Factor of Triodes, Proc.
I.R.E., vol. 30, pp. 134-138, March, 1942.
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Formulas for I-Jaroe Screening Fraction. Perhaps the most serio\;.3
limitation to the amplification formula of Vodges and Elder is that it
begins to be in error for a screening fraction of 76 and is 10 per cent low
for a screening fraction of 7-'3. Many modern tubes are built with very

1000

0.70.60.50.1 0.2 0.3 0.4
Screening frlifction} 2Z

FIG. 7.16.-A comparison of the values of amplification
factor of a plane-electrode triode as a function of screening
fraction as indicated by various formulas. The extension
of the region of validity by the successive refinements in
formulas is evident. (See discussion on page 161.)

large screening fractions, and it therefore is desirable to have a formula
valid in this range.

Such a formula has been evaluated1,2 by an analysis based upon the
lOLLENDORF, FRANZ, Berechnung des Durchgriffes durch enge Steggitter, Elek

trotech. u. ]\Iaschineribau, vol. 52, pp. 585-591, Dec. 16, 1934.
2 See also HERNE, H., Valve Amplification Factors, Wireless Engr., vol. 21, pp.

59-64, February, 1944.
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expression W = In sin Z, ,vhich gives the potential due to a ro\v of evenly
spaced line charges positioned along a straight line. Derivatives of this
expression give the potential fields due to a ro'\v of dipoles, quadripoles,
and so on. By combining in series form such a succession of fields and
fitting the resultant field to the circular grid ,vires, some highly accurate
formulas for amplification factor are obtained.

The first approximation using the expression for the ro\v of line charges
alone gives a formula \vhich is virtually the same as that of Eq. (7.13)
based upon Max,vell's grating theory. The second approximation is
obtained by using the field due to a ro\v of line charges and a ro,v of dipole;
line charges. This gives

27rdgp _ Y2 (1rS) 2

a 1 + ~12 (1rS) 2
U. = -----------

3<1(11"8)2
-In (1rS) + 1 + ~i2(1rS)2

A third approximation may be obtained by including the field corre
sponding to the next derivative of the field of a ro\v of line charges. This
yields

27rdgp _ 72 (1rS) 2

a 1 + ~12(1rS)2
p,=-----------:--;--:-----::-:-:---------::-~-~-

~i(1rS) 2 ~'28 8 (1rS) 4

-In (liB) + 1 + H 2(11"8)2 1 + ~'24o(1I"8)4

Equations (7.70) and (7.71) apply to plane-electrode triodes. The
corresponding expressions for cylindrical electrodes may be obtained by

substituting 8g In (~) for dgp provided that the grid-wire radius is small

compared ,vith the radius of the grid-,vire circle.
A comparison of the values of amplification factor given by the various

formulas presented is sho,vn in Fig. 7.16. In this figure the notation is as
fol1o\vs:

J.Ll, Eq. (7.13), Max\vell.
J.L2, Eq. (7.38), Vodges and Elder.
J.t3, Eq. (7.70), Ollendorf second approximation.
J.t4, Eq. (7.71) Ollendorf third approximation.

From Fig. 7.16 it is seen that the range of validity of the various formulas
within a 2 per cent error is

J.tl, Eq. (7.13), S less than 0.1.
J.L2, Eq. (7.38), S less than 0.16.
J.L3, Eq. (7.70), S less than 0.325.
J.L4, Eq, (7.71), S less than 0.4.
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(7.72)

In the chart of Fig. 7.11 giving the amplification factor of a plane
triode, the solid lines were obtained from the formula of Vodges and Elder,
while the dotted lines were obtained from the Ollendorf approximations.

Formula for Small Cathode-grid Spacings. All the amplification-factor
formulas previously given are restricted to electrode configurations in
which the cathode-grid spacing is equal to or larger than the grid-wire
spacing. Many modern tubes have grid-cathode spacings that are less
than the grid-wire spacing. When this is true, it is really no longer
proper to speak of the amplification factor, for the gradient of potential is
not constant along the cathode but varies with position relative to the
grid wires. Such a tube exhibits no true cutoff condition since as the grid
is made more and more negative the cathode gradient opposite the
grid wires will become negative while the cathode gradient between the
wires is yet positive. This gives rise to a condition, sometimes referred
to as Insel Bildung, in which little island strips of the cathode are emitting
while other parts are not. Such a tube acts as a variable-mu tube in
that every part of the cathode surface has a different amplification factor.

It is possible to find the effective amplification factor of a tube 'with
small cathode-grid spacing if this effective amplification factor is under
stood to be dependent upon position on the cathode. When the cathode
gradient is not uniform, as is the case with small cathode-grid spacings,
the field's configuration can still be found if use is made of the theory of
images. 1 The true field that exists is the same that would result from a
line of grid wires of one charge and an image Hne of wires located as
though mirrored in the cathode but having charge of opposite sign. The
field can therefore be obtained by studying the potential within a fic
titious tube consisting of two parallel plates of opposite charge and
potential, between which there are two sets of identical grids of opposite
charge and potential, symmetrically disposed with respect to the center
plane. Under the conditions stated the mid-plane will be a surface of
zero potential and can be identified as the cathode.

The potential due to a grid of equally charged parallel ,vires, equally
spaced, a distance a along the y axis of the Z plane is

V(x,y) = - ~o In [2 (COSh :x-cos 2:y
)] + C

where q is the charge per unit length of each grid wire. This expression
may be obtained by considering the potential due to a line charge of

density q located at the point (1,0) and one of density - ~ located at the

1 FREMLlN, J. H., Calculation of Triode Constants, Phil. Mag., vol. 27, pp. 709
741, June, 1939. Also published in Elec. Commun., July, 1939.
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point (0,0) in the Z plane and then transforming this potential to the W

plane by means of the transformation W = ~ In Z. Equation (7.72)

can also be shown to be the real part of the expression In (sin i;).
A plot of Eq. (7.72) is given in Fig. 7.17.

FIG. 7.17.-The potential field in the vicinity of a
row of line charges as given by Eq. (7.72).

Upon using Eq. (7.72) to obtain the field due to grids of opposite
charge located a distance dey from the cathode and adding a linear com
ponent of field to account for the effect of the plate the expression for the
potential within the tube is obtained. It is

[ ~ ~ ]cosh - (x + dey) - cos - y
q a a

V = + 4- In 2 2 + Bxno 7r 7r
cosh - (x - d ) - cos - ya cg a

(7.73)
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in ,vhich q and B are related to the electrode potentials by

[
Sinh2(~)]

Vo= + -q-In 1 + (a) + Bdcg
47r£o · 2 7rr fl

SIn -
a

and

v = dcug + Bd
P afo cp,

(7.74)

(7.75)

If - Ec(O,y) is the gradient of potential at the cathode-a quantity
that varies with y-then the effective amplification factor may be defined
as

iJEe

1 + avp

J.L iJEc

aVg

The resultant expression for amplification factor is given by

[

sinh2 (27rdCfl

)]

_a_ In 1 + a dcu 2

1 41l"d
cp sin 2 (~) - a::;; dcg

It - - . h (21fdc(J) - dcp
SIn --

a dCfl

h (
'2nrdcg) (27rY) dcp

cos -a- - cos a

(7.76)

(7.77)

This expression is properly independent of grid and plate potential and
reduces to the lo,,~-mu amplification-factor formula for large values of

dC(J and ddcp
• This formula is reasonably accurate for values of dcg as lo,v

a cg a

as 0.4. For small values of the ratio d cg the reciprocal of the amplifica-
a

tion factor, sometimes referred to as the penetration factor or Durchgriff
since it is a measure of the shielding effect of the grid, exhibits ,vhat is
nearly a sinusoidal variation 'Yith distance parallel to the grid. For the
case in ,vhich the grid-cathode distance is 0.4 of the grid-,vire spacing1

the relative amplification factor may vary bet,veen 0.7 and 1.4 times the
average value, the average value being very nearly equal to that given
by Eq. (7.13).

Expressions for the amplification factor of a plane triode have no,v
been given that cover nearly the entire range of practical electrode



ELECTROSTATIC FIELD OF A TRIODE 165

dimensions. All the expressions given are limited, ho,vever, to some
definite range of electrode dimensions. The expressions given in this
subsection, for instance, are limited to screening fractions of 0.1 or less.
The region of validity of the various amplification-factor formulas is
shown in Fig. 7.18. Here it is seen that formulas are good for either large
screening fractions or large ratio of grid-wire spacing to cathode-grid
distance but not both. 1

3

0.5

~'~O.4
II

VJ
C

~ 0.3 J-------I
(,)

~
'+-
t5"
C

·~ 0.2 J-------..

E
'-.>

(/}

1. Eq. /3-Maxwe/1
2. Eq. 37- Vodges andElder
3. £q.70-0//endorf
4. Eq. 77- Freml/n

Plate

Cathode

4

ommVil~~ - ........
o I 234

Cathode-grid spacing f~ctor):
cg

FIG. 7.18.-The region of validity of various amplifica
tion-factor formulas.

7.9. Amplification Factor of Unconventional Tubes. The methods
that have been studied in this chapter may be applied to numerous struc
tures other than the idealized plane and cylindrical structures so far
treated. Where simple geometries are involved, it is usually possible to
find a correspondingly simple arrangement of line charges that can be
transformed into the desired structure. In Fig. 7.19 are shown some
sample unconventional tube structures along with their elementary forms
and the corresponding amplification-factor formula.

1 See FREMLIN, J. H., R. N. HALL, and P. A. SHAFFORD, Triode Amplification

Factors, Elec. Commun., voL 23, no. 4, pp. 426-435, 1946, for a semiempirical formula.

good for both small screening fraction and small cathode-grid distance.
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o
c

In Fig. 7.19a is shown the famous gammatron "gridless wonder."
This consists of a row of filament ,vires between grid and plate planes.
The tube has an inherently low amplification factor whose value is

W Plane Z Plane

cg6-dcp -- W=;lnz

o-r
G o-!L p

~rc

d a 21frccp - 2ff In cosha-
p.= 21fr;

d -~lnco$h--ccg2!r. a
FIG. 7.19a.-The amplification factor of a triode with a
cathode in the form of a row of filament wires located
between a grid and a plate plane.

approximately equal to ~cp as may be seen from consideration of inter-
cg

electrode capacities. The formula given is valid for screening fractions
of 0.1 or less and is based upon the same sort of analysis as was used to

W Plane Z Plane
J. d W=2':r In Z

C 0 gft---1

GO

CO P

GOT
CO ;,.

I

GO-i

Wdgp-ln(2cos~
p = '1fT; 7rL;
. .....lncos7!-lnsin aC

FIG. 7.19b.-The amplification factor of a plane-elec
trode triode with a cathode consisting of a row of
filament wires spaced midway between the grid wires
and having a single plate.

treat th~ low-mu triode. It is seen that t}le amplification factor has a
second-order dependence upon the cathode radius.

In Figs. 7.19b, c, and d are shown tubes in which filament wires are
placed between the ~rid wires. The formulas are not greatly different
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from those for tubes which have a grid between cathode and plate except
that they exhibit a second-order dependence upon cathode radius.

The question arises as to what the effect of having a filamentary

WPlane Z Plane

Nln Sp-ln(2cos NZC )
= $9 2sg

t.l Nrg)' f,. Nn)In(2cos-z -In(2.S!n~
Sg ~Sg

FIG. 7.19c.-The amplification factor of a cylindrical
triode whose cathode is a group of wires located between
the wires of a squirrel...cage grid.

emitter rather than a solid cathode would be. In general, if the filament
grid spacing is large compared with the grid-wire spacing, the amplifica
.tion factor will be the same as for the case of a solid cathode. The

WPlerne ZP/ane

W=E:..-lnZ
2fT

F

OC

f-OG

a OC
LOG

DC

I..dcp -.\.. dcp-..l

1rdgp Jrrc)
--a--ln(2coS-a

P- I ffrgJ f. .~)
Int2~os-a/-ln(2sln a

FIG. 7.19d.-The amplification factor of a plane
electrode triode whose grid and cathode wires are
alternate and equally spaced in a plane between two
equidistant plate planes.

p

equipotential lines around the filament will be circles very near to it but
become nearly straight lines, the same as for the solid cathode, between
the filament and grid. The current-voltage characteristics may, how
ever, be considerably different.



CHAPTER 8

SPACE-CHARGE EFFECTS

8.1. Effects of Current Flow. In the previous chapter a study was
made of the potential fields inside of tubes in the absence of current flow.
Such studies can give only a partial picture of the true condition within a
vacuum tube; for ordinarily currents will flow, and the presence of the
electrons constituting the current introduces a distribution of charge
known as "space charge," which changes the tube behavior. The
previous studies are perfectly valid in determining such things as the
amplification factor of tubes, for they can be applied to a condition of
cutoff at ,V'hich no current flo\vs and yet at which the relative influence
of the various electrodes is the same as for current flo,v. For studies of
such subjects as the variation of current with potential and the determina
tion of mutual conductance it is necessary to take into account the effect
of currents and the corresponding space charge.

The effect of space charge is most readily studied in the case of the
diode, and the results obtained from this study can then be extended to
give the relations existing in triodes and multielectrode tubes. Actually,
this extension can be made only approximately, but enough information
can be obtained to answer most purposes. The most striking effects
of space charge in a diode are to limit the current to a value determined by
the three-halves power of plate voltage and to cause the potential distribu
tion within the tube to be nonlinear.

In the plane-electrode diode the potential distribution in the absence
of space charge is a straight line from one electrode to the other as shown
in Fig. 8.la. In this case all the flux lines emanating from positive
charges on the positive plate terminate on negative charges on the other
plate, as shown in the same figure.

If now one of the electrodes is a cathode capable of emitting a small
number of electrons and the other electrode is positive ,vith respect to
this, there ,vill be some electrons in the field bet,veen the t,vo electrodes
moving toward the plate and some of the flux lines ,vill terminate on
electrons in the field as shown in Fig. 8.1b. The dra,ving has been con
ventionalized and the unit of flux density chosen so that there is only one
flux line to each electron. Because of the negative charge in the field, the
potential at any point will be less than in the previous case. Accordingly

168
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FIG. 8.1.-Electric flux lines and poten
tial distribution in a plane-electrode
diode for various degrees of space charge.

the potential profile will be pulled down and will be a curve concave
upward at every point below the straight line, with the same initial and
final values. If instead of negative electrons there had been positive
ions in the field, the profile would have been moved up and would have
formed a continuous curve concave do\vn,vard at every point above the
straight-line charge-free potential
profile.

If the cathode is capable of emit
ting an unlimited number of elec- - J---------I +
trans, the current \villlimit itself to a _ J-------I +

definite value because of the mutual
repulsion bet,veen the electrons and
because of the fact that the potential
contour can be depressed only until
its slope at the cathode is zero.
There is an equilibrium here; for, as
sho\vn in Fig. 8.le, if in some manner
the slope could be made less than zero
at the cathode, the electrons starting
out ,vould be forced to return to the
cathode, no current ,vould flow, the
space charge would be reduced, and
the potential contour \vould lift until
its slope \vas zero at the cathode, at
,vhich point an equilibrium ,vould be
reached. If in some manner the
slope ,vere greater than zero at the
cathode, more electrons would be
encouraged to leave the vicinity of
the cathode, the space charge \vould
be increased, the potential-distribu
tion curve would be depressed, Bind
this action would continue until the
slope at the cathode again became
zero. The zero slope at the cathode indicates that the charge on the
cathode is zero, ,vhich means that the flux lines emanating from charges
on the positive plate all terminate on electrons in the field and that none
of them get through to the cathode. In the case of the current limited by
space charge, the potential distribution is a four-thirds-power law, as will
be shown presently. In this case also, the current varies as the three
halves power of the potential on the plate.

The reason for the three-halves-power variation of current with poten-
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tial can be shown from simple theoretical considerations. In Fig. 8.1c
it is seen that the space-charge-limited diode is roughly equivalent to a
condenser. As is the case in a condenser, charge on the plate and hence
also in the interelectrode space is proportional to the potentiaL The
current density is the product of the space-charge density and the
velocity of the electrons at that point. The velocity of the electrons is
proportional to the square root of potential so that the current density,
which is the product of charge and velocity, is proportional to the three
halves power of potential. Although the above is not a very rigorous
demonstration of the validity of the three-halves-power law of current,
it ,viII at least make the relation seem reasonable. A more rigorous
demonstration will be undertaken in the next section.

8.2. Plane-electrode Space-charge Flow. The relations between
potential, distance, and current in the plane-electrode case can be
obtained from Poisson's equation, the energy equation, and the relation
bet,veen current, charge, and velocity.

Poisson's equation in the one-dimensional case reduces to

(8.1)

where V is potential, p is volumetric space-charge density, and to is the
dielectric constant of free space in rationalized mks units.

The energy equation has the form

~mv2 = Ve (8.2)

where m and e are the mass and charge of the electron and v is the velocity
at any potential V. Electrical quantities are in practical units, and
physical quantities are in. mks units. This assumes that the electron has
started from rest at a point of zero potential.

The relation between current density, charge, and velocity is

J = pV (8.3)

The three equations above suffice for a determination of all the rela
tions involved in a parallel-electrode space-charge flow. If p is expressed
in terms of J and V from Eqs. (8.2) and (8.3) and the resulting expression
substituted into Eq. (8.1),

d
2
V = { fin V-~ (8.4)

dx2
£0 ~2e

where J is now the magnitude of the current density, actually electronic
flow in the positive x direction is negative. A first integration is achieved

by multiplying both sides of Eq. (8.4) by 2~ and integrating,



SPACE-CHARGE EFFECTS 171

(8.5)

(8.6)

(dV)2 = 4J 1m VJ.2 + C
1dx £0 \j'2e

The constant of integration is zero because the gradient is zero when the
potential is zero.

A second integration gives

4~ = 14J 1m x+ C
23 \j £0 \j 2e

in which the constant is again zero because the potential is taken 'l,S zero
when the distance is zero. Solving for current density,

amperes per unit area. (8.7)

Numerically this is equal to

J
-_ 2.335 X lO-6V%

- amperes per unit area
x2 (8.8)

If x is in centimeters, the current density is in amperes per square centi
meter.

From the above equations it is seen that the current varies as the
three-halves power of potential and inversely as the square of the distance.
The last two equations constitute the Child-Langmuir space-charge law.
It has been verified experimentally.1-3 If the equations be solved for
potential, there results

v = 5,680J%x~ (8.9)

showing that the potential varies as the four-thirds power of distance
between cathode and plate.

Values of current density in terms of distance and potential are given
in the curves of Fig. 8.2.

It is of interest to note how various other factors vary with distance.
The gradient of potential is given by the derivative of potential with
distance. Hence

(8.10)

1 CHILD, D. C., Discharge from Hot CaO, Phys. Rev., vol. 32, pp. 492-511, MaJ',
1911.

2 LANGMUIR, 1., The Effect of Space Charge and Residual Gases on Therlliionic
Currents in High Vacuum, Phys. Rev., Sere 2, vol. 2, pp. 450-486, December, 1913.

3 LANGMUIR, I., and K. B. BLODGETT, Currents Limited by Space Charge between
Coaxial Cylinders, Phys. Rev., Sere 2, vol. 22, pp. 347-357, October, 1923.
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Velocity varies as the square root of potential, and therefore

v = k 2x% (8.11)

Space-charge density varies inversely as velocity, from Eq. (8.3), since
the current density is constant; thus

(8.12)

Curves showing the variation of these various factors are shown in
Figs. 8.3a and b. Here it is seen that the potential and gradient are zero
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at the cathode. Since the velocity ,vas assumed zero at this point, the
space-charge density is theoretically infinite here. Actually, the elec
trons start ,vith a small finite "'{elocity rather than ,vith zero velocity so
that the gradient is initially :i1eg~~tivefor a small distance, passes through a
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minimum at a small negative potential, and then increases. In spite of
this difference, the Child-Langmuir law is quite accurate except for very
low values of potential corresponding to the average velocity of emission,
which is of the order of a few volts.

8.3. Cylindrical-electrode Space-charge Flow. When the electrode
structure consists of t,vo concentric cylinders the inner of \vhich is capable
of emitting electrons, the space-charge-limited current still varies with the
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FIG. 8.3a.-Curves of potential, gradient, space-charge den
sity, and velocity as a function of interelectrode distance in
a space-charge-saturated plane diode, linear scales.

three-halves power of the voltage but the effect of the electrode dimen
sions is a little more complex.

The behavior of the cylindrical diode can be studied in just the same
way as the plane-electrode diode, but in this case it is necessary to use
cylindrical coordinates. Actually, this does not complicate the problem
too much, for the conditions of symmetry are such that, at any fixed
radial distance, conditions are the same regardless of angle. The problem
is thus still a one-dimensional one.

For this case Poisson's equation reduces to

1!!- (r dV) - _!!- (8.13)
r dr dr - Eo

The same energy equation as for the plane-electrode case holds,

%mv2 = eV (8.2)
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Current density at any radial distance r is given by

J(r) = pv (8.14)

Since the current density varies ,vith radial distance, it is more convenient
to express the space-charge density in terms of total current per unit
length of axis.

I1 = 2nrrJ(r) (8.1rj)

= 2nrrpv (8.16)

,vhere I is the total current passing at right angles through an imaginary
cylinder of radius r and length l.
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0.2

Expressing the right side of Eq. (8.13) in terms of I and V from Eqs.
(8.2) and (8.16),

(8.17)
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which lfiay also be written as

175

(8.18)d2V + 1 dV _ J ~m
dr 2 r dr - ~ 2eV

An approximate solution of Eq. (8.18) can be obtained by observing
that for large values of r the second term of the left member of the equa
tion is negligible. If this term is dropped, the resulting equation is the
same as Eq. (8.4) for the plane-electrode case so that the solution for
large values of r would be expected to be the same in both cases. Thus

J = 2.335 X 10-6V~2

r2

or

amperes per unit area (8.19)

I 2?r X 2.335 X 10-6V~i

1 = r amperes per unit length of axis (8.20)

These approximate equations hold ,vithin 10 per cent for values of r
greater than ten times the cathode radius.

A more exact solution is obtained by assuming that the expression for
current is of the form

(8.21)

(8.23)

where {32 is a function of the ratio of the radius at any point to the cathode
radius.! Substituting Eq. (8.21) into Eq. (8.17) gives

3{3r2 d
2
/j + r2 (df3)2 + 7fJr dfJ + fJ2 - 1 = 0 (8.22)

dr 2 dr dT

This can be simplified slightly by letting u = In (~} a logical substitu

tion because the space-charge-free potential is expressible in this form.
With this change of variable,

3~ d2

f3 + (d f3)2 + 4fJ dfJ + fJ2 - 1 = 0
du2 du du

This may be solved by series, the solution being

2u2 11u3 47u4

{3 = u - 5 + 120 - 3 300 +,

This expression is valid for either an internal or an external cathode.

1 LANGMUIR, op. cit.

(8.24)
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Values of {32 have been calculated by Langmuir by means of this series
and other equivalent expressions which are more convenient for large
values of u. In Table V are tabulated the values of /32 and in Fig. 8.4

is shown a curve of {32 as a function of!-. It is seen that for ratios of :!
T c r~

greater than 7 the value of {32 differs from 1 by less than 10 per cent, thu~
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substantiating the approximate form of the equation for current, previ
ously given. In the chart of Fig. 8.5 is given the current per unit length
of axis for various voltages and various values of plate radius for the case
in which {32 has the value of 1. For other values of {32 the current obtained
from this chart must be divided by the value of {32 as obtained from Fig.
8.4.

In practical units the expression for current is

14.66 X lO-6V~2

r{32 amperes per unit length of axis (8.25)

Since the current per unit length of axis is a constant, for a constant
plate voltage, the variation of potential with radial distance T is given by

(8.26)

in which it must b~ recognized that ~2 is not a constant but a function of
the radial distance T. Velocity' of the electron is given by the square
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root of potential, and thus
(8.27)

From Eq. (8.16), space-charge density is the reciprocal of the product of
velocity and radial distance r,

(8.28)
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TABLE V

VALUES OF ~2 AS A FUNCTION OF ! AS GIVEN BY EQ. (8.24)
r c

(f32 applies where r > rc ; _(32 applies where r < rc)

r r c r rc
- or- {:l2 _{:l2 - or- {32 _{:l2
r c r rc r

1.00 0.0000 0.0000 3.8 0.6420 5.3795
1.01 0.00010 0.00010 4.0 0.6671 6.0601
1.02 0.00039 0.00040 4.2 0.6902 6.7705

1.04 0.00149 0.00159 4.4 0.7115 7.5096
1.06 0.00324 0.00356 4.6 0.7313 8.2763
1.08 0.00557 0.00630 4.8 0.7496 9.0696

1.10 0.00842 0.00980 5.0 0.7666 9.887
1.15 0.01747 0.02186 5.2 0.7825 10.733
1.20 0.02815 0.03849 5.4 0.7973 11.601

1.30 0.05589 0.08504 5.6 0.8111 12.493
1.40 0.08672 0.14856 5.8 0.8241 13.407
1.50 0.11934 0.2282 6.0 0.8362 14.343

1.60 0.1525 0.3233 6.5 0.8635 16.777
1.70 0.1854 0.4332 7.0 0.8870 19.337
1.80 0.2177 0.5572 7.5 0.9074 22.015

1.90 0.2491 0.6947 8.0 0.9253 24.805
2.0 0.2793 0.8454 8.5 0.9410 27.701
2.1 0.3083 1.0086 9.0 o 9548 30.698

2.2 0.3361 1.1840 9.i 0.9672 33.791
2.3 0.3626 1.3712 10.0 0.9782 36.976
2.4 0.3879 1.5697 12.0 1.0122 50.559

2.5 0.4121 1.7792 16.0 1.0513 81.203
2.6 0.4351 1.9995 20.0 1.0715 115.64
2.7 0.4571 2.2301 40.0 1.0946 327.01

2.8 0.4780 2.4708 80.0 1.0845 867.11
2.9 0.4980 2.7214 100.0 1.0782 1174.9
3.0 0.5170 2.9814 200.0 1.0562 2946.1

3.2 0.5526 3.5293 500.0 1.0307 9502.2
3.4 0.5851 4.1126 00 1.000 00

3.6 0.6148 4.7298

For small u
(32 = u 2 (1 - 0.8u + O.344u2 + ,. . . )

d{3~

du = 2u - 2.4u 2 + 1.374u3
- C.509u4 +

1"where u = In -,
r c
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Gradient of potential is given by the negative derivative of potentiali

-k
4

d(r{j2)

E = dr
(r{32) ~~ (8.29)

For radial distance r equal to Tc both the numerator and the denominator
of the expression for E are zero. Ho,vever, the numerator is a zero of
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FIG. 8.6a.-Curves of potential, gradient, space-charge density,
and velocity as a function of radial distance in a space-charge-

saturated cylindrical diode, (~) = 5.

100

higher order, as may be checked by referring to the series for {3, and there
fore the gradient is zero for r equal to r e• In plotting a curve of th~

gradient the derivative of r{32 must be evaluated numerically from ths
table of values of {32. Curves of V, E, v, and p for a typical cylindrical
triode are shown in Fig. 8.6 for t,vo ratios of plate to cathode radii.
Curves for other radii have forms similar to those shown. Although
not evident from the appearance of the curves, the potential profile
leaves the cathode with zero slope, having a considera"ble change of
slope in a short distance. This can also be seen from the series expan
sion of the expression for potential near the cathode, the first term of
which is

(8.30)
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From this it can also be seen that the gradient has the value of zero at
the cathode.

In all the foregoing it has been assumed that the cathode cylinder is
smaller than the plate cylinder. The formulas are also valid if the
cathode is the outer cylinder, though tubes are rarely built this way.
It might be thought that if the cathode were the outer cylinder a greater
current would flow for a given voltage than if it were the inner cylinder
because the same current would be distributed through a greater volume
where its velocity is lo,vest. Examination of the numerical values shows
that this is not so, however. When the cathode is the outer cylinder, the
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FIG. 8.6b.-Same as Fig. 8.6a, (;.) = 2.

functon {32 increases very rapidly as the ratio of plate to cathode radius
decreases. As a result, the current is actually less when the cathode is
the outer cylinder; for although the factor T in Eq. (8.21) is decreased,
the factor {32 has increased more than enough to offset this.

It is of interest to compare Eqs. (8.8) and (8.25) for the plane and
cylinder case. If Eq. (8.25) is divided by 2?rr, it then resembles Eq.
(8.8) except that x is replaced by r{3. When r is very large, {3 approaches
unity and the expressions become identical. When T is only slightly

larger than Te, {3 is approximately equal to In (T-) and hence to T - T
c
,

rc rc

with the result that the factor rf3 nearly equals r - Tc and the expres-
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(8.31)amperes

sions for current density again approach identity with x replaced by

r - Tc• This identity is expected for values of ~ near unit.y; for here
Tc

the electrode spacing is small compared ,vith the radii, and a plane struc
ture is approximated. The fact that Eqs. (8.8) and (8.25) are identical

for limiting values of the ratio !..- does not mean that they are nearly
Tc

equal for all intermediate values. For values of !- between 4 and 20
Tc

the value of current density as calculated from the plane-electrode
formula exceeds that obtained from the cylindrical-electrode formula
by nearly 20 per cent. This is the maximum discrepancy that can occur.

8.4. Space-charge Flow for Other Geometries. Spherical Electrodes.
The equations for space-charge flow of current can also be derived for
concentric spherical electrodes.! For this case it is found that the cur
rent varies as the three-halves power of potential and is inversely pro
portional to a dimensionless function of the ratio of plate and cathode
radius. The total current is given by

I = 29.34V% X 10-6
a 2

where V is the potential difference between the spherical electrodes in

volts and a is a function of u = In (~), given by

a = U - 0.3u2 + 0.075u3 - O.OO143u4 + O.00216u5 - (8.32)

This expression for a is valid whether the cathode is external or internal.
Values of a for the spherical case and of {3 for the cylindrical case are

equal within 2 per cent for values of ! between 0.65 and 1.35. For
Tc

values of ! less than 1, a differs not more than 10 per cent from the larger
Tc

value of {3. 2 For values of ! very nearly equal to 1 the current density
Tc

approaches that for plane electrodes.
The General Case. The observation that the current varies with the

three-halves power of potential for plane, cylindrical, and spherical
electrodes leads one to believe that this is the case for electrodes of any
shape. Actually this is so, but the conclusion must be examined care
fully, for the three cases enumerated are special cases in which the elec-

1 LANGMUIR, I., and K. T. COMPTON, Electrical Discharges in Gases, Part II,
Rev. Modern Phys., vol. 13, pp. 191-257, April, 1931.

2 See Appendix VII for values of a 2•
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trons move in straight lines perpendicular to the equipotential surfaces.
For other geometries this is not necessarily so. For electrodes of other
shapes the electrons ,viII in general cut across the lines of electric force
and move in curved paths.

The validity of the three-halves-po,ver law of potential can however
be sho'vn by a simple dimensional analysis of the basic equations from
\vhich the current la,vs were developed. These are Poisson's equations,

the energy equation
%mv 2 = eV

and the current-density expression

J = pV

(8.33)

(8.34)

(8.35)

In previous cases the quantities in the last equation above have been
treated as scalar quantities, but in the general case current density and
velocity must be treated as vector quantities because they do not neces

. sarily have the direction of the gradient of potential.
Consider now what happens if the potential is increased by a factor k.

mv2

If the electrons move in a curved path, their centrifugal force If'
where R is'the instantaneous radius of curvature, must equal the force
due to the component of the gradient of potential normal to the path,
eVn V. From Eq. (8.34) the centrifugal force ,vill have increased by a
factor Ie, and like"rise the gradient will have increased by the same factor,
so that the shape of the electron paths ,vill be unchanged. This is the
same conclusion that ,vas reached in the case of the space-charge-free
fields. Once this is established, the final conclusion follows immediately.
From Eq. (8.33) the space-charge density is increased by a factor k,
and from Eq. (8.34) the velocity is increased by a factor k~'l. Hence, by
Eq. (8.35), the current density is increased by a factor k~'l, and the gen
eral validity of the three-halves-po,ver law of potential for electrons
starting from rest is established.

It can also be sho,vn by the same type of reasoning that, if an elec
trode structure is enlarged by a factor n maintaining geometrical similarity
and voltages are kept unchanged, then if the current is space-charge
limited, the current is also unchanged. From Eq. (8.33) space-charge
density is decreased by a factor n 2, and hence current density is decreased
by a factor of n 2 from Eq. (8.35), velocity at corresponding points in the
original ~nd enlarged structure being the same. However, since the total
area over which the current density i~ summed is increased by a factor of
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n2, it is seen that the total current is unchanged if the voltages are
unchanged.

8.5. Current Law for Plane Triodes. It is found experimentally in
triodes that the total current released from the emitter is very nearly

proportional to the three-halves power of the equivalent voltage, Vg + Vp.

J.L
This is most readily ShO\Vll by plotting curves of constant space current,
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FIG. 8.7.-Current as a function of equivalent voltage in a
210 triode.

t.e., the sum of plate and grid current, against equivalent voltage on
logarithmic paper. All points and curves so plotted tend to fall on the
same straight line, which has a slope of nearly ~2' Slight departures from
the slope of % are sometimes encountered because of initial electron
velocity, the Schottky effect, and because of potential drop along the
emitter. The relation holds whether the grid is negative or positive even
though the space current in the first case is all plate current and in the
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second case is the sum of grid and plate current. This is in accord with
the reasoning presented in the previous section.

The correlation between the theory and experiment is sufficiently good
so that in general it is a very good approximation to write

(8.36)J = J p + J" = k (v" + :Py'
in which k is a constant to be determined later.

The equivalent voltage referred to here is the same as the equivalent
voltage encountered in the study of the space-charge-free potential dis
tributions in tubes. There it was found that the off-cathode gradient
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was a linear function of the equivalent voltage just as the cathode gradi
ent of the space-charge-free diode is directly proportional to the plate
potential. Here the space current depends upon the three-halves power
of the equivalent potential just as the saturated diode current is pro
portional to the three-halves power of the plate potential. This is
strictly true only when the space charge in the grid-plate region is
negligible. A curve showing how the space current varies with equivalent
voltage in a typical triode is given in Fig. 8.7.

The fact that the relative effectiveness of the plate and grid in con
trolling current flow is the same for a great range of current is shown by
plotting contours of constant space current against axes of grid and plate
voltage. Such a set of curves is shown in Fig. 8.8. It is seen that the
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1
curves are substantially straight lines whose slope by definition is

p
The constancy of the slope of these straight-line curves attests to the
constancy of the amplification factor. It will be observed that for very
small currents the slope decreases, indicating a lower amplification factor.
This is explained by the fact that the amplification factor of all parts of
the electrode structure is not the same, with the result that the parts
with the highest J.' cut off first, leaving current to pass through the parts
of lower J.L. Variations in the magnitude of the amplification factor,
which actually is an equivalent amplification factor of a number of areas
with slightly different factors connected in parallel, also account for
slight departures of the current
law from a strict three-halves +lp ,..--------------
power law.

Current Law in Terms of Elec
trode Dimensions. The coefficient
of the current law given in Eq.
(8.36) can be evalu'ated by fitting
the triode electrode potentials to
the diode law for a particular com
bination of potentials and then
assuming that the relation which
holds for this particular case holds +Jg
for all combinations by virtue of
the experimental observations.!

Consider a plane-electrode tri
ode, and imagine first that the

FIG. 8.9.-Potential distribution in a posi
grid is not present and that there

tive-grid triode with gri~ at its natural
is a space-charge-limited current potential.
flow from cathode to plate. Then
if the grid were inserted at a positive potential corresponding to that
which existed at its location before its insertion, its presence would not
disturb the existing potential distribution and would not change the
magnitude of the plate current. Since the equivalent voltage can now
be determined for a given current, the constant of Eq. (8.36) can be
evaluated. When this constant is known for one combination of poten
tials, our experimental observations show that it is the same for all com
binations of potentials and thus tha current law for triodes is determined
in terms of the electrode dimensions.

The distribution of potentials referred to above is shown in Fig. 8.9.
Here it is seen that the potential distribution from cathode to plate is a

1 FF,EMLIN, J. H., Calculation of Triode Constants, Elec. Commun., July, 1939.
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amperes per unit area (8.37)

four-thirds-power-Iaw curve as in the case of the diode. On this basis,
the relation between the current density, the diode plate potential V n,

and the cathode-plate distance is

J = KVp %
dcp

2

where K is 2.335 X 10-6• Let this be written in the form

J%dcp~
Vp=~ (8.38)

(8.39)

The grid is inserted with the potential that would exist in the diode at
the location of the grid plane as sho\vn in the figure. The relation for
current density, positive grid potential, and cathode-grid distance is

V = J%dcg%
IJ K73

But the experimental observation in keeping with theoretical con
siderations is that

J = k(Vg + :Py'
Substitutions from Eqs. (8.38) and (8.39) give

J= k(J%dcg~ +~)¥J
K

(8.40)

(8.41)

so that

(8.42)

or, numerically,

(8.43)

(8.44)
amperes per

unit area

k = 2.335 X 10-6

(dcg~i + d;~)%

As a result, the expression for current is

2.335 X 10-6 ( V g + Y:)%
J = dc/ [1 + ~ (~::Yir

This is the expression that has been sought and that has been the object
of the above development. It is seen to be of the same form as the expres-
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(8.45)

sion for the diode current density of Eq. (8.8). There is good experi
mental verification of Eq. (8.44).

It may also be seen that the space-charge-saturated:equivalent-diode
spacing of the triode is

[
1 (dcp)t3]~4

ds € = dco 1 +; d
co

A nomograph giving the space-charge-saturated equivalent-diode spacin~,

of a triode in terms of the cathode-grid distance, the cathode-plate dis·
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FIG. S.ID.-Nomographic chart of equivalent-diode spacing of a space-charge-satu
rated plane-electrode triode.

tance, and the amplification factor is given in Fig. 8.10. It should be
noted that the space-charge-saturated equivalent-diode spacing of a
triode given here is somewhat different from the space-charge-free
equivalent-diode spacing given in Eq. (7.53) of the chapter on Electro
static Field of a Triode. Each is slightly greater than the cathode
grid distance. For a p. of 10 and a ratio of cathode-plate to cathode-grid
spacing of 5 the value of diode spacing from Eq. (8.45) is only 6 per cent
greater than that from Eq. (7.53). For large values of J.L the difference
is even less. Various attempts have been made to devise expressions for
the triode current and mutual conductance in terms of the space-eharge-
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free equivalent-diode spacing, but all these are subject to an inescapable
error. l

8.6. Mutual Conductance of a Plane Triode. The mutual conduct
ance is easily obtained from the expression for current density of Eq.
(8.44). By definition,

amperes per volt
per unit area

aI (dIp)
gm = aVg = dVg Vp=k

Performing this operation on Eq. (8.44),

3.51 X 10-6 (Vg + .!ffy~
gm = dCg

2 [ 1 + ~ (~::)~]%

(8.46)

(8.47)

(8.48)
amperes per volt

per unit area

This can also be written in the form

2.64 X lO-4JH

gm = dcg~ [ 1 + ~ (~::)~]

As far as tube geometry is concerned, the mutual conductance of a
triode depends primarily upon the cathode-grid spacing. The smaller
the cathode-grid spacing, the larger the mutual conductance. The
mutual conductance also increases, though to a smaller extent, as the
ratio of cathode-plate to cathode-grid spacing is decreased and as
the amplification factor is increased.

It will be observed further that the mutual conductance increases as
both the equivalent voltage and the current are increased. A specifica
tion of mutual conductance is really meaningless unless the corresponding
voltages are also indicated. The variation of mutual conductance with
the one-third power of current is a general law that holds well for all
types of tubes, including pentodes as well as triodes.

8.7. Mutual Conductance of a Cylindrical Triode. The current law
and mutual conductance of cylindrical triodes are readily evaluated by
an analysis similar to that used for the plane-electrode triode. The
current is given by

(8.49)
amperes per
unit length

I_14.66 X 10-6 (Vg + y.;)¥J
7, - r:I J 1 + ! (r p{3c p2)%]=}2

rg~cg L ~ 2
J.l rgfJcg

~ WALKER, G. B., Theory of the Equivalent Diode, Wireless Engr., vol. 24, pp.
5-7, January, 1947.
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,,"here Tg and T p are grid and plate radii and the combination subscripts
indicate that {32 is to be determined by the ratio of the radii of the elec
trodes indicated by the subscripts.

The mutual conductance is

(8.50)
amperes per volt
per unit length

22.0 X 10-6 (Vg + Y;)'fi
gm = rg~Cg2 [1 + ; (~:~:::);ir

8.8. Effect of Filameutary Emitters. When tubes have filaments
instead of solid cathodes, a number of effects contribute to making the

100so0.2 0.5 1.0 2 5 10 20
lp/lf

FIG. 8.Il.-Filament voltage-drop emission correction factor.

J J I I ~
~

-~~~
~~

~ .....

........v

/
V~

- 1Jf t V I ==Gl Vp312FfVp!Tf)~~
I

~)I
amperes

V/

./
V

~
~

o
0.1

0.2

0.8

1.0

0.6
F(Vpft!J

0.4

behavior different from that of tubes ,vith solid cathodes. Foremost
among these is the voltage drop along the filament, ,vhich may cause
considerable divergence from the simple three-halves po,ver of current
with voltage. If the plate current is returned to the negative filament
lead, the current is at all t.imes less than that for a unipotential cathode
but becomes nearly equal to that value for large values of the ratio of
plate to filament voltage. The ratio of the current ,vithout to that \vith a
unipotential filament is shown in Fig. 8.11. This is essentially a cor
rection factor for the fact that the filament potential is not uniform.
The ratio of currents is 0.4 for a plate- to filament-voltage ratio of 1,
dropping linearly to 0 with this ratio for plate voltages less than the
filament voltage. When the plate voltage exceeds the filament voltage
by more than a factor of 15, the current ratio is ,vithin 5 per cent of unity.

The above results are arrived at by integrating the emission effect
along the filament, taking into account the different potential differences
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to the plate at each point. Every element of length of the filament
contributes a current

dI = 14.66 X 10-6rV(x)1% dx (8.51)
rp {32

which may be written more simply as

dI' = G[V(x)P~ dx (8.52)

in which G is the so-called "perveance" of the tube. The perveance
is simply the coefficient of the voltage factor in the Child-Langmuir la\v.
It contains the geometrical factors of the tube and has dimensions of
current per unit length per volt*.

It is necessary to introduce the potential difference between the fila
ment and plate as a function of distance along the filament. This is

(8.53)

(8.54)

where Vp is the plate potential relative to the negative filament lead, x
is the distance from the negative end of the filament, l is the length of
the filament, and V/ is the potential drop along the filament. With this
substitution, Eq. (8.52) must be integrated from 0 to l. The results of
this operation fall into two parts.

Case I. V p < VJ leads to

I = ~GVp% (~;) l.

Case II. V p > V, leads to

I = ~Gl [Vp % - (Vp - V,)%]
5 VJ

(8.55)

(8.57)

For purposes of computation Eq. (8.55) is best put in the form of the
series

I = GlVp~2 [1 _ 3V j + ~ (V1)2 +~ (V1)3 + · · .] (8.56)
4Vp 24 V p 192 V p

All the above equations for current can be put into the form

I = GlVp~2F (~;)

in which F (~;) is the current ratio plotted in Fig. 8.11.

Some difficulty is occasionally encountered in calculating currents



SPACE-CHARGE EFFECTS 191

in tubes with filaments and plane electrodes. Neither the plane- nor
the cylindrical-electrode formulas ,vill fit directly here. Experimentally
it is found that there is an equivalent filament area which may be
applied. This equivalent area is obtained by projecting the filament onto
the filament plane and surrounding it by a band t\vice as wide as the dis
tance from the filament to the nearest electrode. This equivalent area
may be used either to obtain current in diodes or to obtain current or
mutual conductance in triodes. The same concept may be applied to
helical filaments in cylindrical-electrode tubes.

8.9. Effect of Initial Electron Velocity. In all the foregoing analyses
it has been assumed that the electrons start with zero velocity from a
point of zero potential. This is not
quite correct because of the mecha- V,P

nism of electron emission. Actually,
electrons having zero velocity ,vould
never get started from a cathode in
the presence of space-charge satura
tion. The electrons come off from
the emitter ,vith a Maxwellian distri- V
bution of velocities ranging from zero
to infinity. The distribution is such
that 90 per cent of the electrons have
velocities below ~ volt at usual
cathode temperatures, and fewer and
fe\ver have successively higher OJ'' ~ -rm

velocities. ~·xm~ t
A good idea of what the actual X

FIG. 8.12.-Potential distribution in
potential distribution is ,vhen the a plane-electrode diode for the case of
initial velocities. are considered may uniform initial velocity of emission.
be obtained by assuming that all
electrons leave the cathode ,vith the same normal velocity. Because of
the initial velocity, the gradient at the cathode may and does become
negative, and the potential curve moves do,vn until it has a minimum
some,vhere close to the cathode at which the potential is negative and
corresponds to the velocity of emission. For this condition the electrons
are slo,ved do,vn until they all come to rest at the potential minimum.
From this point, ,vhich acts lik'e an ideal cathode and which is called a
"virtual" cathode, the electrons may start in either direction, either
being returned to the cathode or going to the plate.

For a condition of space-charge saturation the potential distribution
on either side of the virtual cathode will follow the four-thirds-power law.
The location of the potential minimum ,vill be determined by the fraction
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of the current that goes on to the plate. A typical potential distribution
is sho\vn in Fig. 8.12.

Let it be assumed that the fraction of the emitted current which
continues on to the plate is given by P. Then if the emitted current per
unit area is J e, the current to the right of the potential minimum is PJe
and that to the left is (2 - P)Je• The current to the left of the mini
mum is made up of the emitted current J e going in one direction and the
returning current (1 - P)Je going in the other. As far as the space
charge effects are concerned, the directions of these current components
are immaterial because the charge densities add regardless of sign.

The relation bet,veen current, potential, and distance to the right
of the minimum is given by

PJe = 2.335 X 10-6(V + V m)%
(x - Xm )2

amp~res per (8.58)
unIt area

where V is potential with cathode potential taken as zero, Vm is the
magnitude of the negative potential at the minimum, x is the distance
measured from the cathode, and Xm is the distance from the cathode to
the minimum.

Similarly the relation to the left of the minimum is

(2 _ P)J
e

= 2.335 X lO-BeVm + V)~2
(xm - X)2

amperes per
unit area

(8.59)

where V and Vm are magnitudes of potential. Equations (8.58) and
(8.59) give the potential distribution if the magnitude and the location
of the potential minimum and the fraction of the transmitted current are
known.

To determine the factors in terms of which Eqs. (8.58) and (8.59)
are expressed let these two equations be evaluated at the plate and
cathode, respectively. Then

and

PJ. = 2.335 X 1O-6(Vp ;- Vm)~
(xcp - x m )

(2 _ P)J. = 2.335 X 1~-6(Vm)J'
Xm

amperes per
unit area

amperes per
unit area

(8.60)

(8.61)

(8.62)

Taking the ratio of these t,vo expressions and solving for X m ,

X cp
X m = ----_...............-----,......--

1 + (~~ + 1y' (; - 1y~

from which the location of the potential minimum can be determined
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for any assumed fraction of transmitted current. The magnitude of the
potential at the minimum is known from the initial velocity.

The results of the above analysis are not exact because in the actual
case there is a distribution of velocities, with the result that the position
and magnitude of the potential minimum and also the fraction of the
transmitted current are uniquely determined from the potential and
cathode temperature. An exact analysis considering the velocity dis
tribution is given by Langmuir.! The exact expressions are quite
involved, but some approximate expressions which are accurate to ,vithin
about 2 per cent take the following form:

PJe = 2.335 X lO-6(Vp - V m)% [1 _ O.0247T~~] (8.63)
(xcp -Xm)2 (Vp-Vm)~~

where J e is emitted current per unit area
PJe is current per unit area passing potential minimum
V p is plate potential
Vm is magnitude of minimum potential relative to cathode
X cp is cathode-plate distance
X m is cathode-potential-minimum distance
T is cathode temperature, OK

The location of the potential minimum is given by

(
T )=M

Xm = O.0156(1,OOOJ)-~~ 1,000

The corresponding magnitude of potential minimum is

Vm = (5,g:O) loglo (;)

(8.64)

(8.65)

\vhere P is the fraction of the emitted current transmitted to the plate.
The exact relations for space-charge-saturated flow with initial

electron velocity are given by Langmuir in the form of the universal
curve I of Fig. 8.13. This curve gives potential as a function of distance
with the origin arbitrarily taken at the potential minimum. For com
parison there are also shown the potential-distribution curves of Eqs.
(8.63) and (8.8) as curves II and III, respectively. It is seen that the
actual potential distribution is considerably different from that of the
Child-Langmuir law beyond the potential minimum and is totally differ
ent from a four-thirds-power law to the left of the potential minimum
except in its immediate vicinity.

A study of the approximate relations given above and of the universal
potential-distribution curve reveals the following effects of initial velocity

1 LANGMUIR and COMPTON, op. cit., Part II. D. 24].
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upon space-charge flow: The larger the emitted current and the cathode
temperature, the greater the magnitude of the potential minimum. The
lower the cathode temperature and the larger the plate potential, the
closer the potential minimum a,pproaches the cathode and the lower it
becomes. The plate current considering initial velocity is larger than
that obtained from the Child-Langmuir law because the potential differ
ence between the virtual cathode at the potential minimum and the plate
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FIG. 8.13.-Universal diode potential-distribution curve including effect of Max
wellian distribution of emission velocity (Langmuir). (See discussion on page 193.)

is greater than the actual plate potential, because the distance from the
virtual cathode to the plate is less than the actual cathode-plate distance,
and because the electrons leave the virtual cathode with an average
velocity that is greater than zero.

The distance of the virtual cathode from the actual cathode may be
appreciable. For a cathode temperature of lOOOoK and a transmitted
current density of 1 rna per cm2, the distance from the cathode to the
virtual cathode is approximately 0.006 in. In modern close-spaced
electrode tubes, this distance is by no means inappreciable.

When the fraction of the emitted current transmitted beyond the
virtllal c3thode is not :known, it is necessary to solve Eqs. (8.63) to (8.65)



SP ACE-CHARGE EFFECTS 195

by trial to determine the transmitted current for a given electrode
spacing, plate potential, and cathode temperature.

8.10. Effect of Space Charge upon Transit Time in Diodes. In
general, the transit time in an electric field is given by the integral of the
reciprocal of velocity ,vith respect to distance.

!
X2 dXT= -

XI V
(8.66)

For the plane-electrode diode the transit time with and \vithout space
charge is easily determined. Wit.hout space charge the potential profile
is a straight line so that

x
Vex) = - V p

dcp
(8.67)

where Vex) is the potential at any distance x from the cathode, V p is
the plate potential, and dcp is the cathode-plate distance. The velocity
at any point, assuming zero initial velocity, is then given by

so that the transit time is

,vith the result that

v(x) = (d:J YJ

Vp

T = 2dcp

Vp

(8.68)

(8.69)

{8.70)

When space charge is present in the plane-electrode diode, then the
potential follows a four-thirds-power law so that

(
x )~~

V(x) = d
cp

V p

The velocity at any point is then given by

v(x) = (~J% Vp

so that the transit time is
d ~~ ld~P

T=~· x-%dx
Vp 0

,vith the result that

T = 3dcp

Vp

(8.71)

(8.72)

(8.73)

(8.74)
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This is seen to be of the same form as for the space-charge-free case,
the only difference being that the time is 50 per cent greater.

For the cylindrical-diode case in the absence of space charge the
potential profile is a logarithmic function.

In (!.-)
V = __T_c V

In (~:) p

(8.75)

where r is the radial distance to any point and Tc and Tp are cathode and
plate radius, respectively. The velocity at any point is

v=

The transit time for this case is

In (~)
---v
In (~) p

(8.76)

if the substitution

T = ~l~ fr. dr

Vp ire ~-(T)In -
Tc

U = In (~)

(8.77)

(8.78)

be made, then the transit time is

(8.79)

This is now in a form ,vhich can readily be evaluated by series integration
and in ,vhich it is apparent that the integral is not infinite. The results
may be expressed in the form

T= ~B(~)
Vp rc

(8.80)

where d is the distance between plate and cathode and B (~) is a

function of the ratio of plate to cathode radius given in Fig. 8.14. It
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is seen that when the cathode is inside the transit time is less than that
in the plane-electrode case for the same distance and potential.

When there is space charge present in the cylindrical diode, the
potential profile is given by

V = (rfJrc22)~3 V p (8.81)
rp{3cp

where r is the radius to any point and {32 is the function given in Fig. 8.4,
the subscripts indicating the distances determining the ratio for which
the function is evaluated. The velocity is

The integral for the transit time is now

T = (r p{3cp2)lh fr (rfJrc2)-~ dr
Vp Te

If again the substitution of Eq. (8.78) be made,

T = (rp{lcp2)~c~ t n (~) ( E" )~du
Vp } 0 \fire

(8.82)

(8.83)

(8.84)

This is readily evaluated numerically for small values of!:..-. For large
Tc

values of ! the form
Tc

(8.85)

is more suitable for computation. The results of the computation can
be put into the form 1

T =!!A (rp
)

Vp Tc
(8.86)

in which the function A (~:) is that shown in Fig. 8.14. In this figure

it is seen that in the cylindrical diode with space charge and an internal
cathode the transit time is less than for the corresponding plane electrode
but more than for the same case not space-charge-limited. In the

1 FERRIS, W. R., Input Resistance of Vacuum Tubes as Ultra-high-frequency
Amplifiers, Proc. I.R.E., vol. 24, pp. 82-107, January, 1936.
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The parallel-plane

curves of Fig. 8.14 are also included the values for cylindrical diodes
with the cathode outside. These are seen to have larger transit times
than the plane-electrode diode, ,vhich in turn has larger transit times
than the cylindrical diode ,vith the cathode inside.

8.11. Summary. The primary effect of space charge in a tube is to
make the transmitted current follo,v a three-halves-po\ver la,v of plate
voltage. In addition, it makes the plate current virtually independent
of the filament voltage. Modern tubes are designed so that the emission
at rated voltages is more than sufficient to supply the current required
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FIG, 8.14.-Transit-time curves of a cylindrical diode (Ferris).
case is given by rp/rc = 1.

by the Child-Langmuir la,v. Under these conditions the emission is
said to be space-charge-limited. The nature of this saturation is shown
in Fig. 8.15. Here is sho,vn the variation of the plate current in a diode
,vith cathode heating po,ver for different voltages. If the cathode
emission is not very great, a departure from the three-halves-power
la,v of voltage occurs at relatively lo,v voltage. This occurs ,vhen the
plate is collecting all the current emitted from the cathode and gives
rise to what is known as temperature saturation. This effect is shown
in Fig. 8.16. Here is ShO'Vll the plate current in a diode as a function of
plate voltage for various cathode powers. For lo\v voltages the curve
follows the three-halves-power la\v, and then at some point determined
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by the cathode emission the current becomes nearly independent of the
plate voltage. The nature of the saturation in this case depends upon
the type of emitter. With tungsten as an emitter, the emission is very
nearly independent of plate voltage in the saturation range. With
thoriated tungsten and even more so ,~tith oxide emitters the emission
increases slowly vvith plate voltage in the saturation range. This is
because the emission depends upon the gradient at the cathode (Schottky
effect). In the case of oxide emitters the increasing gradient through the

.----------.... TPs

~--------- fP4

.I~----------- Ji,3

L-------------- TP2

~------------- Ti>1
COl thocle power

FIG. 8.15.-Diode plate current as a function of cathode
power.

emitter increases the liberation of emitting material in addition. In a
,vell-designed tube, temperature-saturation effects will not occur at
rated voltages.

In addition to the three-halves-po\ver la\v of voltage and the satura
tion effects mentioned above, space charge has the effect of reducing the
capacity bet,veen electrodes. The capacity bet,veen the cathode and
plate of a space-charge-saturated diode is three-fifths of that of the cold
diode. l Further, transit times are in general increased over the diode

1 LLEWELLYN" F. B.) "Electron Inertia Effects," p. 50, Cambridge, London, 1941.
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without space charge, being 50 per cent greater in the space-charge
saturated diode with plane electrodes.

Power relations are unchanged. Although the voltage and gradient
distribution are different in the presence of space charge and in its
absence, the velocity of an electron is always the same relative to the
potential, as is required by the energy equation (6.4). The power put
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FIG. 8.16.-Diode plate current as a function of plate voltage.

into the tube, as evidenced by the product of the voltage across it and
the current through it, appears in the form of heat at the plate. The
energy of impact of each electron is ~mv2, and the number of electrons

striking the plate per unit area per second is pv. The product of these
e

is recognized as JV per unit area.



CHAPTER 9

TRIODE CHARACTERISTICS

9.1. Control Action of the Grid. The triode in its commonest form
consists of an emitter surrounded by a grid, which in turn is surrounded
by a plate. The grid is usually a mesh of fine wires supported quite close
to the cathode. The plate is spaced several times as far a,vay. The entire
structure is supported in an evacuated glass or metal envelope with leads
to the electrodes coming out through glass on the bottom of the tube.

The outstanding feature of the triode is the ability of the grid to
control the flow of current to the plate without itself drawing any current.
As a result of this property, a small voltage on the grid is capable of
producing a large voltage drop in the plate circuit. Because of the fact
that the grid dra\vs no current, the triode, at all but very high frequencies,
is a voltage-operated device in that virtually no power is required to
operate the tube. The term "electric valve" for a vacuum tube is
particularly expressive because the grid has an electrical valve action.
Vacuum tubes do not really amplify power. Actually, the grid controls
the flow of power from the plate po\ver supply.

In the chapter on Electrostatic Field of a Triode it was shown that
both the plate and the grid electrodes were able to control the gradient
of potential in front of the cathode. It was also shown that the grid was
much more effective in so controlling the off-cathode gradient, in fact,
JJ times as effective. When a tube is conducting, the negative charge
of the electrons passing through the tube produces a space charge that
alters the potential distribution in the tube, particularly in the vicinity
of the cathode, but the control property of the grid is not impaired.
The potential distribution between the cathode and grid, for usual
combinations of potentials, is noW a curve that is concave upward
(for plane electrodes) instead of being nearly a straight line. The
positive plate potential reaches through the grid and causes the potential
on the cathode side of the grid to be positive. Electrons are drawn off
the cathode into this region of positive potential and are drawn to the
positive plate between the negative-grid wires from whose immediate
vicinity, however, they are strongly repelled. The negative control
grid easily regulates the degree of positiveness of the potential before
the cathode. This the grid is able to do primarily because of its greater
proximity to_the cathode.

201
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9.2. Current-voltage Characteristics of the Triode. The plate cur
rent in a triode depends upon both the plate and the grid voltage. It
also depends upon the filament voltage, but this is usually held at some
suitable fixed value. Hence it is usual to describe the current charac
teristics of a triode in terms of grid and plate potential alone.
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FIG. 9.1.-Plate-current-grid-voltage characteristics of a
triode.

Plate-current-Grid-voltage Characteristics. As mentioned in the previ
ous chapter, the space current in a triode is given approximately by

(9.1)

,vhere 18 is space current
I p is plate current
I g is gl id current
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G is perveance
Vo is grid voltage
V p is plate voltage

JL is amplification factor
a. is a constant, approximately ~2

When the grid voltage is negative, the entire space current goes to the
plate. Even when the grid is positive, the fraction of the space current
going to the grid is small so that Eq. (9.1) is a reasonably good approxima
tion for plate current under all conditions except the combination of
very small plate voltage and rather large positive grid voltage. An actual

200-------.......-......-ro---.,,.---r-----r-------r-----.......----.-------

zoo 2SO 300 350 450 550 600
PI"te voJts

FIG. 9.2.-Plate-current-plate-voltage characteristics of a triode.

plot of plate current as a function of grid voltage is sho,vn in Fig. 9.1.
The principal characteristics are quite evident and consistent ,vith
expectations. The plate current is seen to increase with both grid and
plate voltage but nlore rapidly ,vith gr.id voltage. Considering the varia
tion \vith grid voltage alone, the current increases slo,vly at first and then
more rapidly. In the region of negative grid voltages the curves for the
different plate voltages are seen to be of nearly the same shape but merely
displaced horizontally. This is consistent ,vith the form of Eq. (9.1).
For positive grid voltages the rate of increase of current with grid voltage
shows a slight decrease. This is due to two factors. (1) The grid is
beginning to draw a fraction of the total, or space, current. (2) There is
a tendency for the current to saturate at large plate voltages.
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Plate-current-Plate-voltage Characteristics.. A typical set of plate
current-plate-voltage characteristics of a triode is shown in Fig. 9.2.
The same general properties observed in the plate-current-grid-voltage
characteristics are observable here. For negative grid voltages, however,
the curves are not similar in this representation. This is because for
large negative grid voltages the tube is operating near cutoff and here
the amplification factor of the tube is appreciably lower than for grid
voltages near zero.. The change in shape of the curves for positive grid
voltages from concave upward to concave down,vard is due to the diver
sion of part of the space current to the grid. The actual space current
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FIG. 9.3.-Contours of constant plate current.

still has an upward curvature with plate voltage, but the fraction of
space current taken by the grid decreases as the plate voltage increases..

Contours of Constant Plate Current.. In Fig. 9.3 are shown contours
of constant plate current plotted along axes of plate voltage and grid
voltage. These curves show the combinations of grid and plate potential
for which the plate current is constant. Over a large part of their range
these contours are parallel straight lines. The significance of this is
that the amplification factor of the tube is very nearly constant. For
small values of plate voltage and positive grid voltages the curves are
curved strongly upward. This is due to the diversion of part of the space
current to the grid. If contours of ~onstant space current are plotted
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(one is shown dashed in the figure), they are found to be nearly straight
lines.

The Plate-current Surface. Inasmuch as plate current is a function
of two variables, it may be represented as a surface. The height of this
surface above a reference plane is given by thQ· magnitude of the plate
current. Position on the reference plane and on the corresponding
point on the surface above is given by the plate and grid voltage. A
sketch of the plate-current surface is shown in Fig. 9.4. The relation
of the surface to the three representations of plate current previously
given is evident from the figure. The plate-current~grid-voltagecurves
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FIG. 9.4.-The plate-current surface.

are the intersections of planes parallel to the plate-current and grid
voltage axes with the surface.

Only a part of the surface is shown, to avoid confusion due to too many
lines. The surface becomes a horizontal plateau for large values of
current due to voltage saturation, i.e., insufficient emission. Since there
can be no plate current for negative plate voltages, the surface turns a
corner as it approaches zero values of plate voltage.

9.3l Definition of Triode Constants. Amplification Fact()r. Although.
the characteristics of a triode are completely specified only by a set of
voltage-current curves, an index of the tube's operation is ordinarily
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(9.2)

given in terms of the so-called tube '~constants." These so-called con
stants suffice to describe the operation of a tube in the vicinity of a given
set of electrode potentials. The three so-called tube constants are the
amplification factor, the mutual conductance, and the plate resistance.

The amplification factor is a function of the electrode geometry and
has already been given in terms of the dimensions. It has previously been
given for a cold tube as the relative effectiveness of the plate and grid
potentials in controlling the off-cathode gradient of potentiaL Another
definition and the one generally accepted is that amplification factor
is the relative effectiveness of the plate and grid potentials in controlling the
plate current. Mathematically this is given by

alp

aVg (dVp
)

J.L = - alp' == - dVg I
p

CODst

avp

If a tube is conducting current under a given condition of potentials and
the plate voltage is then increased by a small amount, the plate current
\vill increase by a small amount. If then the grid voltage is made more
negative by the proper amount, the current will be restored to its original
value. The limit of the ratio of the change in plate voltage to the change
in grid voltage necessary to keep the plate current constant as these
changes are made vanishingly small is the amplification factor of the
tube. This is the significance of Eq. (9.2). The amplification factor of a
tube whether a triode or multielectrode tube is al,vays taken with respect
to the control-grid voltage unless otherwise specified. In triodes the
amplification factor is a measure of the voltage-amplifying capabilities
of the tube. In multielectrode tubes it has no great significance and is
usually not even listed. Amplification factor is a dimensionless constant.
Practical values of amplification factor run from 2.5 to 200 in ordinary
triodes.

Mutual Conductance. The mutual conductance (sometimes called
the "transconductance") of a triode has already been referred to in the
chapter on Space-charge Effects. The mutual conductance of a tube is
the rate of change of plate current with control-grid voltage. Mathematically
this is given by

G - alp _ (dIp)
m - aVg - dVg Vpconst

(9.3)

An increase in the grid voltage of a tube effects an increase in the plate
current. The limit of the ratio of the changes as the change in grid
voltage is made vanishingly small is the mutual conductance. It will
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(9.4)

be remembered that the mutual conductance of a triode is directly
proportional to the square root of the equivalent voltage of the tube.
It is also proportional to the cube root of the space current. As the
name implies, the dimensions of this constant are those of conductance.
Mutual conductance is usually expressed in units of micromhos or micro
amperes per volt. Practical values of mutual conductance are bet\veen
100 and 10,000 micromhos.

Plate Resistance. Another tube constant that is commonly used is
the plate resistance, also known as the "variational plate resistance"
or the "dynamic plate resistance." The plate resistance of a tube is
the reciprocal of the rate of change of plate current with plate voltage.
Mathematically it is given by

R- 1 _ avp _ (dVp )

- alp - alp - dIp V"const

avp

The plate resistance of a tube is the a-c resistance of the plate circuit
to a small alternating voltage superimposed upon the direct voltage.
The dimensions of this constant are those of resistance, and the magni
tude is usually expressed in ohms. The plate resistance of a triode may
vary from 1,000 to 50,000 ohms. A typical value is of the order of
5,000 ohms.

Relation between Tube Constants. The three tube constants express
relations bet\veen the quantities that determine triode operation, viz.,
plate current, plate voltage, and grid voltage. Since the three constants
are expressed in terms of only three variables, it is expected that there
is a relation between them. This is the case. If plate and grid voltage
are changed by small amounts, the corresponding change in plate current
is

(9.5)

or

If the change in plate current is held to zero, then

GmR p = - (dVp
) = J.L

dVo I p cons~

(9.6)

(9.7)

This relation, viz., that the product of the mutual conductance and the
plate resistance is equal to the amplification factor, holds exactly for any
tube for any combination of electrode potentials.
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Variation of Tube "Constants." The rather paradoxical heading
of this subsection is justified by the fact that the so-called tube constants
are not constants at all except approximately so in the vicinity of some
operating condition. Actually, the constants may vary considerably
over the entire range of voltages and currents in a tube. Of the so-called
tube constants, the amplification factor varies the least. This is because
it is basically dependent upon the geometrical structure of the tube. If
the tube were perfect in that there were no end effects and no asymmetries
and if no other electrode but the plate drew current, the amplification
factor would not vary at alL
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FIG. 9.5.-Contours of constant amplification factor of a triode.

From the definition of amplification factor it is seen that it is given
by the negative reciprocal of the slope of the contours of constant plate
current in Fig. 9.3. Inspection of the plate-current contours ,vith this
in mind reveals that for the most part the amplification factor is fairly
constant. It tends to be some\vhat low in the vicinity of very low plate
currents and even more so in the vicinity of very low plate voltages.
A better idea of the nature of the variation of the amplification factor is
given in Fig. 9.5, in which there are sho,vn contours of constant amplifica
tion factor superimposed upon the plate-current-grid-voltage curves of
a triode. 1 The amplification factor is seen to be fairly constant over the
entire working range of the tube. Variations in magnitude do not exceed

1 TERMAN, F. E., and A. L. COOK, Variation in the Amplification Factor of Triodes~
Proc. I.R.E., vol. 18, pp. 1044-1047, Junp, 1930
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15 per cent of the mean value. The drop in amplification factor near
cutoff is due to end effects in the tube. Because of stray electrostatic
fields near the edges of the electrodes, these edges constitute a region
of low amplification factor. Thus the actual tube consists of a large
electrode area of constant mu in parallel with a small area of much smaller
mu. As cutoff is approached, the lo\v-mu portion of the tube cuts off
last, giving the effect of a lower amplification factor. The reason why
the amplification factor is lower for low plate v·oltages in the positive
grid region is that here the grid takes a very large portion of the space
current. Since, as will be shown later in this chapter, the fraction of the
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FIG. 9.6.-Variation with plate current of Gm1 Rp ,

and p. of a Type 6F6 as triode.

space current going to the plate increases with plate voltage, a smaller
increase in plate voltage relative to a decrease in grid voltage is needed
to maintain the plate current constant when the grid voltage is positive
than when it is not. This means that the amplification factor is lower
for the conditions stated above.

From the definition, mutual conductance is seen to be equal to
the slope of the plate-current-grid-voltage curves. Reference to these
curves confirms that the mutual conductance is an increasing function
of plate current in the region of negative grid voltages.

The mutual conductance of a triode has been shown in the chanter
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on Space-charge Effects to increase with the equivalent voltage and with
the plate current. The nature of the variation is shown in Fig. 9.6.
The variation is quite in accord with expectations as may be shown by
plotting the variation of mutual conductance with plate current on
logarithmic paper. Such a plot is given in Fig. 9.7 for the same tube.
Here it is seen that, since the curve of mutual conductance as a function
of plate current is nearly a straight line with a slope of one-third, the
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mutual conductance follo\vs very closely a one-third-power law of varia
tion ,vith plate current as ,vas predicted in Eq. (8.48). The correspond
ence between the predicted and actual behavior is best at high currents.
At lo,v currents the variation departs some\vhat from the one-third
power law because of the reduction in amplification factor.

Since the product of the mutual conductance and the plate resistance
is equal to the amplification factor and since the amplification is almost
constant, the plate resistance may be expected to vary with plate current
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in a fashion reciprocal to that in which the mutual conductance does.
This is seen to be the case in Fig. 9.6. Examining the variation more
critically, Fig. 9.7 sho\vs that the plate resistance varies nearly as
the negative one-third power of plate current. The plate resistance
is the reciprocal of the slope of the plate-current-plate-voltage charac
teristics of a tube. Reference to Fig. 9.2 sho\vs that the plate resistance
decreases with increasing plate current in the negative-grid region.
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FIG. 9.8.-Constants of typical triodes.
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For positive grid voltage the plate resistance may increase again. The
plate resistance is lo\vest at high currents and low plate voltages.

The total range of all the tube constants within a single tube may be
c8nsiderable. The amplification factor may vary over a range of 20
per cent. The plate resistance and the mutual conductance may vary
over a range of three to one. The range of values of the constants
encountered from triode to triode is even more considerable.. In Fig.
9.8 are shown the tube constants for conditions of recommended opera-
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tion of a number of triodes. The representation is such that the location
of the point corresponding to each tube gives the three tube constants.
High amplification factors, of the order of 100 or so, may be obtained,
but at the expense of a low mutual conductance and a correspondingly
high plate resistance.

9.4. Effective Tube Constants of Combinations of Tubes. It is of
interest to consider what the effective tube constants are when two or
more tubes are connected in parallel. Consider first the case of identical
tubes connected in parallel. The effect of this is to double the mutual
conductance, halve the plate resistance, and leave the amplification factor
unchanged. This is logical, for \vith t\VO tubes contributing current
an increase in grid voltage produces t,vice as much of an increase in plate
current as does a single tube. This explains the doubling of the mutuaI
conductance value. Since the variations in plate current for a given
change in plate voltage are twice as great as for a single tube, the plate
resistance is half as great. The amplification factor is unchanged because
the product of mutual conductance and plate resistance is the same as
for a single tube.

If tubes ,vith different characteristics are connected in parallel, the
combination characteristics are still readily determined. The effective
mutual conductance is simply the sum of the individual mutual con
ductances since the plate currents add directly.

GmeQuiv = Gmi + Gm2 + · · · + Gmn (9.8)

The equivalent plate resistance is obtained by adding the individual
plate resistances as one adds resistances in parallel.

(9.9)

(9.10)

In other words, the equivalent plate conductance, reciprocal of plate
resistance, is the sum of the individual plate conductances.

The equivalent amplification factor is given by the product of the
equivalent mutual conductance and the equivalent plate resistance as
given by Eqs. (9.8) and (9~9). For the special case of two tubes in
parallel the expression for the equivalent amplification factor r~duces to

]J,!R p2 + J.L 2Rp )
J.Leq. =

WV Rp1 + R p2

The equivalent amplification factor of tubes in parallel may be higher
or lower than one of the individual values but will lie within the extreme
values. The equivalent amplification factor will generally decrease as
the grid is made lllore negative. This is because the high-rou tubes
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will cut off first, leaving the low-mu tubes to carry current alone. The
a~tion may be illustrated in the case of two tubes by studying the rate
of change of the equivalent rou with respect to grid voltage. Holding
the individual mu's constant in Eq. (9.10),
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(9.11)
OJLeqwv _ (P2 - Pl)(Rp2)2~ (~)
aVa (R p1 + R p2 )2

The nature of the rate of change of the equivalent mu with respect to
grid voltage is, assuming P,2 > JLl, determined only by the sign of

~ (RPl). If, further, the mutual conductances of tubes are the
dV" Rp2

same, then the slope of RRpl will be positive. As a result, the equiva
p2

lent amplification factor will increase as grid voltage is increased.
The above type of analysis may be extended to the case of more

tubes in parallel. It may also be extended to tubes in which the amplifi
cation factor is not constant along the cathode surface. Tubes having
grids wound with a variable pitch are often used to obtain an amplifica
tion factor that decreases "rith increasing bias. Such tubes are exten
sively used in r-f amplifiers for automatic volume control. l Such tubes,
also known as "remote-cutoff tubes" or "supercontrol tubes," have the
characteristics of a low-mu tube at low plate currents and of a high-mu
tube at large currents.

Such tubes have a tremendous variation of mutual conductance as
well as the variation in amplification factor. This large variation results
from the combination of the normal increase in mutual conductance \vith
current and the increase in amplification factor with equivalent voltage.
In Fig. 9.9 are compared the plate-current-plate-voltage characteristics
of triodes which are identical except for the fact that one has a constant
pitch grid, whereas the other has a variable-pitch grid. The reason for
the designation "remote cutoff" as contrasted with "sharp cutoff"
is apparent.

9.6. Electron Paths. In the previous discussion, tube characteristics
have been studied without reference to the electron paths. This has
been possible because from space-charge considerations it is possible to
determine the number of electrons transmitted past the virtual cathode
in front of the actual cathode. For negative grid voltages, all the
electrons leaving the cathode will be transmitted to the plate. For
positive grid voltages, however, part of the emitted current is intercepted
by the grid, and here the actual electron paths are of interest. Electron
paths are also of interest in multielectrode tubes, \vhere they have a
considerable part in determining the tube characteristics. 2

1 BALLANTINE, STUART, and H. A. SNOW, Reduction of Distortion and Cross-talk
in Radio Receivers by Means of Variable-mn Tetrodes, Proc. I.R.E., vol. 18, pp. 2102
2127, December, 1930.

2 THOMPSON, A. C., Electron Beams and Their Application in Low Voltage Devices,
Pro~. I.R.E., vol. 24, pp. 1276-1297, October, 1936.
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In Fig. 9.10 are shown electron paths in a triode operating with a
negative grid. These curves ,vere obtained by photographing the motion
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FIG. 9.10.-Electron paths in a negative-grid triode (Kleynen).

(d)

of small balls rolled upon a suitably deformed elastic membrane. Such
a model of potential takes no account of space-charge effects. It may
be expected that in this case the presence or absence of space ch~rg~ will
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make no great difference in the electron paths. The space charge is
most pronounced close to the cathode. Here the gradient of potential
is normal to the cathode, and the electrons will move in straight lines
away from it, it being assumed that it is plane. Deflecting components
of field are not encountered by the electron until it approaches the grid
plane. Here, however, the velocity of electrons passing midway between

Jg 10
Jp=y

h.

a.

FIG. 9.11.-Electron paths in

the grid ,vires ,viII be considerable and the space-charge effects will be
less. In 'contr&r~t, 'electrons approaching a grid wire directly and there
turned back "ill be most affected by the space charge because the
velocity ,viII be lo\v near the ,vires.

"The successive parts of Fig. 9.10 show the effect of making the grid
more and more negative until cutoff is reached. The sidewise deflecting
forces become greater as the grid is made more negative until some of the
~lectrons ar~. turned back, Up to that condition the ele(:trons are passed
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through the grid wires in a bunch that is focused beyond the grId plane.
Coupled with the condition of more electrons being turned back as the
grid voltage becomes more negative is the fact that fewer electrons get
by the virtual cathode. Both factors contribute to the reduction in
current, though the latter predominates greatly.

When the control grid is positive, it may attract electrons. The
normal interception of current by the grid is roughly proportional to the
projected area of the grid, though there is a strong dependence upon

a positive-grid triode (Lange).

the relative voltages of the grid and plate. In Fig. 9.11 are shown some
electron paths for a positive-grid triode. l These paths were calculated
by the use of the action function, as described in the chapter on La,vs of
Electron Motion. The solid contours are equipotentials, the broken-dash
contours are surfaces of constant action, and the electron paths are dra,vn

1 LANGE, H., Current Division in Triodes and Its Significance in the Determination
of Contact Potential, Zeit. Hochfrequenz, vol. 31, pp. 10~109, 133-140, 191-196,
1928.
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perpendicular to these. When the grid is positive but less than its
"natural potential," i.e., that which would give the diode potential
distribution in the tube, the action of the potential field causes these
electrons, which initially miss the grids, to converge beyond, as was
the case \vith the negative-grid triode. This situation is shown in part g
of Fig. 9.11. When the grid is more positive than its natural potential
and also more positive than the plate, as in a and b of Fig. 9.11, the
potential field has a divergent action and the electrons are pulled into
the grid wires. In a of Fig. 9.11 is sho,vn the case of a positive grid
with a plate at zero potential. Electrons that missed the grid initially
will just barely graze the plate and then be pulled back to\vard the posi
tive grids. Individual paths in this case will differ greatly, but in general
the electrons will oscillate around the grid ,vires a fe\v times before finally
falling into them. This is the action encountered in a Barkhausen-Kurz
oscillator.

9.6. Grid Current. Voltage amplifiers are operated ,vith negative
grid voltages, which means that grid current cannot flow. Power
amplifiers of the Class Band C type are operated with the grid positive
over an appreciable portion of the cycle during \vhich grid current does flow.
The grid current that does flow determines the po\ver that is necessary
to drive such amplifiers, and thus the matter of grid current is one of
considerable importance.

Grid-current-Grid-voltage Characteristics. Qualitatively, the current
to the grid of a triode is expected to increase as the grid voltage increases.
This OCCtuS because a more positive grid attracts electrons more strongly.
Some typical grid-current-grid-voltage curves are sho\vn in Fig. 9.12.
These have the expected shape. The increase in grid current \vith grid
voltage is more rapid than is the case for plate current. The curves for
successively higher plate voltage fall below those for lo\ver plate voltages.
Thus in contrast to the grid-voltage variation, the grid current decreases
with increasing plate voltage at a fixed grid voltage. This is logical,
however; for as the plate is made more positive, the electrons are pulled
past the grid more rapidly. They thus move in straighter lines, and
therefore fewer of them are pulled into the grid. .The current charac
teristics in the presence of secondary emission may be greatly different
a,nd will be treated separately later.

Grid-current-Plate-voltage Characteristics. Eome typical grid-current
plate-voltage curves are shown in Fig. 9.13. For positive plate voltage
the primary grid current decreases \vith increasing plate voltages as just
noted. Curves for high positive grid voltage are sho\vn above those
for lower grid voltage. Grid current may flow when the plate voltage
is negative, though such an operating condition is rarely encountered
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in practice. For this condition all the emitted current is taken by the
grid. The grid current drops slightly as the negative plate voltage is
made more negative. This is because the space current itself is reduced
o\ving to the reduction in the equivalent voltage in the triode.

Constant-grid-current Contours. Contours of constant grid current
are sho,vn along ,vith contours of constant plate current in Fig. 9.3.
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FIG. 9.12.-Grid-current-grid-voltage characteristics of a
type 35T triode.
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Grid current flo\vs only when the grid is positive. The positive-grid
negative-plate quadrant is not shown because it is of little practical
value. In the absence of secondary emission the contours present an
orderly appearance. The contours follow no simple law as do the plate
current contours in the negative-grid region. The increase in grid
current \\rith grid voltage is much more rapid than the decrease with plate
voltage.
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The Grid-current Surface. Just as it was possible to draw a surface
for the plate current as a function of grid and plate voltage, so is it
possible to dra\v one for grid current. A sketch of such a surface is
sho\vn in Fig. 9.14. The previous representations of grid current will
be recognized as part of this picture. The grid-current-grid-voltage
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TYPICAL CHARACTERISTICS
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FIG. 9.13.-Grid-current-plate-voltage char
acteristics of a type 826 triode.

curves are the intersections of the grid-current surface with a plane
parallel to the grid-current and grid-voltage axes. The grid-current
plate-voltage curves are intersections of the surface with a plane parallel
to the grid-current and plate-voltage axes. The constant-grid-current
contours are intersections of the grid-current surface ,vith planes parallel
to the grid-voltage and plate-voltage axes.

It 1S possible to define constants to describe the grid-current action,
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-lp

but this has no great value. It is of interest to note a few relations,
however. The grid-current-plate-voltage transconductance is negative.
The equivalent amplification factor for the inverted triode, i.e., one whose
grid is positive and \vhose plate is negative, is the reciprocal of the normal
amplification factor of the tube.

Effect of Secondary Electrons. Secondary electrons are created
whenever an electrode is struck ,vith primary electrons that have been
accelerated through more than a fe\v volts. Triode characteristics are
not affected much by secondary electrons as long as the grid is negative,
for the secondary electrons that are formed at the plate are attracted
back into the plate because there is no electrode more positive for them
to go to. When the grid is positive, ho,vever, the secondary electrons
formed by primaries striking the grid usually have a more positive plate

+JP
FIG. 9.14.-The grid-current surface.

to go to. As a result, the net grid current becomes the difference bet\veen
the primary- and secondary-electron current. The magnitude of the
secondary-electron current may be sufficient to distort the primary
grid-current curves almost beyond recognition.

When both grid and plate potentials are positive, secondary electrons
are formed by primaries striking both. When the plate is more positive
than the grid, the secondary electrons from the grid will be attracted
to the plate but those formed at the plate will be attracted back into the
plate. When the grid is more positive than the plate, the situation is
reversed and secondaries from the plate will be attracted to the grid
but those created at the grid will be attracted back into the grid itself.
The result of this action upon the grid-current-grid-voltage charac
teristics is shown in Fig. 9.15. In this figure is shown a typical grid
current-grid-voltage curve in the presence of secondary emission
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compared with the primary-grid-current curve. For small grid voltages
very few secondaries are created, and hence the currents with and without
secondary emission are almost equaL As the grid voltage is increased,
more secondaries are created and attracted to the plate. The grid
current is therefore reduced by the amount of the secondary current to
the plate. The grid current may be reduced enough to become negative.
As the grid becomes more positive, more secondaries are likely to be
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FIG. 9.15.-Influence of secondary emission upon the grid-cur
rent-grid-voltage characteristics of a triode.

created but the gradient of potential driving them to the plate becomes
smaller, until finally it becomes negative when the grid potential exceeds
the plate potential. As this occurs, the primary grid current exceeds
the net grid current by less and less until ,vhen the grid potential and
plate potential are equal the net grid current is nearly equal to the primary
current. As the grid voltage is increased still further, the number of
secondary electrons created at the grid surface becomes still greater but
these electrons are confronted by a ne~ative gradient of potential on all
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sides and so are attracted back into the grid. N ow, how-ever, secondary
electrons liberated from the plate are confronted by a positive gradient
of potential that attracts them to the grid. The grid current is now
greater than the primary grid current.

An action similar to that described above shows itself on the grid
current-plate-voltage curves. When the plate is less positive than the
grid, secondary electrons from the plate are attracted to the grid and
hence the actual grid current is greater than the primary grid current
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FIG. 9.16.-Influence of secondary emission upon the grid-current
plate-voltage characteristics of a triode.

When the plate voltage is more positive than the grid voltage, secondary
electrons from the grid are attracted to the plate and the grid current is
less than the primary value. This action is shown in Fig. 9.16. Points
of equal grid and plate voltage are crossover points of net and primary
grid current. These points are marked by circles.

The effect of secondary emission upon the contours of constant grid
current may also be considerable, especially if the secondary emission
is great enough to make the grid current negative. In Fig. 9.17 are sho,vn
some constant-grid-current contours of a water-cooled tube with a high
degree of secondary emission. The effect of secondary emission is to
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raise all the large p0sitive-current contours. It is as though a wedge of
negative-current contours had been driven under the positive-current con
tours from the right. Contours of constant plate current are also
distorted by secondary emission, though to a lesser degree.
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FIG. 9.17.-Effect of secondary emission upon the constant-grid-current contours of
a triode.

9.7. Primary-grid-current Law. The complications introduced by
secondary emission make it very difficult to treat grid current analytically.
A considerable impression can, ho,vever, be made upon the subject
of primary grid current. The analytical treatment of primary grid
current is simplified by the observation made in Sec. 6.5 that, for a given
ratio of plate to grid voltage, the electron paths ,vithin the tube are not
altered by a change in the magnitude of these voltages. Since the
electron paths are not changed, the division of current between the plate
and grid is not changed and hence the ratio of plate to grid current should
be a function ofthe ratio ofplate voltage to grid voltage alone and be independent
of the magnitude of these voltages. Were it not for secondary emission
and some other effects such as the change in the position of the virtual
cathode, this ,vould be exactly true. Actually, the correspondence with
expectations is quite good, as is shown in Fig. 9.18, in which there are
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0.2

plotted CUi ves of the ratio of currents as a function of the ratio of volt
ages. The characteristics in this figure are for a small high-mu trans
mitting triode ,vith tantalum electrodes. Such a tube is relatively free
of secondary-emission effects. It is seen that the curves for different
potentials superimpose reasonably well. If more curves were given,
they would form a bundle within the limits of the curves shown.
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Examination of many tubes sho,vs their primary-current-division
characteristics to have the general form sho,vn in Fig. 9.18. On such
a log-log plot the curves are nearly straight lines \\9ith a slope of t above
a voltage ratio of 0.8 and ,vith a slope of 2 belo,v a voltage ratio of 0.8.
Accordingly the primary current division may be expressed by

I p = o~Vp for ~: > 0.8 (9.12)
I g V g

and
I p

1.3920 (~:Y for ~: < 0.8 (9.13)
19
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\vhere ais a constant kno\vn as the current-division factor l- 3 and defined
as the ratio of plate to grid current for equal positive grid and plate
voltages..

Since triodes are seldom operated \vith the plate less positive than
the grid the form of Eq. (9.12) ,vill be of more concern than that of Eq.
(9.13). The reason for the change of slope, and hence of exponent,
at the voltage ratio of 0.8 is that \vhereas all the electrons initially
missing the grid go to the plate \vhen the plate is more positive than the
grid some of these will he returned to the grid when the latter is the more
positive. This occurs because electrons that just barely miss the grid
initially are strongly deflected and hence have not a sufficiently large
component of velocity directed toward the plate to reach it, part of the
electron energy no\v being in the form of a crosswise component of
velocity. Thus, in addition to the grid intercepting a greater fraction of
the primary space current directly as the grid voltage is made more
positive relative to the plate, an increasingly greater fraction of the
current that initially misses the grid returns to it.

Current-division Factor. A check upon the validity of the empirical
Eq. (9.12) is given by an examination of the constancy of the coefficient
of proportionality o. This factor 0 is logically called the" current
division factor" since it measures the ratio of plate to grid current for
equal positive grid and plate voltage. It is a convenient reference
point because it refers to a condition that is easy to measure. To
measure the current-division factor it is necessary only to put current
meters in the grid and plate leads of a triode and then connect the leads
to a common voltage source and determine the ratio of currents. The
current-division factor is also a good reference figure because it cor
responds to the condition of peak current in typical Class C amplifier
operation. If the ratio of plate to grid current in a triode is measured
as a function of equal positive plate and grid voltages, variations of the
sort shown in Fig. 9.19 result. For all the triodes shown, the current
ratio rises sharply with voltage and then assumes a nearly constant value.
The change in the current ratio with low voltages is caused primarily
by the change in the position of the virtual cathode in front of the actual
cathode. At low voltages the virtual cathode is located a considerable
distance out from the actual cathode. As will be shown later, a small

1 Tank, F., Zur Kentniss der Vorgange in Elektrodenrohren, Jahr. draht. Tel. u.
Tel. vol. 20, p. 80, 1922.

2 See also LANGE, op. cit.
3 EVERITt', W. L., and KARL R. SPANGENBERG, Grid-current Flow as a Factor in

the Design of Vacuum·-tube Power Amplifiers, PrQc, I.R.E., vol. 26, pp. 612-639,
May, 1938.
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cathode-grid distance leads to a small current-division factor. As
the electrode voltages and correspondingly the current are increased, the
virtual cathode moves back to\vard the actual cathode, causing the
current ratio first to rise and then quickly to level off. The important
observation about Fig. 9.19 is that the ratio of plate to grid current for
equal grid and plate voltages is constant enough- to make it eligible for a
position as a fourth tube constant. The current-division factor in a
tube free of secondary emission is as constant as the mu of the tube.
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FIG. 9.19.-Plate-current-grid-current ratio as a function of equal plate and grid
voltage.

Even when a triode has considerable secondary emission, the meas
ured current ratio for equal positive grid and plate voltages is nearly
equal to the primary current ratio because the interchange of secondary
electrons between grid and plate is small when their voltages are equal.

Approximate Primary-grid-current Law. Since the total space
current in a posit~ve-grid triode is the sum of the grid and plate current,

(9.14)
this can be written

I = ~-
a 1 + I p

I(J

(9.15)
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Then, substituting the relation of Eq. (9.12),

I - Is
u-

1
+

0
rv;,

\}Yo

(9.16)

The space current itself is given by

I. = G(Vo + :P)" (9.17)
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FIG. 9.20.-Comparison of actual and theo
retical grid current.

,vhere G is the perveance and a. is a constant, approximately %. The
resulting expression for primary grid current is given by

_G(Vo + :p)"
I g - (9.18)

1 + 0 /Vp

\} Vg

An idea of the accuracy of this approximation is given by Fig. 9.20,
in which actual and theoretical grid-current curves are compared.
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(9.19)

The expression for primary plate current for positive grid voltages
corresponding to Eq. (9.18) is

G(Vg+ :p)"
I p = 1

1+-
o~
~~

Current-division-Jactor Formula. A formula for the current-division
factor may be developed by solving for the point of origin on the
cathode of a limiting electron that grazes the grid for a condition
of equal grid and plate voltages. 1 ,2 The distance between the points
of origin on the cathode of the t,vo limiting electrons that strike a grid ,vire
gives what may be called the "effective grid diameter." This is always
larger than the actual grid diameter by a matter of 5 to 50 per cent, in
typical cases. When the effective grid diameter or radius is known, the
current-division factor 6 is given by

~=_a__ l
2rgeff

(9.20)

where a is grid-wire spacing and rgeff is effective grid radius.
The effective grid radius may be solved for in terms of the sidewise

displacement of the electron grazing the edge of a grid wire. The
component of gradient accelerating the electron toward the grid plane is
virtually constant at the cathode value of

(9.21)

(9.22)

The component of gradient giving the electron its sidewise deflection is

qg sin e:y
)

where x and yare measured from a grid-wire center as in Fig. 7.17, qc
is given by Eq. (7.14a), and qg is given by Eq. (7. 14b). The sidewise
deflection of the grazing electron is very nearly that which is obtained

1 TELLEGEN, B. D. H., De Groote van cler Roosterstroom in een Triode, Phys'ica,
vol. 6, pp. 113-116, March, 1926.

2 SPANGENBERG, K. R., Current Division in Plane Electrode Triodes, Proc. I.R.E.,
vol. 28, pp. 226-236, May, 1940.
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(9.23)

by assuming that the sidewise force on the grazing electron is the same
as that which exists along a line starting on the cathode at a point
opposite the edge of a grid ,vire and passing tangent to the grid wire.
This assumed force is correct at the point of contact on the grid, at which
point the force is greatest.

Making the small-value approximation for x and taking y as To in
Eq. (9.22) above,

1? == q~Tg
11 2nO(x2 + rg

2)

(Note that this has the correct value when x == 0.)
Upon substituting the approximate values of Ex and E y from the

above into the acceleration equations (6.41) and (6.42), eliminating time,
and equating grid and plate voltage, the expression for the side\vise
displacement of the grazing electron is found to be

aJ.L rg I (4Ed ca)
Yo = 27r(J.L + 1) 2dca n r; (9.24)

The effective grid radius is equal to yo + rg. When the expression for
the effective grid radius is applied to Eq. (9.20), it is found that the
current-division factor is

o = a
ap, Tg I 4Edco + 2.....----:-------:---- n -- r

1r(J.L + 1) 2d~o To g

1 (9.25)

in which a = distance bet\veen grid \vires
J.L = amplification factor

f o = grid-wire radius
dey = cathode-grid distance

E = Napierian base, 2.718
The magnitude of the current-division factor is given by the nomographs
of Fig. 9.21 and 9.22. In Fig. 9.21 is a nomographic chart from \vhich
the effective grid radius is given in terms of the grid-\vire spacing, the
cathode-grid distance, and the amplification factor. This chart is read
by means of t\VO perpendicular lines ruled upon a transparent sheet.
The construction cross sho\vn on the chart gives the effective radius of a
type 210 tube. The nomograph of Fig. 9.22 is a graphical representation
of Eq. (9.20) and gives the current-division factor from the effective
grid-wire radius and grid-,vire spacing. Examination of Figs. 9.21
and 9.22 sho\vs that the current-division factor increases with both
grid-wire spacing and grid-cathode spacing. The current-division factor
a.lso increase~ with amplification factor~ but only slightly. Typical
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(9.26)

values of the effective grid-wire radius will be 105 to 150 per cent of the
actual grid-\vire radius.

Current-division Law in the Presence of Secondary Emission. When
the analysis that led to the current-division factor is generalized by
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FIG. 9.21.-Nomograph of effective grid radius.

allowing the grid and plate voltage to assume general values, the sidewise
deflection of the electron grazing the grid is found to be

_ aJ.L[ (dcg + dgp )V g - dco V p] r g I (4fdcu)YI - -- n -~

2n-dop(V p + V g ) 2dco r g

Equation (9.26) has been arrived at by solving for the sidewise displace
ment of the electrons grazing the grid as a function of electrode-voltage
ratio. The corresponding current ratio is then rea<lily determined. The



232 VACUUM TunES

electrode-current ratio is

(9.27)
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(9.28a)

Upon substituting the value of Yl from Eq. (9.26), the current ratio is

I p = a -1*

IQ 2laJL [ (dcQ + dQp
) - dCQ ~J D + r}

27rdQp (~: + JL) ~
* A somewhat more accurate formula has since been developed by J. H. L. Jonker

and B. D. H. Tellegen, Current to a Positive Grid in Electron Tubes, Philips Research
Reprints, vol. 1, pp. 13-32, October, 1945.
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or
I p _ LVg + MVp

I q - PVI1 + QVp

where L = radgpJL - ap.(dup + dcg)D - 27rdgpTgJl,

M = radgp - 27rdgpru + adcgDp.
P = a(dgp + dco)p. + 27rdgpTgP.

Q = adcfJDp. - 27rdgpTg

D = ~ In 4Edca
2dco Tg
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(9.28b)
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FIG. 9.23.-Primary-current division in a 45 triode.

A plot of Eq. (9.28a) in a typical case shows the curve to be concave
upward as in the dotted curve of Fig. 9.23. In such a plot, the slope
of the true current ratio is between % and % so that the assumption of a
one-half-power law when this curve is slightly modified by space-charge
and secondary-emission effects is a reasonable one.
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165431.5

30

To check the correctness of the above equation jn actual tubes it is
necessary to correct measured curves for the effect of secondary emis
sion, which is always present to a degree. This is done by an extension
of methods developed for screen-grid tubes. 1

The curves from which the deduction of the true primary distribution
are made are taken as follows: Filament emission is first reduced to the
point where the current is temperature-limited rather than space-charge-
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limited. The grid voltage is then set at some value, and the ratio of
plate to grid current is observed as a function of the ratio of plate to grid
voltage by varying the plate voltage onlYa The grid voltage is then set
at another positive value, and another similar run is made. The two
solid curves of Fig. 9.23 were made by this method.

Ber.ause of the various factors that have been held constant and
1 DE LA S_4.BLONIERE, C. J. L., Die Sekundaremission in Schrimgitterrohren,

Hochfreq. u. Audio., ,-,,:-1 41. pp. 195-202, June, 1933.
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relations between the various curl'ent components a number of relations
exist that must be borne in mind. Before summarizing these relations
the notation to be used must be indicated in detail. Let I p and I g be
total plate and grid current, respectively, including secondaries. Let
I pI and lol be those parts of the plate and grid currents which are du~ to
primary electrons, i.e., the primary plate and- grid currents. Let I p2

and I 0 2 be the currents corresponding to all the secondary electrons that
are knocked out of the plate and grid, respectively. This includes not
only those secondary electrons which succeed in getting from one elec
trode to another but also those which are knocked out of one electrode
and fall back into that same electrode. Let 19p be that fraction of lq2

which does succeed in getting from grid to plate. Similarly, let I PO be
that fraction of I p2 which is able to get from plate to grid. Obviously,
if the plate is much more positive than the grid, lop will be a large fraction
of I g2, while I PO will not exist as a component of I p2 because all the
secondary electrons knocked from the plate will be drawn back into the
strongly positive plate.

L 102 Th .. d·· f .et 8 = -/. e quantIty 8 IS a secon ary-emlsSlon actor measurIng
01

the ratio of the number of secondary to primary el~ctrons. Physical
studies have shown that s depends only upon the velocity of the striking
primary electrons for any given surface. Hence, along any curve such
as those in Fig. 9.24, s will be constant since each curve is taken with a
constant value of grid voltage.

Let p = lIp
1. This gives the division of primary current that from

01

theoretical considerations is a function of the ratio of plate to grid

voltage alene. Hence, for any particular value of ~:' p is a constant.

Let d = I p
• This is the ratio of plate to grid current, including the

I g

secondary-emission effects. The curves of Fig. 9.24 are curves of d

. t V pagalns -.
Vg

Let t = lop. This is a kind of transmission factor for secondary
I g2

~lectrons. It measures the fraction of secondaries liberated that succeeds
in getting to the plate. Some secondary electrons from the grid have
such a low velocity that they are unable to climb the small potential
hill between the grid and the plate. De 1a Sab10niere has assumed that

for any value of the abscissa ~P the value of t is constant. That is, for
o
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any value of ~: the same fraction of the secondary electrons knocked

from the grid succeeds in getting to the plate. This is perhaps the only
assumption which is questions.ble. The matter is complicated by the
velocity distribution of the secondary electrons, which changes as the
striking voltage of the primary electrons changes. For the assumption
to be strictly true the velocity-distribution curve of the secondary
electrons must expand uniformly as the striking potential of the primary
electrons increases. This is not strictly true but for small ranges of
primary-electron velocity is approximately so. In the curves of Fig.
9.24 the primary-electron velocities are 10 and 50 volts. It was not
found possible to get a good' check for velocities of 10 and 200 volts,
this being too great a range of primary velocities.

It will be noted further that the space current for each of the experi
mentally determined curves is approximately constant.

Consider the ratio
I p _ [pI + f gp

f o - 101 - I gp

Dividing both numerator and denominator by 101 there results

Ipi + 19p
I p _ I gi 19l

10 - 1 _ 19p
1':1

But

lop = lop I a2 = ts
101 192101

so that the above ratio of net currents can be written as

d = P + ts
1 - ts

Solving this for is,
d-p

is=d+l

(9.29)

(9.30)

(9.31)

(9.32)

(9.33)

Let the various curves of d against i; be numbered 1. 2, and so on,

as shownin Fig. 9.24. Let the various values of i; have letters correspond

ing to them. Thus the abscissa of i; = 2 might be lettered a, that

01 ~; = 3 might be lettered b, and so on. If we consider the four points
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formed by the intersection of the upper t,vo curves of Fig. 9.24 and any
two abscissas denoted by a and b, then it is possible to write four equa
tions of the form of that last given. These will be

and

do.1 - Pa
ta81 = d

a1
+ 1

t da2 - pa
0.82 = d

a2
+ 1

(9.34)

(9.35)

(9.37)

(9.36)

for the intersections of the curves 1 and 2 '\vith the abscissa a and

t - db! - Pb
1>81 - db! + 1

db2 - Pb
tb8 2 = d

b2
+ 1

for the other intersections. Since t and P are presumed constant for

any particular value of ;~, they are given only a lettered subscript.

Dividing the two pairs of equations and equating them gives

do.1 - Po. _ db! - Pb
do.2 - Po. - db2 - Pb

,vhich is the relation that has been sought.
Pb to give

(9.38)

This may be solved for

d d (do.1 - Po.)
bi - b2 d

a2
- po.

Pb = -l-_-(~d"""";'al---P-o.)-'-

do.2 - Po.

(9.39)

From this last equation it may be seen that if one point, Po., on the true
primary distribution curve is known, then points at any other abscissa
b may be found from a pair of curves giving the net current division in
the presence of secondary emission. The above treatment has been given
for the case of V p greater than Vg, but a similar treatment can be applied
\vhen this is not so. In this particular instance the primary-current
distribution that was taken as known was that corresponding to the
condition of the grid being at its ti natural potential" relative to the
plate. For this case, the electrons move in substantially parallel straight
lines from filament to grid and plate, and the ratio of plate to grid current
is determined by the ratio of intergrid to grid area. For the 45 tube
this ratio of currents is 14.3 "vhen the ratio of voltages is 2.81.



CHAPTER 10

TETRODES

10.1. Types of Tetrode. A tetrode, as its name implies, is a four
electrode tube. The four electrodes are invariably, in the order of their
arrangement, the cathode, the control grid, the screen grid, and the plate.
There are two types of tetrode. These are the so-called "screen-grid
tube" and the "beam-power tube."

The screen-grid tube was the successor to the triode and the prede
cessor of the pentode, though, as indicated in the chapter on Basic Tube
Types, it is now virtually obsolete and seldom used because of unfavorable
current-voltage characteristics. The ordinary screen-grid tube has a
fine control grid surrounding the emitter, which in turn is surrounded
by a coarser screen grid a considerably greater distance out. The screen
grid is in turn surrounded by a plate. The intended function of the screen
grid was to shield the control grid electrostatically from the plate and
so reduce the tendency toward oscillation that existed in r-f amplifiers.
The screen grid performed this function, but it also introduced some other
characteristics that ,vere not desirable. Specifically, it introduced
secondary emission, which distorts the current-voltage characteristics.

The beam-po,ver tube is a special tetrode with aligned control and
screen grids. It was the historical successor to the pentode. The
pentode was developed to eliminate the secondary-emission action that
appears in the screen-grid tube. The beam-power tube was later found
capable of doing the same thing without an extra grid if proper attention
were paid to grid alignment and to dimensioning.

10.2. Current-voltage Characteristics of the Screen-grid Tube. The
screen-grid tube is usually operated with its screen at a fixed direct
potential and by-passed with a large condenser to ground so that no
alternating components of potential appear on it. The screen grid acts
as a shield bet\veen the plate and control grid. Electrostatic lines from
the plate terminate for the most part on the screen grid. This electro
static behavior does not interfere with electronic action. An electron
stream of varying intensity can still pass between the screen-grid wires.

The current-voltage characteristics of the screen-grid tube are deter
mined by two principal effects that are at work. (1) The relative screen
~rid and plate potentials determine how the space current ,vill divide

238
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between these two electrodes. (2) The relative positiveness of plate and
screen grid determines ho,v secondary electrons will be interchanged
bet,veen these two electrodes. In general, the behavior with regard to
both factors is similar to that ,vhich exists in the positive-grid triode.

As far as space-current effects are concerned, the control grid and
screen grid have the principal influence. With respect to first-order
effects, it may be said that the screen grid plays the same role in the
screen-grid tube as the plate does in the triode. The plate has only a
very small influence in modifying space current in the screen-grid tube
because of the shielding effect of the screen grid. The space current is
given by

(10.1)

,vhere V 1 is control-grid potential
V 2 is screen-grid potential
G is perveance

V p is plate potential
}JtJg is equivalent amplification factor of the screen grid,

(dV2)
- dV 1 I pcon8~

Jlp is plate amplification factor, - (ddVvP)I
1 pconst

a is a constant, nearly J2
In this expression, Jlsg is considerably smaller than Jlp. The equivalent
screen-grid amplification factor may be calculated quite accurately from
the triode mu formulas by treating the screen grid as though it ,vere the
plate. The accuracy of this approximation decreases as the shielding
effect of the screen grid decreases. The plate amplification factor may
be calculated from some special formulas, which ,viII be developed subse
quently. It may be determined approximately by calculating a triode
amplification factor, considering the control grid as the cathode, the
screen grid as the control grid, and the ,plate as the plate, and then
multiplying this amplification factor by the screen-grid amplification
factor. This relation holds because the fictitious amplification factor
cited first above measures the screening effect of the screen grid upon the
control-grid plane just as the screen-grid amplification factor measures
the screening effect of the control grid upon the cathode. The product
of these two amplification factors, which are reciprocal screening factors,
gives the over-all amplification factor. Thus, if the screen-grid amplifica
tion factor were 20 and the triode amplification factor obtained by
considering the control grid as the cathode ,vere 10, the plate amplification
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factor would be approximately 200. If the cold cathode \vere at zero
potential and all the other electrodes \vere at the same positive potential,
then one-tVtrentieth of the electrostatic flux lines from the cathode would
penetrate the control grid into the space beyond (actually, the ratio would
be 1 in 21). Of the lines that passed through the control grid, one-tenth
would pass on to the plate, and the rest ,yould terminate on the screen
grid. The over-all screening effect ,vould be such that only 1 line would
reach the plate for every 200 that reached the control grid. The resulting
plate amplification factor is 200.

7
~/

6J1 I
/

Suppressor tied +0 screen /
/lip =150 volts

~.

rs/~=,so7
/~ $g /Ip

/

//
/

/1// ".

/
/

/ ~//~!h/ 1$// =100;7/ "

/ V v:/~/
/

/// ./

,/V V~
/~

/' :;::t;//;// ~

,,' / 7p...,//

V ./ lY V ~g=SOv1"1"

V I"

~ ~
-.--
~--.......;;; .-

14

o
-10 -q -8 -1 -6 -5 -4 -3 -2 -1 0

Grid voltOlge~ volts
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The plate-current-control-grid characteristics of the screen-grid
t-\\be are almost the same as the triode characteristics that result if the
~creen grid and plate are connected together. The only difference is
that a small part of the space current is taken by the screen grid. Some
typical plate-current and spac~-current characteristics as a function of
control-grid voltage are sho,vn in Fig. 10.1. Because of the usually high
value of the plate amplification factor the plate potential has only a
small effect upon the plate and space current compared ,vith the ,'3creen
grid potential. This in turn has much less influence than the control-grid
potential.
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PZate-current-Plate-voltage Characteristics of the Screen-grid Tube.
With a negative control-grid voltage and a positive screen-grid voltage,
the plate-current-plate-voltage characteristics of a screen-grid tube have
the form shown in Fig. 10.2. The shape of the plate-current curve
departs considerably from the shape of the primary plate....current curve
because of secondary emission. The probable shape of the primary
plate-current curve has been sketched for Vo = o. The primary plate
current is not readily measured directly. It is seen to be an increasing
fraction of the approximately constant space current Is. The division
of space current between screen grid and plate follows approximately
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the same law as does the division of the space current bet,veen grid and
plate in a triode. When the plate voltage is zero, the plate gets none
of tlle space current. As the plate is ma4e positive, it rapidly acquires
a major portion of the space current. When the plate is as positive as
the screen grid, it gets a slightly smaller fraction of the total space current
than the ratio of the area bet\veen the screen-grid ,vires to the total area
of the screen-grid plane. As the plate potential is made still more posi
tive, the plate acquires still more of the space current until at very large
voltages the plate is getting nearly all the space current.

The difference bet,veen the primary plate-current curves and the
actual plate-current curves is obviously due to secondary-emission
effects. The effects are the same as in the positive-grid triode. When
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the plate is less positive than the screen grid, secondary electrons liberated
at the plate surface are attracted to the screen grid, thus reducing the
plate current. This accounts for the pronounced dip in the plate-current
characteristic. When the plate potential is equal to the screen-grid
potential, the interchange of secondary electrons between plate and
screen grid nearly balances and the actual plate current is nearly equal
to the primary plate current. As the plate becomes more positive, it
collects secondary electrons that are liberated from the screen grid, and,
as a result, the actual plate current exceeds the primary plate current.
The variation of plate current with control-grid voltage follows the
high-mu-triode law.

Also shown in Fig. 10.2 are curves of space current as a function of
plate voltage. If the plate amplification factor of the tube were
extremely high, the space current would be completely independent of
plate voltage. As it is, the space current tends to be fairly constant.
Departures from constancy are observed, however, at zero plate potential
and at the plate potential equal to the screen potential. The changes
in the space current observed in these places are due to changes in the
space-charge condition around the screen-grid wires. "Then the plate
potential is negative, the electrons that initially miss the screen grid are
reflected back from the plate and in general will oscillate around the
wires a few times before being drawn in. The presence of these oscillating
electrons constitutes an addition to the space charge and depresses the
potential before the screen grid and even reaches back through the
control grid to reduce the emitted current. When the plate potential
becomes slightly positive, part of the electrons that initially miss the
screen grid are received by the plate. This means that the current
reflected back toward the screen grid is suddenly reduced, the space
charge around the screen grid is correspondingly reduced, as is also its
depressing effect upon the potential before the cathode, and as a result
the emitted current suddenly increases. The nature of the change in
the potential distribution within the screen-grid tube as the plate potential
is changed from negative to positive is sketched in Fig. 10.3. The dotted
lines in this figure sho"v potential profiles for a negative plate potential,
while the solid lines show potential profiles for a positive plate potential.
The manner in which the plate potential controls the off-cathode gradient
through the medium of the oscillating space charge about the screen
grid may also be seen.

When the plate potential becomes more positive than the screen-grid
potential, there is a change from a condition of partial reflection of
electrons from the plate to one of no reflection, for all electrons reach
the plate, no matter how strongly deflected by the screen grid. Here the
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space charge around the screen grid is again suddenly reduced, and the.
space current increases. Thus the space current is influenced most by
the condition of current transmission to the plate and is hardly affected
by secondary emission.
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FIG. lO.3.-Potential distributions within a
screen-grid tube for negative and positive
plate potentials.

Screen-current-Plate-voltage Characteristics of the Screen-grid Tube.
The screen-grid current is the difference between the space current and
the plate current in Fig. 10.2. This difference is plotted as screen current
in Fig. 10.4 as a function of plate voltage. The screen-current-plate
voltage curves are like the positive-grid-current-plate-voltage curves
of a triode. Exactly the same factors enter into its composition. The
primary distribution is such that the screen current decreases uniformly
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\vith increasing plate voltage exactly as is the case for the triode grid.
When the plate voltage is less positive than the screen-grid voltage,
the screen grid acquires current from the plate and hence rises above the
primary-current value. If the secondary elnission is sufficient, the net
screen-grid current ,yill rise \vith voltage until it falls as the plate potential
becomes more positive than the screen potential. When this happens,
the screen loses secondary electrons to the plate and as a result the net
screen-grid current drops below the primary value and may even go
negative in some cases.

General Characteristics of Screen-grid Tubes. Because of the distor
tions in the plate-current curves caused by secondary emission, the screen
grid tube has rather restricted~ranges of potentials in which it operates
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FIG. IO.4.-Screen-current-plate-voltage characteristics of a screen-grid tube.

satisfactorily. For very high plate potentials relative to the screen-grid
potential, the current characteristics are very uniform. The range of
uniform current characteristics is necessarily quite limited. The screen
grid potential must be relatively high to dra\v sufficient current. The
plate potential must be at least this positive to avoid secondary-emission
distortions and yet cannot be too much more positive because then the
plate dissipation becomes excessive. In this operating region the plate
resistance of the tube is very high. The amplification factor is also
high, but the mutual conductance is of the same order as in a triode.

Use is sometimes made of the negative plate-resistance characteristic
that the screen-grid tube displays at lo\v plate potentials. It \vill be
recalled that the plate resistance of a tube is given by the reciprocal
of t.he slope of the plate-current-plate-voltage~characteristic. Hence
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the plate resistance is negative \vhenever the slope of this characteristic
is negative. The negative resistance that can be realized from a screen
grid tube has a limited amplitude of current and voltage to ,vhich it can
be subjected. It is further not very stable because secondary-emission
characteristics are extremely variable. The negative resistance that can
be realized ,vill be different from tube to tube and will even change in
iJhe same tube with time.

10.3. Beam-power Tubes. The beam-po,ver tube is a special tetrode
designed to eliminate the interchange of secondary electrons between
screen grid and plate. Historically, it was developed later than the
pentocle. Its development followed the discovery that when the screen
grid-plate distance in a tube was made rather long there was a maximum
current which could be transmitted to the plate. This led to a study
of the space-charge effects \vithin the tube, \vhich in turn led to the
development of the final form of the beam-power tube.

The internal electrode arrangement of the beam-power tube is shown
in Fig. 2.6. The distinctive features of the construction of this tube
are the aligned control and screen grids of the same pitch. This is
coupled with a flat cathode and side deflecting plates to keep the current
sheets, which are formed by the aligned grids, from spreading. The
screen-grid-plate spacing is made rather large, and the successive
electrodes are curved so that they are at right angles to the electron flow.

The resulting plate-current-plate-voltage characteristics are shown
in Fig. 2.7. It is seen that the dips in the current curves due to second
ary emission have been eliminated at all but the very lo\vest control-grid
voltages, and even here the dips are not very pronounced. The reason
for this improvement in behavior is found in the space-charge effects
that occur in the screen-grid-anode region. Before examining this
subject in detail it is desirable to investigate briefly the electrostatic
field of a beam-power tube.

10.4. The Electrostatic Field of a Beam-power Tube. The same
general methods that have been described in the chapter on Triode
Characteristics can be applied to multielectrode tubes in some cases.
For tube structures in ,vhich the grid ,vires have a regular pattern the
method of conformal transformations is easily applied. This is the case
for the tetrode ,vith aligned grids, the structure of the beam-po,ver tube,
which will be treated here by an extension of the method employed
with the triode.

The line-charge configuration of Fig. IO.5a gives rise to the configura-

tion of Fig. 10.5b upon application of the transformation W = ~ In Z.

The relation between the parts in the two planes is apparent from the
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previous study of triodes. The small circle about the origin in the Z
plane goes into a cathode line in the W plane. The control-grid-wire
circle at (1,0) in the Z plane goes into the series of equally spaced control-

2rdg8

grid wires in the W plane. The screen-grid wire at (E-a~, 0) in the
Z plane goes into the line of screen-grid ,vires in the W plane. A large
plate circle about the origin in the Z plane goes into the plate line in the
W plane.
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FIG. lO.5.-(a) Transformed beam-power tube, (b) beam-power-tube elec
trode arrangement.

It is necessary only to write an expression for the potential at any
point P in the Z plane, transform it by the logarithmic transformation,
and then evaluate the electrode potentials in terms of the charges and
potentials. This is the procedure that was used for the triode, though
the form of the resulting expressions may be expected to be more com
plicated because of the introduction of another electrode. In the
treatment that follows the small-grid-,vire approximations will be made.

The potential at any point P in the Z plane is given by

v = - ~ In r - ~ In r' - 3~ In r" + C
21rto 27rto 27rto

(10.2)



but

and

TETRODES

(r')2 = (1 + r2 - 2r cos 8)

47dg 6 27dg•

(r")2 = (E-a- + r2 - 2E --a-r cos 0)
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(10.3)

(10.4)

Substitution of Eqs. (10.3) and (10.4) into Eq. (10.2) and application
of the logarithmic-transformation coordinate equations gives

v = - ~ qc - ~ In (1 _2E 2:" COS 2rv + E

4

:")
ato 471'"£0 a

(

41rd g. 21r(U +dg6) 2 4~U)q -- ~v -
- _8 In E a - 2E a cos - + E a + C

41rto a
(10.5)

To determine the electrode potentials in terms of the charges and
dimensions, let 11, = -dey, V = 0, where dcg » U, and set the cathode
potential equal to zero. This gives an expression for the constant C
that can be put into subsequent expressions.

1
C = - (- qcdco + qlld(8)

af.o
(10.6)

To find the control-grid potential let u = 0, v = Tg , where Tg < ;0·
Then

v = - dcyqc _ .!l!!.- In 21rrg

(J Uto 271'"to a

To find the screen potential let u = dos, v = Ta where doa > a.

To find the plate potential let u = dgp , v = 0, \vhere dgp » 2a.

V = _ dgp + dco _ dgp " _ dop - d08

p ato qc a£o qo a£o gB

(10.7)

Then

(10.8)

Then

(10.9)

The last three equations give three electrode potentials in terms of
three charges. The system can, of course, be solvpd for the charges in
terms of the potentials. Solving for the cathode charge,

qo = aa~£o2 {[dg.d.p- ~dgp In (~.)] Vg- V.~ In (2;-g) d.p

+ Vp (~y In 2:;g In 2:;.} (10.10)
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where 6. is the determinant of the coefficients of the q's in Eqs. (10.7),
(10.8), and (10.9). From Eq. 10.10 the grid-plate amplification factor
is given by the ratio of the coefficients of Va and V p as

(10.11)

This expression is accurate to ,vithin a few per cent provided that the
spacings between the various "electrode planes are all greater ~han the
grid-wire spacing and provided that the screening fraction of the grids
(ratio of grid-wire diameter to grid-wire spacing) is less than 0.1.

It should be pointed out that the amplification factor derived above
gives the relative effectiveness of the control grid and plate in con
trolling the total space current and not the plate current so that the above
constant will not correspond exactly with that given in the tube manuals.
That given in the tube manuals gives the relative effectiveness of the
control grid and plate in controlling the plate current, and this depends
upon the factor of Eq. (10.11) and also upon the way the space current
divides between screen and plate. However, since the current-division
function of a beam-power tube does not vary greatly with electrode
potentials, the above expression for amplification factor is accurate
enough for most purposes.

10.5. Space-charge Effects in the Screen-grid-Anode Region of Beam
power Tubes. In Sec. 8.9 of the chapter on Space-charge Effects it was
shown that the effect of initial velocities in a diode was to create a
virtual cathode between the actual cathode and the plate. Similarly,
in tetrodes of proper design it is possible to get a virtual cathode or
potential minimum between the screen grid and plate. If a satisfactory
potential minimum can be achieved, it will suppress secondary electrons
from the plate and do away with the need for a suppressor grid. Such a
tetrode is the beam-power tube. It is in many respects superior to the
conventional pentode.

In order that space-charge effects be appreciable, it is necessary that
there be a very nearly parallel flow of electrons. This is not the case in
the ordinary tetrode, for the use of control and screen grids with different
pitches breaks up the electron flow. It is, however, possible to get what
is nearly a parallel flo,v in a tetrode by making the control and screen
grid have equal pitch and aligning the grid wires so that electrons which
pass through the spaces of the control grid will also pass through the
spaces in the screen grid. In Fig. 10.6 are shown some typical electron
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paths in a beam-power tube. 1 The paths give a sufficiently close approxi
mation to a parallel flow in the screen-grid-plate region so that observed
tube characteristics correlate well with theoretical properties deduced
from this assumption.

Assuming a parallel flow of electrons starting at a high positive poten
tial at the screen, a number of different potential distributions are
possible depending upon the plate potential and the magnitude of the
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FIG.I0.6.-Electron paths in a beam-power tube.
(Jonker.)

current injected into the screen-grid-anode region. Associated operating
conditions are correspondingly different. The types of distributions
encountered are shown in Fig. 10.7. The characteristics associated ,vith
these various distributions are best listed in tabular form. They are
essentially determined by the sign of the constant which appears after
th:e first integration of Poisson's equation as in Eq. (8.5) which may be
written

(10.12)

1 From JONKER, J. H. L., Pentode and Tetrode Output Valves, Wireless Engr.,
vol. 26, [No. 189], pp. 274-286.
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a2V~~

where J = ~ and a2 has the value 2.335 X 10-6 amperes per volt%.

The properties of the distributions as determined by the sign of the con
stant C1 are as follo\vs:

I dV
Current

Type V p C1
dx

transmission V
to plate

A - + - None +,0,(-)

(Virtual cathode)
B °or + 0 I -,0, + I Partial +,0, +

(Potential minimum)
C + -

I
-,0, +

I
Complete +

D + - + Complete +

In types A and B there is a virtual cathode at the point of zero
potential. In type C there is a potential minimum but no virtual cathode
at the point of zero gradient of potential. It is seen that the current
transmission is complete only when no virtual cathode exists. The
various types of distribution will be analyzed in some detail in the
follo\ving paragraphs. A number of extensive analyses of the space
charge effects in the grid-anode region of tubes have been published. 1- s

The treatment given here makes use of dimensionless parameters giving
rise to universal characteristics as proposed by Fay, Samuel, and
Shockley.

Type A Distribution. This type of distribution corresponds to that
of a temperature-limited diode and is encountered when the plate is
negative. The electrons injected into the screen-grid-plate space
encounter a retarding field and are thus slowed down until they finally
reach a zero velocity at some point before the plate, reverse, and return

1 HARRIES, J. H. 0., The Anode to Accelerating Electrode Space in Thermionic
Valves, Wireless Engr., vol. 13, pp. 190--199, April, 1936.

2 PLATO, G., W. KLEEN, and H. ROTHE, The Space Charge Equations for Electrons
with Initial Velocity, Part I, Zeit. fur Phys., vol. 101 [No.5], pp. 509-520, 1936.

3 KLEEN, W., and H. ROTHE, The Space Charge Equations for Electrons ,vith
Initial Velocity, Part II, Zeit. fur Phys., vol. 104 (Nos. 11, 12], pp. 711-723, 1937.

4 SALZBERG, B., and A. V. HAEFF, Effects of Space Charge in the Grid-anode
Region of Vacuum Tubes, RCA Rev., vol. 2, pp. 336-374, January, 1938. Excellent
discussion of dynamic characteristics.

[) FAY, C. E., A. L. SAMUEL, and W. SHOCKLEY, On the Theory of Space Charge
between Parallel Plane Electrodes, Bell Sys. Tech. Jour., vol. 17, pp. 49-79, January,
1938.
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to the screen. There is thus a virtual cathode at the point of zero
potential. The potential distribution from the virtual cathode to the
negative plate is linear.

The equations for the relations between potential, distance, and
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FIG. lO.7.-Types of potential distributions in the
screen-grid-plate region of a beam-power tube.

current are obtained by letting the constant in Eq. (10.12) assume the
positive value of m~'lV 1~\ where m is related to the slope of the potential
distribution curve as will be shown and VIis the screen potential. The
differential equation then has the form

(10.13)

or

(10.14)
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Let the following changes in variables be introduced:

cf>=~
Vi
X

U =-
Xo

(10.15)

(10.16)

l\

~
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\ \ \ ~
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where Xo = aJ~~ is the distance over which a potential VI will produce
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FIG. IO.S.-Potential-distribution curves of the
type A.

a current density J in a space-charge-saturated diode. The Eq. (10.14)
becomes

This ma)T be written as
del> -4·2~

(cf>~2 + m~)H = -3- du (10.18)

for convenience of integration. Let de/> = 2cf>}2 d(cf>~~), and then, upon
integration,

(10.19)
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Si,nce t:/> = 1 when q = 0,

2}~0" = (1 - 2m~~)(1 + m~~)~2 - (</J}/2 - 2m~)(<p~2 + m~2)~ (10.20)

The factor 2~~ has been introduced because the reversal of current at the
virtual cathode has required that J be replaced by 2J in the above
derivation. Curves of the type A obtained from Eq. (10.20) are shown
in Fig. 10.8. If the slope of the curves be evaluated it is seen that

dcf>
dO"

for ep ~ 0 (10.21)

and

(10.22)for 0" = 0dq, = -4·2l-i (1 + m~i)~
dO" 3

It will be recognized that the potential distributions resulting in
this case are the same as those encountered in the temperature-limited
diode, the only difference being that the current is flowing in equal
amounts in both directions and is in this case injected at a positive rather
than at a zero potential.

Type B Distribution. This occurs when the integration constant
C1 is zero and as can be seen from simple physical considerations g1:ves
rise to a Child's law distribution on each side of a virtual cathode that exists
at the point of zero potential and zero gradient. Let it be assumed that, of
the injected current, a fraction P is transmitted beyond the virtual
cathode. Then the net current on the screen-grid side of the virtual
cathode, as far as its space-charge effects are concerned, is (2 - P)J.
Child's law then assumes the form

2V~~
(2 -P)J = a_

X1
2

(10.23)

a2V 1~2
but since J = --2-' then in terms of the factors cP and (f

Xu

<p~2

0"1
2

= (2 - p,) (10.24)

Since the actual potential factor is cP = 1 when 0" is zero and the potential
decreases with increasing 0", the relation must be put into the form

(10.25)
1 - <p%

O"L = (2 _ P)~~

in which the subscript L indicates that the relation holds to the left
of the virtual cathode for values of cP between 0 and 1 and 0" is measured
from the point of current injection.
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(10.28)

To the right of the virtual cathode the current density is PJ so that

a2V~~

PJ = - (10.26)
x 2

where x is now measured from the virtual cathode. Combining this with
the Child's law relation,

q,%
0'2 = - (10.27)

p~

Actually, the potential factor is zero when (T has a value of (2 _1 Pp'
as may be seen from Eq. (10.25), so that the desired relation is

1 4>%
O'R = (2 _ P)~'J + P~'J

"There the subscript R indicates that the expression holds only to the
right of the virtual cathode and 0' is again measured from the point
of current injection. Curves of the type B as determined from Eqs.
(10.25) and (10.26) are shown in Fig. 10.9. It will be recognized that
these are all three-halves-power-law curves drawn with different scales
from both sides of the virtual cathode.

A curve of considerable importance in the family (Fig. 10.9) is the
limiting curve that gives the maximum value of ¢ for a fixed value of 0'

to the right of the virtual cathode. This is an envelope to the family of
type B curves. If the expression of Eq. (10.28) be solved for cP and
maximized with respect to P, there results

(10.29)

(10.30)

When this is substituted in Eq. (10.28), there is obtained

2cPH
P = 1 + ¢H

The factor P can be eliminated between Eqs. (10.29) and (10.30) to give
the relation bet,veen ep and 0'.

(10.31)

This curve is shown dotted in Fig. 10.9. Equation (10.30) tells what the
maximum transmitted current for any plate potential is. If the attempt
is made to increase the transmitted current beyond this value, the
distribution will jump from a type B to a type C or D distribution.
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Type C Distribution. This type of distribution is characterized by
the existence of a potential minimum that is not at zero potential. The
distributions are obtained by letting C1 = -(aVl)~~ in Eq. (10.12).
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FIG. lO.9.-Potential-distribution curves of the type B.

This gives a positive value of V, equal to aV1, when ~~ equals zero.

Integration of Eq. (10.12) with the above value of the constant gives

(10.32)
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in which the negative sign goes with a negative slope at the screen and
the positive sign gives a distribution of the type D. Since ep is unity
when (J is zero,

(JL = - (c//A + 2aH)(ep~2 - a~2)H + (1 + 2a~2)(1 - aH)~ (10.33)

which holds to the left of the potential minimum ,vith (J' measured from
the point of current injection. The distance at which the potential
minimum exists is found by setting cP = a.

(10.34)

(10.36)

To the right of the potential minimum the potential distribution is
given by

(J'R = (eI>~~ + 2a~~)(cP~2 - aH)~2 + (1 + 2a~~)(1 - a~2)~2 (10.35)

(J' being measured from the screen grid. The slope of the potential
distribution curves at the screen is given by

del> = _ ~ (1 - a~~)~2
du 3

Curves of the C type are sho\vn in Figs. 10.10a and b. Various limiting
curves are of interest. By letting eI> equal a there is obtained the curve
which passes through all the minima and of \vhich the equation is

(10.37)

This curve is sho\vn dotted in Fig. 10.10a.
By setting a equal to zero, another limiting curve is obtained,

(10.38)

which is the boundary bet,veen the Band C type of curve. This curve
runs through the field of the type C curves because of the way in \vhich
the curves overlap. The significance of the overlap curves of Fig.
lO.10b is that t,vo potential distributions are possible for one set of
electrode potentials.

By setting a equal to unity,

(j = (cP~2 + 2) (eI>~2 - 1) ~2 (10.39)

,vhich sets an upper limit to the type C curves.
Another limiting curve is obtained by making (J'R a maximum ,vith

respect to a and holding cP constant. This gives

and
(J' = (1 + eI>~'l)Yl

(10.40)

(10.41a)
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In these expressions q and cf> are coordinates of a lower-limit envelope
that is tangent to the type C curves. The parameter a determines which
curve is tangent to the envelope at the point in question. Type C dis-
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0" = Distance in units of X O

FIG. lO.10a.-Potential-distribution curves of the type C.
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tributions cannot exist beyond this condition. If current or voltage is
changed beyond this boundary, the distribution jumps to a type B curve..

From Eq. (lO.41a) is obtained the expression that gives the maximum
current that can be transmitted between electrodes at potentials V]
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and V 2 separated by a distance x. The limiting current density is

J
max

= 2.335 X 1~-6(Vl~ + V2~2)3 amperesperunitarea (lO.41b)
x2
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If the injected current exceeds this amount, the potential distribution will
jump from a type C to a type B distribution, ,vith an attendant reduction
in transmitted current.

Examination of the curves of Fig. 10.10 and their equations ShO\Vb
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that the curves are all of the same form but differ only in scale and posi
tion. Hence the upper limiting curve for which a equals 1 is a universal
curve showing how the potential varies on either side of the potential
minimum. The universal form of this curve is obtained by setting a
equal to 1 in Eq. (10.35), giving the universal form

Uu = (<pH + 2)(<t>~~ - 1)~ (10.42)

which holds on either side of the minimum at ,vhich the potential value is
now VI and (/u is measured from the minimum. Current is introduced
. .. . a2Tl1% x
Into thIS expressIon by the relatIon J == --, and (/14 = _.

Xut Xu

Type D Distributions. These include curves of the C type restricted
to the region of the curve before the potential minimum is reached.
They also include curves that start with a positive gradient and increase.
This latter type is given by using the positive sign in Eq. (10.32). It is
not of much practical importance. Since the curves of the D type are
included in the other types previously discussed, they will not be dis
cussed in detail.

10.6. Dynamic Characteristics of Beam-power Tubes. In the above
discussion of the different types of potential distribution possible it has
been indicated that there are limiting conditions under which the separate
types could exist. It is also true that several potential distributions are
possible for a given set of externally imposed conditions. In actual tube
operation this means that there may be discontinuities in the current
voltage characteristics; for as potential conditions are changed, the inter
nal distributions may jump from one form to another and these changes
are sometimes accompanied by changes in the fraction of the current
transmitted to the plate. Furthermore, it sometimes happens that there
may be hysteresis effects as a cycle of voltages is impressed upon a tube in
that the current cycle produced does not retrace itself exactly.

The beam-po\ver tube makes use of a potential minimum produced by
a type C distribution to reduce the secondary emission from the plate.
As long as the potential minimum is 20 or more volts more negative than
the plate, very effective suppression of secondary electrons is achieved.
This expedient dispenses with the need for asuppressor grid but may cause
the dynamic characteristics to be different from those of other tubes.

T~TO of the most important dynamic characteristics will be discussed
in a qualitative fashion. Quantitative analyses have been given,l but
these are some,vhat limited in value in that the ideal conditions of parallel
electron flow cannot be realized exactly in any actual tube.

Injected Current Varied, Potentials Constant. One case that is of

1 SALZBERG and HAEFF, loe. cit.
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considerable interest is that in which the screen and plate of a beam
power tube are maintained at the same potential and the current injected
into the screen-grid-anode region is increased from zero to a large value
and then decreased. The changes in the potential distribution encount
ered in the tube are shown in Fig. 10.11. Initially, for no injected cur
rent, the potential distribution from screen grid to plate is a straight
horizontal line as shown at a. As the injected current is increased, the
potential-distribution curve is depressed, assuming the form of the type C
distributions as shown at b, in this case symmetrical with respect to a
potential minimum at the center. As the injected current is further

FIG. 10. I l.-Potential distributions in a
beam-power tube as the injected current is
varied.

increased, the potential-distribution curve is depressed still further,
maintaining its symmetry. The physical reasons for the action are
quite apparent. As the current is increased, the space charge is increased,
\vhich reduces the potential, which decreases the electron velocity, which
increases the space charge still further and thus depresses the potential
still more. Thus an increase in injected current starts a cycle of action
that is very sensitive to changes in current, so much so that an equi
librium may not al\vays be reached. This occurs in this case when the
potential curve has been moved about three-quarters of the way down to a
zero potential, as at c, at ,vhich point any further increase in current
causes the potential curve to drop as far as it will go because of the
instability in the sequence of actions described above. The potential
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curve can drop only to zero, at which point a virtual cathode is formed
half,vay between grid and plate. When this occurs, part of the current,
which has previously all been going to the plate, is turned back toward
the grid, thus increasing the space charge or effective current to the left
of the virtual cathode. Child's la,v demands that \vhen the current is
increased ,vithout a change in potential the distance must be decreased
so that the virtual cathode moves to,vard the screen, finally coming to rest
at some position, as sho,vn at d. Thus the distribution changes immedi
8,tely from that at c to that at d, with an abrupt reduction in current to
the plate. Any further increase in injected current increases the space
charge and current on the screen side of the virtual cathode and causes
it to move closer to the screen, with a further reduction in transmitted
current.

If no\v the current is decreased, the sequence of operations ,vill not be
exactly the same, for the initial conditions are different. For a given set
of voltages and current, t,vo potential distributions may be possible but
only one can exist at a time, of course, and the physical choice between
the possible distributions is determined by the order in which limiting
conditions are established. If the current is decreased, the virtual
cathode moves toward the plate, an increasing fraction of the current
going to the plate. Finally the virtual cathode reaches the mid-point,
all the current going to the plate. The virtual cathode is no\v "satu
rated. " The potential field and electron paths for such a condition are
sho\vn in Fig. 10.12. The type B distribution cannot exist with any
smaller injected current, and thus a further decrease causes the potential
distribution to jump to the type C distribution, jumping from the distri
bution at e to that at f. Any further decrease in current no\v maintains
the same type of symmetrical distribution, the potential minimum rising
until finally it is flat, ,vith no current. Because of the fact that there
is a maximum value of plate current for any set of screen and plate
voltages in a beam-power tube, difficulties may sometimes be encountered
with pulsed operation.

Although the above discussion has been given for equal screen and
plate voltages, the same sort of behavior results if the electrode potentials
are not the same. In general, specific limiting conditions will be different
for different cases.

The associated current behavior is shown in Fig. 10.13, which shows
the relation bet,veen the plate current and the injected current. As the
injected current is increased, at first all the current is transmitted tc
the plate j giving the straight-line characteristic shown. When the
potential distribution jumps from c to d, the plate current suddenly
drops in value and then decreases uniformly, as shown, as the injected
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current is increased. When the injected current is then decreased, the
transmitted current is increased uniformly until the distribution shown
at e in Fig. 10.11 is reached. In this case the jump in distribution from e
to f produces no change in current, though it ,viII be observed that the
highest current reached on the retrace of the cycle is less than that
obtained as the injected current \vas increased. All the injected current
no\v goes to the plate again; and as the injected current is decreased
further, the plate current decreases correspondingly, moving do\vn the
straight-line portion of the curve of Fig. 10.13. The portion at the
extreme right of the current characteristic is seen to exhibit a negative
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FIG. 10.13.-Transmitted current in a
beam-po\ver tube as a function of
injected current.

transconductance since the injected current is a continuous function of
the control-grid voltage. Oscillators have been built utilizing this
property. The characteristic sho\vn in Fig. 10.13 can actually be
observed on an oscilloscope if a beam-po\ver tube is connected so that the
vertical deflection is proportional to plate current and the horizontal
deflection proportional to space current !ts the control-grid voltage is
varied sinusoidally.

Plate Potential Varied, Screen Potential and Injected Current Constant.
Another case of operation \vhich is of particular importance is that \vhich
occurs ,vhen the plate potential alone is varied. Consider the case in
\vhich the injected current is quite high, corresponding to a positive con
trol-grid voltage on a beam-po\ver tube. Starting \vith a negative plate
potential, the potential distribution is of the type A (temperature
limited), as shown at a in Fig. 10.14. When the plate potential reaches
a value of zero, a distribution of the type B (space-charge-limited) exists
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as shown at b. Then, as the potential is further increased, a three
halves-power-Iaw distribution holds on each side of the virtual cathode,
which moves toward the plate. Finally, a limiting type B curve is
reached, and even though all the current is not being transmitted to the
plate the distribution jumps from that at c to that at c', giving a type C
(potential minimum) distribution with a complete instead of a partial
transmission of current. As the potential is further increased, the poten
tial minimum moves toward the screen as the curve moves up. Then,
as the cycle is reversed and the potential is decreased, the curve moves

FIG. 10.14.-Potential distributions in
a beam-power tube as plate voltage is
varied.

d

Plate voltQge

FIG. IO.I5.-Plate current in an ideal
beam-power tube as a function of plate
voltage.

down through the stages indicated by e and f. At g there is reached a
limiting curve of the type C, and the distribution jumps to that at g',
giving a partial transmission of current. From this the virtual cathode
moves toward the screen as the potential and plate current decrease to
zero. The curve a is obtained again as the plate voltage is made negative.

The corresponding current behavior is shown in Fig. 10.15, in \vhich
is shown the variation of plate current with plate potential. Plate
current begins to flow at b and continues to increase until c because of
the partial transmission of current. If the position of the virtual cathode
remained fixed, the current would increase as the three-halves po\ver of
the plate potential in this region. Since it moves toward the plate, the
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current increases faster than the three-halves power, gIVIng a very
steep characteristic and accounting for the sharp shoulder of the plate
current-plate-voltage curves of the beam-power tube. At c the current
jumps to that at c', at ,vhich the transmission is complete and the current
remains constant for further increases in potential. When the cycle is
reversed, the current remains constant as the potential is decreased until
g is reached, at which it drops to the value on the curve between band c.
It \vill be noted that the jump in current on the retrace occurs at a lower
value of potential than ,vhen the potential is increasing.

The type of behavior described above occurs for other values of cur
rent, though the effects are most pronounced when the current is high.
At lo\ver values of current, potential minima may not be formed. The
area of the hysteresis loop is in all cases quite small and becomes smaller
as the current is decreased. In an actual tube such as the 6L6, having
the characteristics sho,vn in Fig. 2.7, the distribution of initial velocities
and more particularly the spreading of the beam sheets cause the current
characteristic to depart from the idealized behavior indicated here. l

Sometimes at high currents, instead of the jumps indicated, the curve will
run through a small s giving rise to a small region with a negative plate
resistance. The kinks are observed only for high currentsa At lower
currents there is a sharp shoulder. At very lo\v currents, potential
minima are not formed; and as a result secondary electrons from the plate
are not suppressed, and the curves have the characteristic depressions
associated with this effect. It is also not true that the current is com
pletely independent of the plate potential when the current transmission
is complete, for the cathode region is not completely shielded from the
plate.

1 SCHADE, O. H., Beam Power Tubes, Proc. I.R.E., vol. 26, pp. 137-181, February,
1938.
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PENTODES
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11.1. Electrode Arrangement in a Pentode. The pentode, as its
name implies, is a five-electrode tube. The five electrodes, in order, are
cathode, control grid, screen grid, suppressor grid, and plate. The effects
of all these electrodes except the suppressor grid have been studied.

The suppressor grid was added to the screen-grid tube to eliminate
the exchange of secondary electrons bet\veen screen grid and plate.
It is invariably a coarse-mesh grid placed between the screen grid and
plate and operated at cathode potential. At this potential it is able to

~ suppress secondary electrons by causing
~ a deep dip in the potential between
~ screen grid and plate while at the same
~ time its coarse mesh allows electrons to
~ ~ pass on through it to the plate. The
~ .~ potential profiles of a pentode are
I I sho\vn in Fig. 11.1. From these it is
I l seen that both the plate and the grid
I I present negative gradients of potential
I to secondary electrons created at their
I surface. This eliminates the exchange
I of secondary electrons between screen
I grid and plate and results in current

voltage characteristics \vhich are almost
exactly those which would occur in a
perfect screen-grid tube having no sec-

I I I I ondary emission.
C G1 62 03 P Of all the various types of vacuum

FIG. 11.1.-Potential profiles in a tube, the pentocle is probably the one
pentocle. in most extensive use. For voltage
amplification \vhether at audio or radio frequencies it is the invariable
choice. It is used at audio frequencies because a higher gain per stage
can be realized than \vith a triode. It is used at radio frequencies
because the extremely low control-grid-to-plate capacity virtually elimi
nates the possibility of regeneration. Even as a power tube, it finds
considerable use because its control-grid current and hence the po\ver
necessary to drive it are lower than for the corresponding triode.

266
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FIG. 11.2.-Plate-current-control-grid voltage characteristics of a type 6J7 pentode.

11.2. Current-voltage Characteristics of the Pentode. As stated
above, the suppression of secondary electrons in the pentode gives it
the characteristics of a screen-grid tube that is free of secondary emission.
The addition of the extra grid increases the extent to which the control
grid is shielded from the plate and results in a somewhat higher amplifica
tion factor and a somewhat higher plate resistance.

Plate-current-Control-grid Voltage Characteristics. The plate-current
control-grid characteristics of a pentocle are similar to those of a tetrode
and not greatly different from those of a triode. The plate current is

15

/4

13

12

II

JO

most easily influenced by the control grid, less so by the screen grid, and
hardly at all by the plate. Some typical plate-current-control-grid
voltage characteristics of a pentode are shown in Fig. 11.2. Here there
is sho,vn a group of curves for different screen-grid voltages. These
curves are almost identical ,vith the corresponding curves in a triode. If
a group of curves for different plate voltages were shown, they would be
very closely grouped and, for the same screen-grid potential, would have
the same cutoff potential.

Plate-current-Plate-voltage Characteristics of a Pentode. The plate
current-plate-voltage characteristics of a pentode are shown in Fig.
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II.3a. In a well-designed pentade the plate current varies only slightly
with plate potential for all plate voltages greater than 50 per cent of the
screen-grid voltage. Below this value of voltage the current falls rapidly
to zero. The magitude of the space current in a pentode is determined
almost entirely by the control-g-id and screen-grid potentials. The
plate potential determines only ,"'hat fraction of the space current is
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FIG. 11.3a.-Plate-current-plate-voltage characteristics
of a type 6J7 pentode.

transmitted to the plate. It does, of course, have a second-order influ
ence upon the plate current, \vith the result that the plate current rises
slowly as the plate voltage is increased, but this rise is even slo\ver than
in the screen-grid tube, where there is only one shielding grid bet,veen the
plate and the control grid. As a result of the action of the plate voltage
in determining the fraction of the space current that is transmitted to
the plate, all the plate-current-plate-voltage curves are similar in
shape and differ only in scale.
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Space-eurrent-Plate-voltage Characteristics of the Pentode. Also sho,,"n
in Fig. 11.3a are the space-current-plate-voltage characteristics of a pen
tocle. The space current is even more constant with plate voltage than
is the plate current. The only departure from near constancy occurs
near zero plate potential. Here the space current increases by about
20 to 40 per cent as the plate potential is increased to about half of
the screen-grid potential. This increase in space current occurs because
there is a change in the space-charge condition around the screen grid as
the condition of reflection of electrons from the plate changes to one of
transmission. The action is exactly the same as that ,vhich ,vas encount
ered in screen-grid tubes (see Fig. 10.2).
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FIG. 11.3b.-Screen-current-plate-voltage characteristics of
a type 6J7 pentode.

Screen-grid-current-Plate-voltage Characteristics of a Pentode. The
screen-grid· current in a pentode is the difference between the space cur
rent and the plate current, provided that the other grids in the tube are
drawing no current. The nature of the screen-grid-current variation
with plate voltage is shown in Fig. 11.3b. The screen-grid current is
seen to have a uniformly decreasing characteristic with plate voltage.
The screen current will generally lie between one-fifth and one-third of
the plate current at large plate voltages. The effectiveness of the sup
pressor grid in suppressing secondary electrons is so complete that the
screen current rarely shows even a trace of distortion due to this cause.

Suppressor-grid Effects. With small pentodes such as are used for
Yolt.a~e amplification the suppressor grid is operated at cathode potential
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and is not used to influence the plate current. In power-output pentodes,
however, the suppressor grid may be used as an active electrode. It can
be used to modulate the plate current in amplifiers or oscillators.! Use is
here made of the fact that the suppressor grid is able to control the
fraction of the current transmitted past the plane of the screen grid that
goes on to the plate. When the suppressor grid is at a low potential
relative to plate and screen grid, as it usually is, it can sort out the elec
trons having a large component of energy directed to\vard the plate
from those which, because of deflection on passing close to a screen-grid
wire, have a lower component of plate-directed energy. Some typical
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FIG. 11.4.- Plate-current-suppressor-grid
characteristics of a type 6J7 pentocle.
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curves showing the current transmitted to the plate as a function of sup
pressor-grid voltage are shown in Fig. 11.4. It is seen that the plate
current is moderately sensitive to suppressor-grid voltage and that the
suppressor grid is readily capable of completely cutting off the plate
current. The action of the suppressor grid in controlling the plate cur
rent is a combination of its action as a velocity sorter and a direct con
trol on the gradient of potential before the suppressor grid. At voltages
near zero the first action predominates. As the suppressor grid is made
more negative, the second action becomes predominant. As the sup
pressor grid approaches cutoff, there is a strong tendency for a virtual

1 GREEN, C. B., Suppressor Grid Modulation, Bell Lab. Rec., vol. 17, pp. 41-44,

October, 1938.
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FIG. 11.5.-Effect of suppressor-grid voltage upon
the plate and screen-grid-current characteristics of
a pentode.

cathode to form before the suppressor grid owing to the space charge of
the approaching electrons, which have been reduced to a very low
velocity. The suppressor grid then has an action very similar to that of
the control grid in front of an actual cathode, as in a triode.

An alternative representation of the effect of the suppressor grid is
shown in Fig. 11.5. Here the control-grid action of the suppressor grid is
evident at large negative values of suppressor-grid potential. Po,ver
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pentodes are frequently operated ,vith slightly positive suppressor grids
in order to get a sharper shoulder on the plate-current-plate-voltage
characteristics. Some typical po\ver-pentode characteristics are shown
in Fig. 11.6. The use of a positive suppressor-grid potential is seen to
give a considerable sharpness to the shoulder of the characteristics. The
reason ,vhy this is necessary in the po,ver tubes is twofold. (1) The
current densities involved are greater, increasing the tendency for a
virtual cathode to form in front of the suppressor grid and hence requir
ing a more positive value of suppressor-grid voltage to pass the major
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portion of the space current on to the plate. (2) The screen-grid pitch is
made relatively large to reduce the total current and power taken by the
screen. As this is done, the deflection imparted to the electrons passing
through the screen grid is increased and hence a smaller fraction of them
have enough plate-directed velocity to pass through the positive potential
spaces between the suppressor-grid wires.
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11.3. Current Division in Pentodes. The pentocle is often oper
ated ,vith a suppressor grid at cathode potential and with screen grid
and plate at the same positive potential. With this arrangement of
electrode potentials the screen grid will always intercept an appreciable
fraction of the space current. Some of this current is intercepted directly
on the first passage of the electrons. Some of the screen-grid current
consists of electrons which ,vere so strongly deflected by the screen-grid
,vires that they did not have enough plate-directed velocity to pass
between the suppressor-grid wires. All electrons that fail to penetrate
the suppressor grid upon their first attempt may be expected to return
to the screen grid.

The fraction of the total current transmitted to the plate is expected
to be a function of the ratio of plate to screen-grid voltages. So also is
the ratio of plate to screen-grid current. In Fig. 11.7 are shown curves
of these current ratios as a function of the electrode-voltage ratio. Both
current ratios are seen to vary rather slowly with the electrode-voltage
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ratio. The ratio of plate to space current in the vicinity of equal plate
and screen-grid voltages varies something like the one-tenth po,ver of the
ratio of plate to screen-grid voltage. The ratio of plate to screen cur
rent varies approximately as the one-fifth po,ver of the ratio of plate to
screen-grid voltage. No simple theoretical analysis is available to give
the current-division law directly in either case.

10

Just as it was possible to define a current-division factor for positive
grid triodes, so is it possible to define a current-divison factor for pen
tocles. Let

(11.1)

Here ~ is a current-division factor that measures the ratio of plate to
screen-grid current \vhen the plate and screen grid have the same voltage,
other srids being presumed to dra\v no current. This pentocle current-
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division factor may be determined quite closely from the considerations
that applied to the positive-grid triode.

Figure 11.11 shows the general nature of the potential field and elec
tron paths within a pentode. The control grid has a slight focusing
action upon the electrons that pass between its wires. The screen grid
intercepts a fraction of the current that passes through its plane and has a
dispersing action on the rest. The suppressor grid will for the most part
pass the electrons that approach it, with the exception of some electrons
that fall into t,vo groups. (1) The electrons that are aimed directly at a
suppressor \vire. These are naturally reflected and collected eventually
by the screen grid.. In general, all the electrons that are aimed at a
suppressor-grid ,vire \vithin half a radius of the center of the wire ,vill be
deflected back into the screen grid. This group comprises the great
majority of the electrons initially passed by the screen grid that are
returned to it. (2) The electrons that just barely miss a screen-grid \vire
and are so strongly deflected that they do not have enough plate-directed
velocity to reach the suppressor-grid plane. This group of electrons is
distinctly in the minority and may not even exist in some tubes if the
screen-grid ,vires are large enough.

The same factors that determined the current division in a positive
grid triode also determine the fraction of the space current transmitted
and intercepted by the screen grid of a pentocle. The follo,ving identifica
tion of the elements of a triode gives approximately the conditions
existing in a pentode :

Triode Pentode
Cathode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Control grid
Control grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Screen grid
Plate Suppressor grid

When this correspondence of the electrodes is used, then Eq. (9.28)
for current division in triodes may be applied directly provided that the
mean suppressor-plane potential is used as the triode plate voltage and
the equivalent triode cathode-plate distance is recognized as being some
what larger than the pentode control-grid-screen-grid distance. 'Vhen
these considerations are applied, a transmission factor for the screen
grid is determined. It is then necessary only to correct this for the
additional electrons reflected from elastic collisions with the suppressor
grid ,vires.

For the condition of equal plate and screen-grid voltages prescribed
for the pentode current-division factor, the mean suppressor-plane
potential is a very small fraction of the plate and screen-grid potential.
In terms of the equivalent-triode current division this means that interest
is centered on the region of very small voltage ratios, far to the left on the
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true primary-current-division curve of Fig. 9.18. The value uf the cur
rent ratio \vill not be a great deal less than the triode current-division
factor because the current-ratio curve is concave up\vard. The true
primary-division cnrve rather than the measured triode division law may
be expected to apply in the case of the pentode because there is no modi
fication of the electrode currents by sec
ondary emission and because reflection
of electrons from the plate of a triode at
low potentials may be considerable,
\vhereas in a pentode suppressor grid of
the same mean potential the electrons
\vill, for the most part, be able to pene
trate in the spaces bet\veen the ,vires.

In order to apply the above ideas it is
necessary to evaluate the mean sup
pressor-plane potential. Consider the
configuration of electrodes sho,vn in Fig.
11.8. In this some\vhat idealized config
uration the screen grid is replaced by a

FIG. II.S.-Electrode dimension~
plane. Since the suppressor grid is

in the suppressor-grid region.
usually of a coarse mesh, the field approx-
imation of Eq. (7.72) is sufficiently accurate. If a linear potential term
IS included to account for the effect of the screen grid and plate, the expres
sion for potential becomes

V(x,y) = - 4;£0 [In 2 (COSh ~x - cos ~y) ] + Bx + C (11.2)

,vhere q is the charge per unit length of a single grid \vire, x is measured
in a direction perpendicular to the grid plane and has a zero value in the
grid plane, and y is measured in the grid plane relative to a grid-\vire
center in a direction perpendicular to the wires themselves. Upon
setting the"potential equal to V 2 at the screen grid at which x = -d23

and y = 0, then approximately

V q d23 C
2 = - - - - Bd23 +

2£0 a3
(11.3)

lTpon setting the potential equal to zero at the suppressor at which
x = 0 and y = T3, then approximately

o = - --.!l_ In [2 sin (
1rT3)1+ C

2no as ..J
(11.4)
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Upon setting the plate potential also equal to V2 at x = d3p, Y = 0,
t.here results, approximately,

(11.5)

The same approximations apply above as do in the case of the low-mu
triode. The expressions are valid only for screening fractions less than
one-tenth and interelectrode spacings greater than the distance between
suppressor-grid wires.

The three equations above may ba solved for the three unknowns
q, B, and C and these valueslsubstituted in Eq. (11.2). When this is
done and the general expression for potential resulting is restricted to

the point x = 0, y = ~' there is obtained an expression for the maximum

potential between the suppressor-grid wires,

(11.6)

The mean value of the suppressor-grid-plane potential is just half this.

(11.7)

When this mean value of the suppressor-plane potential is known, Eq.
(9.28a), \vhich is repeated here, can be applied with the electrode cor..
respondence previously mentioned to obtain the ratio of the current
transmitted by the screen grid to the current intercepted on the initial
passage.

(9.28a)

Upon substituting equivalent factors to suit the pentode problem this
expression becomes
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(11 3)

T2 1 4Ed 12whereD = - n--
2d 12 r2

T 2 = ratio of current transmitted by screen grid upon initial
passage of electrons to current intercepted

J.L23 = geometrical amplification factor of control grid relative to
screen grid

It is necessary only to modify the factor T 2 by the transmission
factor of the suppressor grid to obtain the screen current-division factor 1)

The transmission through the suppressor plane will generally be so
large that it will affect the over-all result by only a small fraction. The
transmission of the suppressor plane is given approximately by

(11J~)

since membrane-model studies show that only those electrons aimed at
the center half of a suppressor-grid wire will strike it. The over-a.1I
current ratio is then given approximately by

111-=-+:D T 2 T 3
(11.10)

Example: Consider the 6J7 pentode, which has the following dimensions:

Tl = 1.1 mils
T2 = 1.25 mils
T3 ~ 2.25 mils

al = 21. 1 mils
a2 = 15. 9 mils
aa = 50 mils

d23 = 109.5 = 6 89
a2 15.9 ·

del = 8 .65 mils
d12 = 56.8 mils
d23 = 109.5 mils
d3p = 110 mils

Van In [ sin (q~)]
--v;- = 2 {I [2 . (1r X 2.25)r _ 21r 109.5 X lID}

n SIn 50 J 50 219.5
= 0.12 from Eq. (11.7)

J.t23 = 56 from Fig. 7.11
for

and

s = 2r2 = 2.5 = 0.1572
a2 15.9
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15.9 _ 1
T 2 = {15.9 X 56[(56.8 + 109.5) - 56.8 X 0.12]0.0683 + 1 251

2 27r X 109.5(0.12 + 56) . J
= 4.3 from Eq. (11.8)

Note that this value of current transmission is only slightly less than the
o factor of 4.63 calculated from Eq. (9.25), considering the screen grid of the
pentocle as the control grid of a triode.

50
T 3 = 2.25 - 1 = 21.2

1
~ = 1 1 = 3.57

---+-4.3 21.2

from Eq. (11.9)

from Eq. (11.10)

This calculated value of 1> agrees well with a measured value of 3.65. The
agreement is, in fact, better than there is any reason to expect in view of the fact
that the 6J7 does not have a plane-electrode structure at al,l but has a circular
cathode and suppressor grid, elliptical control and screen grids, and a plane plate·.

11.4. Amplification Factor of a Pentode. The design of a pentode
presents a rather complex problem. Relatively little has been published
on this important subject. Most of the design equations exist in the
private notebooks of a few workers in the field and are largely empirical
modifications of simple theoretical relations. In this and subsequent
sections there is given a sketch of the factors involved in the determina
tion of pentode tube constants. The results that are given can serve
only as a rough guide to the fundamental relations and should not be
taken as anything more than approximate design equations.

The amplification-factor formulas of a pentode may be expected to
be considerably more complicated than those of a triode for t\VO reasons.
(1) There are three grids instead of one. (2) The division of current
between the various electrodes is a function of the relative electrode
potentials. If the amplification factor is calculated from electrostatic
considerations as was done for the triode, there results an expression that
gives the relative influence of the plate and control grid in keeping the
space current constant. This is not the true amplification factor but what
will be referred to as the "electrostatic amplification factor" since it
gives the relative influence of the plate and control grid in controlling
the off-eathode gradient of potential in a cold tube (or space current in a
hot tube). The true amplification factor iR a modification of this value
thal gives the relative influence of plate and control grid in controlling the
plate current. The subject ,vill be treated by first studying the field in a
pentode, deducing the electrostatic amplification factor from it, and then
modifying this to obtain the true amplification factor.
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(7.72)

Electrostatic Field of a Pentode. The method of conformal transforma
tions is not readily applied to tubes having several grids of different
pitches. It is, however, possible to construct the field from the expres
sion for the potential due to a single row of grid wires given in Eq. (7.72),

V(x,y) = - 4~o In [2 (COSh ~x - cos~)] + C.

where the ,vires are spaced a distance a apart upon the y axis and q is
the charge per unit length of ,vireo If three terms like the function in
Eq. (7.72) are combined properly with a linearly varying component of
potential, the resultant expression is a satisfactory representation of the
field of a pentade.

First consider some of the properties of Eq. (7.72). In the first
place the constant has the value

c = V + -L In (2rro)
o 2-no a (11.11)

where Vo is the potential of the isolated grid and Tq is the radius of the
grid wires. Near the grid wires the equipotential contours are circles con
centric with the grid wire. In this vicinity the potential is given approxi
mately by

V(x,y) = Va - ~o In (~) (11.12)

At a considerable distance from the grid the equipotential contours are
straight lines parallel to the grid-wire plane ,vhose approximate potential
is given by

V(x) = V o + -q-In (21rro) + ( qx )
271-£0 a 2a£0

(11.13)

where the upper sign is associated ,vith p~tentials to the right of the grid
plane and the lo,ver with potentials to the left. It is seen that the
potential varies linearly with distance from the grid-wire plane, just a~

it would from a plane with a surface-eharge density of !la' The second

term above gives the difference bet\veen the actual grid-wire potential and
the equivalent potential of the grid plane, found by extending th~ straight
line portions of the potential profiles back to an intersection, as'shown in
Fig. 11.9. The depth of the fillet about the grid ,vires is given by Iettitl~,
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x = Oandy = ~inEq. (7.72). Thissubstitutiongivesforthemaximum

Jeviation from grid-wire potential in the grid plane

( a) q (1rro)V - V 0 - = - - In -
o '2 2no a (11.14)

It is therefore always true that the potential difference between the grid
wire and the equivalent potential of the grid plane is 0.693 (= In 2) of the
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I
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dV
dx

I
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I

FIG. 11.9.-Potential profiles of a single row of grid
wires.

nlaximum difference of potential encountered in the grid plane. Also
shown in Fig. 11.9 is the gradient of potential about a row of grid wires.

Provided that the distance bet\veen electrodes is greater than the
distttnce between grid ,vires, which is a good approximation with the
exception that the suppressor-grid-plate distance is often less than
the suppressor-grid pitch, the field of a pentode is given by the sum of
three expressions like the right-hand side of Eq. (7.72) plus a linear com
ponent of field plus a constant,
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3

V(X,y) = 2: -~o In {2 [cosh 27r (x ~"de,,) - cos 27r (Y :"btl) ]}
n=l

- qcx + C (11.15)
20

in which the subscript n assumes the values 1,2,3 to correspond to each
of the three grids, den is the distance from the cathode to the nth grid,
bn gives the relative location of the grid wires along a reference line normal
to the cathode, an is the pitch of the nth grid, qc is the cathode charge
per unit area, and qn is the charge per unit length of grid wire on the nth
grid.

Upon making the usual approximations for large values of x and small
values of y, it is possible to write the equations relating the potential at
each electrode to the electrode charges. These equations are

V c = 0 = - qldcl - q2dc2
- qadc3 + 0 + C (11.16)

alto a2t O a3t O

VI = - ~ In (2 sin rT l
) - q2d 12 - qad l3

- qcdel + C (11.17)
211'"to al a2£O a3£O to

V 2 = - q ld 12 _ ~ In (2 sin 1rr2) _ qad23
- qcdc2 + C (11.18)

al20 2no a2 a3£0 to

Va = - q1d 13
_ q2d23

_ ~ In (2 sin rTa) - qcdc3 + C (11.19)
alto a2t O 2'lrt.o aa to

V
p

= - Q1d lp _ q2d2p _ qad3p _ qcdcp + C (11.20)
a 120 a2to a3£0 £0

The above expressions may be solved for the charges in terms of the
electrode potentials and then applied to Eq. (11.15) for the potential
field. This process is some,vhat involved, however; for ordinary pur
poses a simpler procedure that yields results accurate enough for most
purposes is recommended. This simplified procedure consists in sketch
ing the potential profiles and then corr~cting the originally assumed
values. Ordinarily only one correction is necessary.

The simplified procedure for determining potential fields in pentodes
is applied as follows: Ordinarily a complete plot of the potential field is
not required, and potential profiles are sufficient. The procedure first
calls for a sketch of the potential profiles within the tube. For conveni
ence the profiles will be dra\vn through a wire of each grid and midway
between the grid ,vires and the segments of such profiles joined. Actu
ally, there may be no actual straight line in the tube that goes through a
wire of each grid, but this makes no difference. Such a sketch is shown
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I

I

It
I

in Fig. 11.10. The specified electrode potentials are marked, fillets of
reasonable size are attached, and the fillets are then joined by straight
lines. The next step in the procedure is to draw a curve of the gradient
of potential between electrodes as taken from the slope of the straight
line portions of the profiles joining the electrodes. Such a curve of
gradients is also sho\vn in Fig. 11.10. If the gradients are taken from
the profiles in units of volts per meter, then the gradients will have the
values indicated on the figure in terms of the charges. From the four

values of the gradient bet\veen the
electrodes, the four electrode charges
in units of coulombs per square
meter can be calculated. When the
electrode charges are known,

then the factor - ;:0 In (::..)

applied to each grid, as sho\vn in Fig.
11.9, to see how good the original
guess on the size of the fillet of poten
tial around the ",'"ires \vas. Gener
ally, the original guesses are not
exact, and some values of electrode
potentials different from those
desired are found to fit the straight
line portions of the potential profiles.
Correcting these values is a simple
matter, and usually the first correc
tion \vill be close enough to the
exact one for ordinary purposes.

A plot of the complete field
within a pentode is sho\vll in Fig.
11.11. The figure shows some typi
cal electrode dimensions and elec

trode potentials and gradients in a pentocle.
Electrostatic Amplification Factor of a Pentode. 1 From \vork on the

triode it is possible to find an expression giving the potential of a grid in
terms of its charge and the charge to the left of it. By combining such
expressions for all the grids of a pentode there is obtained an expression
for the cathode charge in terms of the electrode potentials. From this
the relative effectiveness of the various electrodes in controlling the off-

1 See also Dow, W. G., Equivalent Electrostatic Circuits for Vacuum Tubes,
Proc. I.R.E., vol. 28, pp. 548-556, December, 1940.
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cathode gradient can be determined. This gives the electrostatic ampli
fication factor.

If the component logarithmic-transformation equations are applied to
Eq. (7.31), there results

Vo = ~ In sinh 21rrg - qcdc + !!.!!- In sinh 2Jrrg

2no a a£o 2no a

- .!l..!!.- In cosh 27rrg (11.21)
2no a

The last term in the above equation rarely exceeds 1 per cent of the
second last term and so will be, dropped. The remaining terms can be
arranged to give

VI = - qLdL - ~ In sinh 21rrl (11.22)
al£O 2no al

in which qL is the total charge per grid-wire section to the left of the grid,
dL is the distance from the grid to the next electrode to the left of the grid
in question (the cathode in the case of the triode), and the subscript 1
means that the particular symbol applies only to grid 1.

The first term of Eq. (11.22) establishes the average level of the grid..
plane potential since it is the gradient of the straight-line portion of the
potential profile to the left of the grid. The second term gives the rest
of the potential necessary to make up the actual grid potential. There
are no restrictions on Eq. (11.22) that confine it to a triode; it can just
as well be applied to any grid of a tube as long as the symbols are given
the proper interpretation. Since in summing potential expressions like
Eq. (11.22) it is necessary to take account of the fact that the various
grids may have different pitches, the charge per unit area instead of the
charge per unit length of grid \vire \vill be used. The charge per unit
area is given by

(11.23)

where an is the grid-wire spacing.
To apply the summation procedure indicated above to a pentode, the

three grids will be referred to by numbered subscripts and the distance
between electrodes "ill be given by the symbol d with a double subscript,
corresponding to the electrodes involved. The following equations are
thus obtained:

(11.24)

(11.25)
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Va - V 2 = - (Qc + Ql + Q2)d2a _ Qaaain sinh 27rra
£0 2,"0 aa

(Qc + Ql + Q2 + Q3)d3P
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(11.26)

(11.27)

It will be recognized that the first term of each of the above equations
establishes the average potential of an electrode in terms of the charge
and distance to its left. The second term takes account of the deforma
tion introduced by the presence of the grid. In the case of Eq. (11.27)
there is no second term because the potential of the plate is constant.
The above set of equations gives the electrode potentials in terms of the
charges. The system can, of course, be solved for the charges in terms of
potentials by Cramer's rule.

The determinant of the coefficients is

del ( al . h 27rr1) 0 02?r In SIn ~

Ll=
d l2 d12 (;: In sinh ~2) 0 (11.28)

d23 d23 d2a ( aa I · h 21rTa)- n SIn --
2n- aa

dap dap dap dap

This can be simplified by the introduction of the symbols

and

B an 1 . h 2rrn" = C)-d n SIn --
UTr (n-l)lI an

,vhen n = 1, n - 1 = c.
After substituting the above, the determinant assumes the form

1 B 1 0 0

~ = K 1 1 B 2 0
1 1 1 B a
111 1

The value of this determinant has the simple form

(11.29)

(11.30)

(11.31)

(11.32)
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(11.34)

The cathode charge is given by

Reference to Eq. (7.35) shows that the electrostatic amplification factor
is given by the ratio of the coe!ficients of the first and last terms.

(1 - B 2)(l - B 3) + R 1(l - Ba)

del d12
J.Llp = ----------::B=-l--=B=-2--=B=-a-----

d3p

Substitution of the values of the various B's shows that the above
expression for amplification factor is independent of del- In general, the
electrostatic amplification factor of the pentode will have a value approxi
matel:r equal to that given by the product of three triode fiU'S calculated
by considering the plate, the suppressor grid, and the screen grid as plates
of a triode and the next two electrodes in order toward the cathode as
grid and cathode. 1

Also available from Eq. (11.33) is the electrostatic amplification
factor giving the relative effectiveness of the control grid and screen grid
in controlling space current. It is

(1 - B 2)(1 - B 3 ) + B 1(1 - B 3)

del d12
J.L 12 = ----------=B:--

I
--:-(1------=B----:

3
)------=B-

1
B-

2
--

d12 - d
23

(11.35)

The above expressions for amplification factor have some small inherent
inaccuracies due to the fact that the filleting of potentials about some of
the grids has been neglected.The inaccuracy is probably not more than a
few per cent. More accurate expressions for electrostatic amplification
factor may be derived from Eqs. (11.16) to (11.20), but these are so
cumbersome as to be almost totally useless.

True Amplification Factor of a Pentode. The true amplification factor
of a pentode must take into account not only the electrostatic action

1 THOMPSON, B. J., Space Current Flow in Vacuum Tube Structures~ Proc. I.R.E.,
vol. 31, pp. 485-491, September, 1943.
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(11.36)

within the tube but also the division of current bet\veen the electrodes.
Let the true amplification factor of the pentode be defined by

(

alP)
(
dVp ) aVl

J,Lp = - dV l Ipconst = - alp

avp

In deriving the true amplification factor" use \vill be made of the following
relation,

(11.37)

(11.39)

where n is a constant of approximate value 1.5, the J.L'S are electrostatic
amplification factors measuring the relative effectiveness of the electrode
in question and the control grid in controlling the space current, G is

2.335 X 10-6 •
perveance of value d2 amperes per unIt area per voltn , and d

is the equivalent control-grid-cathode spacing as calculated from Eq.
(8.45) but with the screen grid considered as the triode plate.

Let the ratio of plate to screen-gri.d current be given by

Ip=g(Vp) (11.38)
12 V 2

and let the functional relation be indicated subsequently by the symbol g.
The ratio of plate to space current is given by

I p

lp I p _ 12 _ g
I. = 12 + 1p - 1 + 1p - 1 + g

12

and hence

(11.40)

where VeQ is the equivalent voltage VI + V2 + V 3 + Vp.
J.L12 J.L13 jJ,lp

The partial derivatives that enter into the determination of the true
amplification factor can now be evaluated.

~!J! = nG(V )n-l -g
aV l eq 1 + g

dg

i)lp _ nG (V )n-l g G(V) dVp
aVp - jJ,lp eq 1 + g + eq n (1 + g)2

(11.41)

(11.42)
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Upon combining these last two expressions, the resulting expression
for the true amplification factor is

}Lp =
dg

!JlpVeq dV
1 + p

ng(l + g)

(11.43)

If the ratio of plate to screen-grid current is assumed to have the form
previously given

(11.1)

then

(11.44)

From this it is seen that the true amplification factor is less than the
electrostatic amplification factor by a considerable factor.

11.5. Transconductance of a Pentode. The transconductance of a
pentocle is readily obtained. Let

Gm = GlP = alp (11.45)
cJV1

but

(11.46)

and so

(11.47)

since the ratio of plate to space current is independent of control

grid voltage. The quantity :~ may be designated as Gb and may be

obtained from the triode mutual-conductance formula [Eq. (8.47)] by
considering the screen grid of the pentocle as the plate of a triode. Equa
tion (11.47) states that the control-grid-plate transconductance of a
pentocle is equal to the triode mutual conductance of the first three elec
trodes, reduced by the ratio of the plate current to the screen current.

11.6. Plate Resistance of a Pentode. The plate resistance of a
pentode is the reciprocal of the plate conductance defined by

(11.48)
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I dg
G alB g 8 dVp

p = avp 1 + g + (1 + g)2
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(11.49)

rfhe first term in this last expression results from the variation of the
emitted current with plate voltage. The second term results from the
change in plate current occasioned by the variation in current division
with plate voltage. When the current-division function of the pentode
has the form of Eq. (11.1), the above expression reduces to

(11.50)

11.7. Design Considerations. In a pentode the ordinary constants
are readily made to assume satisfactory values. Prime interest is cen
tered in the transconductance. Here the same considerations apply as
in the triode, and no greater difficulty is encountered. The amplification
factor and plate resistance are naturally high and require no particu
lar attention. Thus interest is focused upon some of the other character
istics of the tube that affect its operation. These other characteristics
are

1. Suppression of secondary electrons.
2. Sharpness of the shoulder of the plate-current-plate-voltage

characteristic.
3. Plate-current to screen-grid-current ratio.

The above factors are controlled by some factors that have not appeared
before in this study of vacuum-tube design. These are

1. Shape of the potential field before the plate.
2. Electron deflection by the grids.

In previous considerations of tube characteristics the principal con
cern has been with the potential field and ,vith the space-charge flow.
In the pentode, in addition, the electron paths are critical.

The suppression of secondary electrons from the plate is not a difficult
problem, though some attention must be paid to the electrode dimensions.
The critical factors are the pitch of the suppressor grid and its distan~e

from the plate. In Fig. 11.12 is shown the effect of different suppressor
grid pitches upon the retarding potential offered to secondary electrons
created at the plate as a function of plate voltage as calculated from Eq.
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~
V2

FIG. 11.13.-Retarding increment of
potential before the plate of a pentode
as a function of plate voltage for
various suppressor-grid locations.

(11.6). The minimum potential referred to in the figure is the minimum
of potential on a line normal to the plate passing midway between grid

wires. As the suppressor-grid pitch
is decreased, this minimum potential
is decreased and the retarding poten
tial offered to the secondaries thus
increased. The effects are linear
with the various potentials involved,
provided that space-charge effects
do not distort the potentials appreci
ably. In Fig. 11.13 is shown the
effect of putting the suppressor grid
in different positions between the
screen grid and plate, as calculated
from Eq. (11.6). This changes both
the magnitude and the rate of change
of the retarding potential. For sup-

FIG. 11.12.-Retarding increment of pressing plate secondaries it is de-
potential before the plate of a pentode sirable to have a fixed retarding
as a function of plate voltage for
various suppressor-grid pitches. potential. This cannot be realized,

and therefore the arrangement of
electrodes that gives the most retarding potential at low plate potentials
is desired. This means that a small
suppressor-grid-plate distance is
indicated. So also is a small sup
pressor-grid pitch. Some other con
siderations, as we shall see, limit the
degree to which the suppressor pitch
can be reduced, but both the above
factors should be considered to ensure lp -vmin

secondary suppression. 1 V2

The other new factor in pentode
design, viz., the deflection of electrons
by the grids, is probably more impor
tant than the secondary suppression,
since the latter is usually achieved
without too much difficulty. The
electron deflection by the grids will
affect strongly both the sharpness of
the plate-current-plate-voltage char
acteristic and the ratio of plate to

1 JONKER, J. H. L., Pentode and Tetrode Output Valves, Parts I, II, Wireless Engr.,
voL 16, pp. 274-286, 344-349, July, 1939.
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screen-grid current. The more the electrons are deflected by the grids,
the fe\ver will reach the plate at ordinary plate voltages and the less rapid
will be the increase of plate current ,vith plate voltage.

An exact study of electron deflection by the grid wires is rather dif
ficult, but an excellent approximate analysis of the deflections can be
made by using the fact that the potential field bet\veen the grid ,,-ires
acts like a cylindrical lens and may have the effect of either focusing or
dispersing the electrons \vhich pass bet\V"een them. Thus in Fig. 9.10a

p63

I
I
I
I
o

o~==8lp

l5=O
FIG. 11.14.-Scattering action of a small
pitch suppressor grid far from the plate of a
pentocle.

it is seen that the control grid gives the focusing action of a convergent
lens. This lens, ho,vever, has some very pronounced aberrations. The
focal length for parts of the lens near the grid wires is less than for the
center of the space. In the language of optics, the lens has a positive
spherical aberration. In Fig. 10.6 the focusing action of the control grid
may again be seen. It is also seen that the screen grid exhibits the charac
teristics of a divergent lens. In Figs. 11.14 and 11.15 it is seen that the
suppressor grid has a convergent-lens action. The nature of the lens
caused by the potential field bet\veen grid ,vires depends upon the gradient
of potential on the t,vo sides of the grid and is, to first order, independent
vi such things as the grid radius and pitch.
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The focal length of the lenses formed by the grid wires will be shown
in the chapter on Electrostatic Electron Optics to be given by

f 2Vn

= (dV) (dV)
dXR- dXL

(11.51)

where V n is the potential midway between the wires of grid n, (~~)B is

G2
I
l
I
I
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I
I
I
I
I
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FIG. 11.15.-Focusing action of a large-pitch
suppressor grid close to the plate of a
pentode.

the gradient of potential to the right of the grid, and (~~)L is the gradient

of potential profile to the left of the grid plane. It is seen that ,vhen the
gradient of potential increases upon passing through the grid, f is positive
and the lens is convergent. When the opposite is true, the lens is
divergent. The focal distance as given by the above formula ,vill be
modified somewhat in actual cases ,vhen the gradient of potential is
not zero on the side where the focus occurs, for the electron trajectories
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will tend to be sections of parabolic curves instead of straight lines. The
formula does, however, give a fairly exact indication of the principal
effects and the correct value of sidewise components of velocity.

The nature of the focusing of a set of grid wires is shown schematically
in Fig. 11.16. An electron passing midway between grid wires suffers
no sidewise deflection whatever. As the distance from the midplane
increases, the electrons receive more and more deflection, by a linear law,
so that they all cross over at the same point. This holds true almost
exactly for the center half of the space between the grid wires. The

FIG. 11.16.-Focal action of a grid.

initial offset from the midplane, the focal length, and the tangent of the
angle of deflection are related by

tan a = yo
f

(11.52)

where Yo is the offset from the midplane along the line of the grid wires
of the electron's initial position, f is the focal length, and a is the angle
of deflection. In terms of velocity components,

(11.53)

where V:a: and Vu are the forward and sidewise components of velocity
possessed by the electron shortly after passing through the grid plane
and v is the total velocity.

The experimental agreement between this formula and the actual
behavior is quite good, as shown in Fig. 11.17. Here is shovln the actual
deflection as measured on an elastic membrane (curve a) and the deflec
tion calculated on the assumption of a constant grid-plane potential
equal to the mean potential of the grid plane (curve b). The measured
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deflection is seen to become greater than the linear value as the electrons
first approach the grid ,vires. This is due to lens aberration. The
deflection then decreases. This is because, as may be seen in Fig. 9.10,
those electrons ,vhich come very close to the grid wires are so strongly
deflected that they come within the influence of the next grid wire and
suffer a deflection in the opposite direction.
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(11.54)

FIG.. 11.17.-Deflection angle of an electron as a
function of the offset from the lllid-point ~etween
grid wires.

Introducing the value of f from Eq. (11.51) and the expression for
velocity in terms of potential,

Vun = 2.9~105 Yo [(~~\ - (~~)J

in ,vhich Vyn is the sidewise component of velocity acquired, in meters
per second, from the nth grid, V n is the mean grid potential of the nth

grid, in volts, and (~~)Rand (~~)L are the gradients of potential to

the right and left of the nth grid plane, respectively, in volts per meter.
The corresponding expressions for the three grids of a pentade become

2.96 X 105 (V2 - VI Vi)
V 1 = Yo - -

U VV 1 d 12 del

2.96 X 105 (V3 - V2 V 2 - VI)
Vy 2 = YO - --d--VV 2 d23 12

2.96 X 105 (Vp - Va V 3 - V2)
V2l3 = Yo d -

VVa 3p d23

(11.55)

(11.56)

(11.57)
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in which the sidewise components of velocity are in meters per second,
grid potentials are understood to be mean grid-plane potentials in volts,
and distances are in meters.

The sidewise components of velocity are additive in the form sho\vn
in Fig. 11.18. Curve a of this figure sho,vs the distribution of the side
wise components of velocity after passing through one grid. The side
wise components of velocity are uniformly distributed bet,veen plus and
minus VI where this is the maximum component of this tangential velocity.
After passing through t,vo grids the distribution of velocities has the
form sho,vn in b of Fig. 11.18. This is a trapezoidal figure ,vith velocities

(a)

(6)

VJ-U2+V~

Vz.+VS-VJ VJ+Vz+vJ

FIG. 11.18.-Distribution of sidewise component of
velocity in a beam of electrons scattered by one, two, or
,three grids.

reaching from VI + V2 to the negative of ...-the same quantity. In this
particular figure it has been assumed that V2 is less than VI. The dis
tribution given is arrived at by sliding a rectangular aperture of width
2V2 and of the same height as the rectangle of part a of the figure over the
rectangle of part a and plotting the exposed area as a function of the
displacement of the aperture. Upon repeating the process with an
aperture of \vidth 2va, the distributions of CI and C2 result. The distribu
tion of CI results from the assumption that Va is less than VI - V2, whereas
the distribution of C2 results when Va is greater than VI - V2. 1 Both

1 JONKER, J. L. H., Electron Trajectories in Multigrid Valves, Philips Tech. Rev.•
vol. 5, pp. 131-139, May, 1940.
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these distributions consist of parabolic and straight-line sections with
the same over-all span. The difference is that the distribution of Cl

has a straight-line center section, while that of C2 has a parabolic center
section of large curvature. Both these distributions already show
approximately the form of a Gauss error curve, which they would obtain
from the random deflection of a large number of grids.

If the distribution of tangential velocities as given above is known,
the plate-current-plate-voltage characteristic can be calculated. It is
necessary only to remember that at every plate voltage V p only those
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FIG. 11.19.-Plate-current-plate-voltage characteristic of a
tube with electrons scattered by one, two, or three grids.

electrons ,vill reach the plate ,vhose tangential velocity after being
deflected by all grids is less than a maximum value given by

Vll max = 5.93 X 105 -vv; (11.58)

This follows from the fact that an electron reaching the plate will have
the value of velocity given by Eq. (11.58), and if all this velocity exists
in a sidewise component then the electron will graze the plate and fall
back through more positive spaces in the suppressor grid. If the plate
current-plate-voltage characteristic be calculated on this basis, the curves
of Fig. 11.19 result. The curves shown are for the corresponding
velocity diagrams of Fig. 11.18. Curve a is similar to that which occurs
in a beam-power tube. This is a tetrode with aligned grids in which
the net effect of deflection by two grids is not very different from that
of one grid as seen in Fig. 10.6. This effect undoubtedly contributes to
the sharpness of the shoulder of the beam-power tube. The effect of
two grids is shown at b. This would correspond to the curve of an ordi-
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nary tetrode free from secondary emission. The curve c is a typical
pentode characteristic resulting from the random action of three grids.
It is evident that it is necessary to keep the total side,vise velocity compo
nent of the electrons low in order to achieve a sharp shoulder to the
characteristic. Since all three grids contribute to this in approximately
the same amount, it is necessary to study the effect of each of the grids
to see what can be done to reduce the resulting side,vise component of
velocity. Examination of Eq. (11.54) sho,vs that, in general, the side
wise component of velocity introduced by 5rid deflection may be reduced
by either reducing the grid pitch or decreasing the change in the gradient
of potential on passing through the grid.

Deflections Due to the Control Grid. The same factors that give rise
to a large mutual conductance al:so give rise to small deflection. These
factors are small grid pitch and a small value of cathode-grid spacing.
I t might be thought that a Slnall cathode-grid spacing ,vould give rise
to a large change in the slope of the potential curves on the t,vo sides of
the control grid, but this is not the case, for the mean grid-plane potential
increases as the cathode-grid distance decreases. Nothing much can
therefore ordinarily be done with the control grid to decrease the electron
deflection.

Deflections Due to the Screen Grid. The electron deflections due to
the screen grid may be reduced by increasing the distances d 12 and d 23

in cases in which transit time is not a consideration. They can also be
reduced by decreasing the grid pitch, though there is a limit to this
method, for the current intercepted by the screen grid increases as this
is done.

Deflections Due to the Suppressor Grid. The suppressor pitch cannot
be made too small, for then the mean suppressor-plane potential becomes
too small and offsets the effect of the small grid-wire spacing as far as
electron deflections are concerned. It is, however, possible to make the
suppressor-grid-plate distance quite small, with resulting improvement
in the deflection characteristics. This has the added advantage, as is
apparent in Fig. 11.15, that the current is concentrated in front of the
plate, giving rise to considerable space charge, which aids in increasing
the retarding potential presented to the secondary electrons originating
at the plate. The bad deflection situation that results from the use of a
large suppressor-grid-plate distance is sho\vn in Fig. 11.14.

By making use of the possibilities indicated in the above outline it is
possible to make pentode tubes with shoulders of the plate-current
plate-voltage characteristic nearly as sharp as those of the beam-power
tube.



CHAPTER 12

NOISE IN VACUUM TUBES

12.1. Noise as a Limiting Factor in the IDtimate Sensitivity of Elec
tronic Devices. Vacuum-tube amplifiers making use of triodes and
pentocles are capable of giving extremely large amplification of power
and voltage. In fact, it may be said that an amplification of any desired
magnitude may be achieved by the use of vacuum tubes. At first
glance this would seem to imply that arbitrarily small signals could be
detected. Ultimately, ho,vever, it is found that there is a limit deter
mined by the noise generated by the random motion of electrons at the
input of the circuit. Any signal whose level is appreciably less than
that of the electron noise will be masked by it. The order of the equiva
lent voltage of the electron noise is extremely small, of the order of
millimicrovolts, but many electronic devices have enough amplification
to bring this up to a detectable leveL

Electron noise shows up in both resistors and in vacuum tubes. Even
in a passive resistor, the molecular and the electronic agitation is
evident with sufficient amplification. Here the noise is referred to
as "thermal-agitation noise." In vacuum tubes the random emission
and fluctuation of space-charge-limited currents contribute a similar
noise. In temperature-limited tubes this noise is called "shot noise"
and is due to random emission. In space-charge-limited emission tubes
the noise is much less and is called "reduced shot noise." Both types
of noise are characterized by a uniform distribution of energy over the
frequency spectrum. Depending upon the application, the noise from
either the tubes or the resistors at the input of an electronic device may
predominate.

Needless to say, resistor and tube noise is an exclusive concern of
electronic devices. No other type of device can have sufficient sensitivity
to be limited by random electron motion. Resistor and tube noise set
the ultimate sensitivity of high-gain amplifiers, receivers, phototube
input circuits, and television pickup tubes. Although resistor and
tube noise can never be avoided, much can be done by circuit design and
selection of tubes to approach the minimum attainable noise.

Although the formulas for various types of electron noise and their
application are quite simple, their derivation is dependent upon some

298



NOISE IN V AC:UUM TUBES 299

intimate aspects of thermodynamics and the kinetic theory of gases that
have not been developed in this book. For this reason, only the basis
of the development will be given, and emphasis will be upon the inter
pretation and application of the formulas.

12.2. Noise in Resistors. Noise in resistors is due to the random
motion of electrons within them. The noise energy is proportional
to the resistance, the absolute temperature, and the frequency band
width over which the noise is observed and is independent of the material
of ,vhich the resistor is made. The noise energy increases 'Yith absolute
temperature because the molecular agitation is proportional to this. The
noise is probably made up of extremely short and sharp pulses resul ting
from the impact of the electrons with the molecules. These pulses are
probably so short and sharp that they are made up of a continuous distri
bution of frequency components of equal amplitude up to the highest
frequencies in use today. As a result, the noise energy is uniformly
distributed over the useful r-f spectrum.

The mean-square thermal-agitation noise voltage e2 across the ter
minals of a resistor R at an absolute temperature T, associated with a
frequency band width B, is

(12.1)

,vhere e is rms value of the noise voltage, volts
k is Boltzmann's constant, 1.3805 X 10-23 watt-second per oK
R is resistance, ohms
T r is room temperature, oK (Oe + 273)
B is frequency band ,vidth, cycles per sec1 ,2

If room temperature is taken as 2900 K (63°F), the expression for the
rms noise voltage becomes

erms = 126.0 VRB micromicrovolts (12.2)

A nomograph of this equation is sho,vn in Fig. 12.1. For the sample
construction line sho,vn, the rms value of the noise voltage across a
1,OOO-ohm resistor in a frequency band of 10 me is 12.6 microvolts.

The effect of thermal-agitation noise can be expressed either as an
emf in series ,vith the resistor considered noiseless or as a constant
current generator in parallel ,,·ith the resistor considered noiseless. This
follo'vs from application of Thevenin's and Norton's theorems. 1'he t,vo
equivalent circuits of a noisy resistor are sho,vn in Fig. 12.2. The circle
in the figure indicates a zero-impedance constant-voltage generator

1 JOHNSON, J. B., Thermal Agitation of Electricity in Conductors, Phys. Rev.,
vol. 32, pp. 97-109, July, 1928.

I NYQUIST: H., Thermal Agitation of Electric Charge in Conductors, Phys. Ret;.;
vol. 32, pp. 110-113, July, 1928.
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of the value given by Eq. (12.2). The square in the figure indicates an
infinite-impedance constant-current generator whose output is

i rms = 126.0 ~~ micromicroamperes (12.3)

at room temperature. This is obtained by dividing the expression for
the rros noise voltage by the resistance. The general form of the above
equation is

amperes (12.4)

where all the symbols have their previous significance. A nomograph of
the rms noise-current equivalent of a noisy resistor to fit the right circuit of

Zero impedance
consft1nf vo/faqe

qent;rafor
l,---__

erms= V4kTrRB
r:1

~I :l'.l
~~ I I""'""I l..,"\
~I I~
.~, I.~
o I~

~I I ~
t.:..J

Infi"n/fe Impedance
consktntcurrent

ge.nerafor
,
j

i
i

J
irms =Y4k 'I].B!R

FIG. 12.2.-Equivalent circuits of a noisy resistor.

Fig. 12.2 is given in Fig. 12.3. For the sample construction line shown,
the equivalent rms noise current of a 1,OOO-ohm resistor is 4 milli
microamperes for a frequency band \vidth of 1 me.

The noise po\ver associated ,vith thermal-agitation noise in a resistor
is i 2R, or

N = 4kTB (12.5)

Note that this is independent of the value of resistance. The available
noise power that can be obtained from a resistor by perfect matching is
just one-fourth of this value. This follows immediately from maximizing
the power obtainable from the middle circuit of Fig. 12.2 by varying
the resistance load on such a generator. Maximum output power
is obtained when the load resistance equals the generator resistance and

e2

has a value of 4R' Thus the available noise power is

No = kTB watts (12.6)
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At room temperature of 2900 K this has a value of

N a = 4.0 X 10-21B (12.7)

(12.8)volts2

A nomograph of this equation is shown in Fig. 12.4. A temperature of
300 0 K and a frequency band ,vidth of 10 kc is seen to give an available
noise po\ver of 4.1 X 10-16 \vatt. It is convenient to remember that at
room temperature the available noise power for a I-mc band width is 144 db
below 1 watt.

When t,vo resistances at different temperatures are connected in
parallel, the mean-square noise voltage becomes

e2 = 4k RIR2~R2Tl+ R 1T2) B
(R l + R 2)2

where the resistances are in ohms and the temperatures in degrees Kelvin,
and Boltzmann's constant is 1.3805 X 10-23 ,vatt-sec. When several

Area under recfC1nq/e IS same (IS thai
underpower qpin curve

FIG. 12.5.-Definition of equivalent band
width.

resistances are connected in parallel, the results are better expressed in
terms of conductances. Let conductances G1, G2, Ga, • • • , Gn at tem
peratures T 1, T 2, . • • , T n, respectively, be connected in parallel. The
resulting ~ean-squarenoise voltage is

volts2 (12.9)

Some care must be used in determining the band width to fit the
above expressions. Since the concepts involved are basically those
concerned with power, the equivalent band \vidth of any device must be
defined in terms of the power-frequency curve. In the case of an
amplifier the band width is defined as that frequency interval for whicr,
a power gain equal to the gain at mid-band would transmit the same noise
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energy as does the actual power-gain-frequency curve.
this becomes

305

Analytically,

(12.10a)

where Gp is the power gain. All this amounts to is finding the ,vidth of a
rectangular power-gain-frequency curve of height equal to the mid
frequency power gain of the actual curve as shown in Fig. 12.5. In
terms of voltage amplification, the equivalent band width is

(12.10b)

where G'O is the voltage gain.
12.3. Sources of Noise in Tubes. Noise can occur in vacuum tubes

from a rather imposing list of sources. The principal sources of noise
in tubes are

1. Shot effect (temperature-limited emission).
2. Reduced shot effect.
3. Flicker effect.
4. Collision ionization.
5. Random division of current bet\veen electrodes.
6. Induced noise at ultra-high frequencies.
7. Faulty tube construction.

a. Hum.
b. Poor insulation.
c. Vibration.
d. Varying wall charges.

Shot effect is the noise associated with random emission in a tube
whose emission is temperature-limited. This is probably the loudest
of the electronic tube noises but not the most serious, for tubes are seldom
operated so that their emission is temperature-limited.

The so-called "reduced shot effect" is observed in tubes whose
emission is space-charge-limited. The magnitude of the noise is much
less than in tubes whose emission is temperature-limited. In this case
the space charge exerts a smoothing action upon the true shot effect,
and the noise is principally due to variations in the space-charge currents.

Flicker effect is observed ,vith oxide cathodes. This effect is asso
ciated with variations in the activity of the emitting surface. The effect
is much more noisy than the true shot effect. for temperature-limited
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emission. When the emission is space-charge-limited, the magnitude
of the noise is greatly reduced.

Noise in tubes is raised by the presence of an appreciable amount of
gas. This is due to the fact that gas molecules are ionized by collision
'Yith emitted electrons and the positive ions formed subsequently
liberate little bursts of electrons as they penetrate the virtual cathode
in front of the emitting surface. Gas noise is inappreciable unless the
positive-ion gas current is more than a few hundredths of a microampere.
Such gas noise appears mostly below 10 mc.

Random division of current between electrodes contributes to the
noise of multielectrode tubes and makes pentodes three to five times as
noisy as the same tube connected as a triode. It may be said that
multielectrode tubes will always be noisier than triodes because of this
additional factor contributing to the tube noise.

The ultra-high-frequency components of the random fluctuations of
space charge in a tube will induce voltages in the grid circuit, which in
turn will react back upon the space-charge flow. This effect is important
only for frequency components above 30 mc.

Noise due to faulty tube construction is always present to a degree.
If the filament is not sufficiently noninductive, hum will result. If
insulation is poor at any point in the tube, there will be leakage currents,
which will generally create noise because of nonconstant leakage resist
ance. Vibration may be a factor in an electromechanical feedback
circuit. Dirt on tIle glass inside of a tube may give rise to varying wall
charges, which will influence the tube current in a noisy manner. All
these items can, however, with sufficient care in construction be held to a
very low level.

Items 1, 2, 4, 5, and 6 listed above can never be removed entirely.
They are, however, subject to an analysis that shows how their effects
may be minimized. These items will be the subject of the subsequent
sections. It has been found in most cases that it is convenient to
express tube-noise effects in terms of equivalent noisy resistors. These
resistors in turn are considered to have internal-noise emfs.

12.4. Shot Noise in Diodes with Temperature-limited Emission.
Noise in diodes was probably the first form of tube noise ever detected.
It is generally referred to as shot noise but also as "Schrot noise"
and "Schottky noise," after the scientist who first analyzed the
effect. 1,2 The noise is due to the random emission and arrival of electrons

1 SCHOTTKY, W., Spontaneous Current Fluctuations in Electron Streams, Ann.
Physik, vol. 57, pp. 541-567, Dec. 20,1918.

2 See also FRY, T. C., The Theory of the Schroteffekt, Jour. Franklin [nst., vol.
199, February, 1925.
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at the plate. It cannot be explained in terms of individual electron
emission or arrival alone, for if the electrons were emitted at a uniform
rate the lo\\rest frequency component of noise would be above the highest
frequency that vacuum tubes can handle. Thus a current of 1 rna cor
responds to a flow of approximately 1016 electrons per sec. If these
did flow at a uniform rate, there would be no noise components below
1016 cycles per sec. The electron stream evidently exhibits rather
pronounced variations in density caused by the electrons arriving in
groups. The mean square of the fluctuation components of current is

Inftnile impetlance
cOl7$fRnr current
generator

kmpenJIfure
/imifed
curren!

FIG. 12.6.-Constant-current-generator equivalent of a diode with ternperature..
limited current.

found to depend only upon the magnitude of the emitted current and th~

frequency band width
where e is electronic charge, 1.6020 X 10-19 coulomb

Z2 = 2eloB amperes2 (12.11)

lois emission current, amperes
B is band width, cycles per sec

This expression may more conveniently be written

~2 = 3.2041 X lO-191oB amperes2 (12.12)

If the current from a diode with temperature-limited emission is put
through a resistor R, the diode effectively puts a noise power of value
1,2R into the resistor.

The above relations have been verified experimentally and they are
reproducible to a high degree of accuracy. This property makes
the diode with temperature-limited emission valuable as a standard
noise source for such purposes as receiver and amplifier sensitivity
measurement.

The diode with temperature-limited emiasion acts like tt consta,nt-
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current generator as far as noise energy is concerned and ,vill put a noise
current given by the above equations through a resistor of any size.
The equivalent circuit of the diode ,vith temperature-limited emission is
shown in Fig. 12.6.

12.5. Reduced Shot Effect in Diodes with Space-charge-limited
Emission. In diodes in ,vhich the emission is space-charge-limited, the
shot noise is much less than in the same diode passing the same current
,vhen its emission is temperature-limited. 1-

4 The noise pn\ver is of the
order of 10 per cent of that encountered for the same current when the
emission is temperature-limited. The space charge thus has a very
definite" smoothing" action upon the shot effect, giving rise to what may
be called the "reduced shot effect." The mechanism of the smoothing
action of the space charge is something like this: The virtual cathode in
front of the emitting surface has a potentiallo,ver than that of the emitter
by a value determined by the mean velocity of emission. Electrons
,vith all velocities are storming this potential hill, and those ,vith velocities
greater than the mean velocity ","ill on the average get past the virtual
cathode and go on to the plate. Occasionally there will come a group of
electrons \vith a velocity slightly in excess of that needed to get past the
virtual cathode. When this occurs, the potential minimum at the virtual
cathode is momentarily depressed by the additional space charge and as
a result a fe\v electrons that normally would have got past the potential
minimum fail to do so and are returned to the emitter. This means that
for every burst of electrons ,vhich might give rise to noise there is a
compensating current set up in the opposite direction "rhich tends to
cancel the noise produced by the burst. The net result is an over-all
reduction in noise that is considerable. The resulting noise levels are,
ho\vever, high enough still to be of concern in the design of electronic
equipment.

By considering the action of each increment of the velocities encoun
tered in the process of emission some fairly good theoretical expressions
for the reduced shot noise may be obtained. If the ratio of the noise

1 RACK, A. J., Effect of Space Charge and Transit l"ime on the Shot Noise in
Diodes, BellSys. Tech. Jour., vol. 17, pp. 1-28, October, 1938.

2 NORTH, D.O., Fluctuations in Space-charge-limited Currents at Moderately High
Frequencies, RCA Rev., vol. 4, Part II, pp. 441-473, April, 1940; vol. 5, pp. 244-260,
July, 1940.

3 WILLIAMS, F. C., Fluctuations of Space Charge Limited Currents in Diodes,
Jour. I.E.E., vol. 89, Part III, pp. 219-229, December, 1941.

4 BELL, D. A., Fluctuations in Space Charge Limited Currents, Jour. I.E.E., vol.
89, Part III, pp. 207-212, December, 1942.

See also SCHOTrKY, W., lViss. V croffent. Siemens-Werken, vol. 14, p. 15, 1937.
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power of a diode passing a given current with and without space-charge
limitation of current be designated by r2, then, for a plane-electrode
diode with a large ratio of plate voltage V p to average emission voltage
(velocity equivalent) Ve,

(12.13)

seems to be functionally correct.t,2 The mean-square noise current can
be expressed by an equation similar to that for the diode with tempera
ture-limited emission as

amperes2 (12.14)

by analogy to Eq. (12.11). The mean-square noise current can also
be written in the form

(12.15)amperes222 = 8 4kTcB
R1

by analogy to Eq. (12.4). In this form, 0 is a dimensionless parameter
that has an asymptotic value of 0.644 for large ratios of plate to minimum
potential, T c is the absolute cathode temperature, and R1 is the a-c
diode resistance. Theoretically, the parameter f) is within a fraction
of a per cent of the asymptotic value as long as the plate current is
less than 80 per cent of the emission current and the plate voltage is
greater than 2 volts for normal oxide operating temperatures. 3--5 Experi
mentally determined values of diode noise are 50 per cent higher than
predicted by the theoretical expressions of Eqs. (12.13) and (12.15),
so that 8 assumes a value of unity for diodes. The significance of Eq.
(12.15) is that the noise power from a diode whose emission is space-charge
limited is the same as that from a resistor at the cathode temperature equal to
the a-c diode resistance. 6 The equivalent circuit for this case is given in
Fig. 12.7.

1 WILLIAMS, op. cit.
2 BELL, Ope cit.
3 PEARSON, G. L., Shot Effect and Thermal Agitation in an Electron Current

Limited by Space Charge, Physics, vol. 6, pp. 6-9, January, 1935.
4 RACK, Ope cit.
I» NORTH, Ope cit.

e Combination of Eqs. (12.14) and (12.15) and the use of the fact that R. = ~ j:
for the diode with space charge suggests that r 2 has the value (0.644) 3k

V
Tc, which is

e p

consistant with the observed relation of Eq. (12.13).
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12.6. Reduced Shot Effect in Triodes with Space-charge-limited
Current. Triodes, too, are noisy. In fact, the noise in triodes, as pointed
out before, may be a limiting factor in the sensitivity of an electronic
device. The noise is due to the effects just observed in diodes and shows

l~ms =V2eIo B

ln~n;fe impedance
cons/anf current

IJenerttfor

7emperdfure
limifed
currenf

-'Zero
;- ~ impedance

~ I I consfetnf
<E: 1..1 I voltage
co ~I I qenerafor
'~'~I I
~ ~I I
~ C, I

I I
~...J

Space charge hin/fed
current

FIG. 12.7.-Resistor equivalent to a diode with space-charge
limited current.

as a fluctuation in plate current. It is convenient to interpret the noiso
in a triode as being due to a noisy resistor in series ,vith the grid of the
tube considered free from noise. The value of this noisy resistor in
series with the grid is

(12.16)ohms
oTE

Req = GmT,Gm

where 8 is the effective cathode-temperature ratio of approximate value
two-thirds, Gm is the mutual conductance of the triode, G is the a-c
conductance of the diode equivalent of the triode, Tc is absolute cathode
temperature, and T, is absolute room temperature. The ratio of equiva-
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(12.17)

lent-diode conductance to triode mutual conductance is the inverse-square
ratio of equivalent-diode spacing to the cathode-grid spacing as discussed
in Chaps. 7 and 8. For the plane-electrode diode, from Eq. (8.45), this
ratio is

!L = [1 + ! (dcp)~]%
Gm J.L den

The corresponding ratio for cylindrical triodes is difficult to express

Noisy
fr/ode

lnpuf
circuit

Noise free
triode

Oufpuf
circuif

Input
c/rcuit

Noise'
resislor Oufpuf

circuit

Input
circuit

R -Q644 GTe "" 2.5
eq-' 6 2 x.=am r 'In

Outpuf
circuil

(12.18)

2.5 Ip (; 8 T2)FOr penfode Req=G:-I: 1+0-
:m S OJ

FIG. 12.8.-Equivalent circuit of a noisy triode.

exactly but is given approximately by

~ = 1 + ! [1 + ~ In ~]
Gm J.L 3 Tg

The value of this ratio will generally lie between 1 and 2. Assuming
that a typical value of the conductance ratio is 1.25 and that tbe cathod~
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temperature is 3.33 times the room temperature, Eq. (12.16) reduces to

ohms (12.19)

which is sufficiently accurate for a good many purposes. 1 The value
of equivalent resistance thus given is that resistance which if inserted in
series with the grid of the triode considered noise-free would cause as
much noise current in the plate circuit of the tube as does the reduced
shot effect. The equivalent circuits of triode in terms of a noise-generat
ing resistor and a noise-free tube is given in Fig. 12.8. Observed values
of noise in a triode agree very. closely with the values predicted by the
above equations, much more so than was the case with diodes.

12.7. Noise Due to Gas in Tubes. When there is gas in tubes, there
is an extra component of noise due to the electrons and ions liberated by
collision ionization. The electrons passed by the grid will collide with
some of the gas molecules, forming positive ions and liberating more
electrons. The liberated electrons will pass on to the plate and give rise
to some extra noise. The positive ions will be attracted to the negative
grid and flowing through the external impedance will cause a voltage
in the grid that will also give rise to noise. The noise is proportional to
the number of ions formed, which in turn is proportional to the normal
space current and to the number of gas molecules, or gas pressure.
Fortunately, the positive-ion grid current is a measure of the number of
ions formed per second and can be used to determine the noise without
knowing the gas pressure. 2 ,3 As with other components of noise, the
noise can be described in terms of a resistor in series ,vith the control
grid of the tube considered noise-free. The equivalent noise-generating
grid resistor is

ohms (12.20)

where Rg is shunt resistance of the grid circuit, ohms
Gm is mutual conductance, mhos
I p is plate current, amperes
11 is control-grid current, amperes

1 HARRIS, W. A., Space Charge Limited Current Fluctuations in Vacuum Tube
Amplifiers and Input Systems, RCA Rev., vol. 5, pp. 505-524, April, 1941; vol. 6,
pp. 114-124, July, 1941.

2 Ibid.

3 THOMPSON, B. J., and D. O. NORTH, Fluctuations in Space-charge-limited Cur
rents Caused by Collision Ionization, RCA Rev., vol. 5, pp. 371-388, January, 1941.
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The first term in this expression is due to the flo,v of positive-ion current
through the external grid impedance. The second term is due to the
electrons liberated upon ionization that are attracted to the plate.

As an example, consider the case of a gassy tube for which the positive-ion
control-grid current is 0.01 microampere. Let the mutual conductance of the
tube be 5,000 X 10-6 mho, the plate current 1 rna, and the shunt resistance of
the grid circuit 100,000 ohms. Then the first term of Eq. (12.20) contributes a
noise resistance of 2,000 ohms, and the second term contributes a noise resistance
of 3.20 ohms. The second term of Eq. (12.20) is usually much smaller than the
first term, as in this example, and can ordinarily be neglected.

12.8. Reduced Shot Effect in Multielectrode Tubes with Space
charge-limited Currents. Pentodes are even noisier than triodes-by a
considerable factor. In fact, by comparison, triodes are relatively quiet.
The additional noise in pentodes is due to the random division of the
fluctuation noise bet,veen the electrodes. The individual groups of
electrons that burst through the virtual cathode are quite local in their
impingement upon electrodes in their subsequent travel, but the com
pensating currents due to the displacement of the virtual cathode are
more or less uniformly distributed bet\veen the electrodes in the ratio of
the direct currents. As a result, the smoothing, or compensating, action
in a pentode is much less pronounced than in a triode.

As with the triode, the noise of a pentode can be expressed as being
due to a noisy resistor in series ,vith the control grid of the tube con
sidered noise-free. The equivalent resistor in this case is1•2

(12.21)

where all the symbols have their customary significance. Currents must
be expressed in amperes and conductances in mhos to yield equivalent
resistance in ohms. T'he first factor of Eq. (12.21) is seen to be the
equivalent· resistance for a triode. The remainder of the expression
generally increases the value of the trioqe equivalent resistance by a
factor of three to five. For screen currents much smaller than the plate
current the noise in both the plate and screen circuits is approximately
equal to the true shot effect for a current equal to the screen current.
The value of the mean-square noise current in the plate circuit is readily
obtained from this by means of Eq. (12.12) and converted to an equivalent
noisy resistor in the plate c£rcuit by means of the nomograph of Fig. 12.3.

1 NORTH, D.O., Fluctuations in Space Charge Limited Currents in ~1ulti-collec

tors, RCA Rev., vol. 5, pp. 244-260, October, 1940.
2 HARRIS, op. cit.
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(12.22)

12.9. Noise in Mixer Tubes. Mixers are also noisy. The factors
that contribute to the noise of triodes and pentodes also contribute to
mixer noise. In a mixer a large voltage from the local oscillator is applied
to the tube so that the current and the mutual conductance swing over a
large value. Since the noise of tubes is known as a function of current
and mutual conductance, it is not too difficult to evaluate the mixer noise.

In a mixer it is the noise in the intermediate-frequency band that is of
importance. The noise in this band will vary periodically over the local
,oscillator cycle as the mutual conductance and current vary with the
voltage applied at the local oscillator frequency. The total intermediate
frequency noise can be obtai!1ed by summing the plate noise over the
local oscillator cycle.

1 (21f
ii-J2 = 27r J0 ?'pn

2 d(wt)

where i p ,.2 is the mean-square noise current in the plate at any instant
t and w is 2n- times the local oscillator frequency. It is convenient (except
in the case of the diode mixer) to express the mixer noise in terms of an
equivalent noise resistance in series with the control grid of the tube
considered as noise-free. Thus

- 2- 2 _ ~i-f
en - G

c
2 (12.23)

(12.25)

(12.24)

where Gc is the conversion transconductance of the tube. Corresponding
to this value of input noise, the equivalent input noisy resistor is

R
€n2

eq = 4kT
r
B

- 2

R ~i-f

eq = 4kTrGc2B

Upon applying the above ideas there are obtained the results shown in
Fig. 12.9 for a fictitious pentode tube connected in accordance with the
four most common mixer connections.! In this figure, Go is the maximum
value which the mutual conductance assumes over the local oscillator
cycle, generally that corresponding to zero grid voltage. The quantity
Gz: is the maximum value of the screen-plate transconductance. The
quantity Iz: is the maximum value of plate current when the signal is

1 HEROLD, E. W., Superheterodyne Converter Considerations in Television
Receivers, RCA Rev., vol. 4, pp. 324-337, January, 1940.

See also the summarizing articles by HEROLD, E. W., and L. MALTER, Some
Aspects of Radio Reception at Ultra-high Frequency, Proc. I.R.E., vol. 31, pp. 423
438, 491-510, 567-582.
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8Q28Go

TYPICAL
CHARACTERI STI CS

/1t J~t
LJGm __LYb
Jg-' Jg--

TYPE OF
fl RST DETECTOR

injected into the screen circuit and the local oscillator into the control
grid circuit.

It is seen that the triode is the best converter and the pentode with
signal and local oscillator applied to the control grid is the next best.
The others are too noisy for high-sensitivity applications.

APPROX. APPROX. EQUIVALENT
CONVERSION EQUIV.NOISE NOISE MICROVOLTS
TRANSCOND. RESIST. ON GRID*

~
~

+osc. C

~
M

~
~/~~ r
+~

Q1JGo
15+21 :0__'0

Go
/6

Q/4GO J2

a28Gx

S7 I r,
G,x

Gx

*Assuming Go=/5x IO-Jmhos
I o =JOxIO-Jamps
4f=4mc

FIG. 12.9.-Comparison of fictitious modulators presumed to have similar cathode and
first-grid structures. (Herold.)

When the values required in the tabulation of Fig. 12.9 are not
available, the following formulas will be found sufficiently accurate for
most purposes:

For triode mixers,
4

(12.26)Req = Go

or

Roq = 2.50", (12.27)Gc 2
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or

For pentode mixers

VACUUM TUBES

(12.28)

(12.29)

,vhere currents must be expressed in amperes and conductances in mhos.
am is the mean transconductance over the local oscillator cycle, and Gc

is the conversion transconductance of the local oscillator. In addition,
the following rules of thumb may be applied,

Gc (as converter) = ~Gm (as amplifier)
I p (as converter) = "Y4lp (as amplifier)
I 2 (as converter) = "Y412 (as amplifier)

and, for pentodes only,

Req (as converter) = 4Req (as amplifier)

(12.30)
(12.31)
(12.32)

(12.33)

in which the values" as amplifier" refer to the peak of the local oscillator
cycle.!

12.10. Noise Induced at mtra-high Frequencies by Random Emis
sion. At ultra-high frequencies there is a conductive component to the
input admittance of a tube. The finite transit time of the electrons
makes it possible for the grid to transfer energy to the electrons as they are
accelerated. 2 There is a separate component of noise associated \vith
this effect. 3 ,4 The high-frequency components in the tube noise induce
currents on the grid, which in turn influence the electron current, thus
giving rise to an extra component of noise. The equivalent input noise
conductance is found to be the same as the input conductance, but at
approximately five times room temperature. This extra component of
noise may be represented as a constant-current generator across the
electronic component of grid conductance across the input circuit.
To a first order of approximation the induced noise is independent of the
normal noise component, which may be added in series with the grid as

1 HARRIS, Ope cit.
See also articles by HEROLD, Proc. I.R.E., for some typical values.
2 FERRIS, W. R., Input Resistance of Tubes as Ultra-high Frequency Amplifiers,

P1'oc. I.R.E., vol. 24, pp. 82-107, January, 1936.
3 NORTH, D.O., and W. R. FERRIS, Fluctuations Induced in Vacuum Tube Grids

at High Frequencies, Proc. I.R.E., vol. 29, pp. 49-50, February, 1941.
4 BALLANTINE, STUART, Schrot Effect in High Frequency Circuits, Jour. Franklin

lnst., vol. 206, pp. 159-168 August, 1928.
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has been done before. The equivalent circuit for this effect is shown
in Fig. 12.10. At ultra-high frequencies there is a component of grid
input conductance due to feedback through the cathode-lead inductance,
as ,veIl as the component due to electron-transit-time effects. Both
components vary as the square of frequency and thus are hard to separate.
The feedback component has noise associated with it too, but as a resistor
at room temperature.

NOIsy UHF
friode

Inpuf
ct'rcu/t

No/se free
friode

Oijfpuf
circu/f

Input
c/rcuif

Inpuf
c'-rcu/f

Noisy
resisrors

Ou/puf
circuit

OUfpuf
circuit

Noise/free \irms=t/4k (S7;.)GeB
res/star

FIG. 12.10.-Equivalent circuit for induced noise in a tube
at ultra-high frequencies.

In general, the noise of amplifiers does not change much ,vith feed
back. This is because the amplification and input impedance are
ordinarily changed by the same factor.

12.11. Noise L.1. Velocity-modulation Tubes. In a velocity-modula
tion tube a beam of electrons passes through the two grids of a resonator,
between ,vhich there appears a high shunt resistance. Noise is gener
ated, but there is evidently very little space-charge smoothing action in
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this case. This is expected from the fact that there is no virtual cathode
between the grids of the resonator. As a result, the noise is nearly the
full shot noise of the beam, and therefore the noise power delivered to
the resonator is given closely by

N = 2e1oBR8h watts (12.34)

where e is charge of the electron, 1.6020 X 10-19 coulomb
10 is beam current, amperes
B is frequency band width, cycles per sec

R ah is shunt resistance of the resonator, ohms
The equivalent circuit is shown in Fig. 12.11. In many cases the
electron transit time across the grids is an appreciable fraction of a cycle,

Inf'inite impedance
cOl1slunf curren!

==Gia rillE
;~ms·YA2eIoB amperes

FIG. 12.11.-Noise-equivalent circuit of a veloc
ity-modulated tube.

in 'vhich case the transfer of energy from the electrons to the resonator is
not perfect and the noise power delivered above is reduced by the factor

(12.35)

where f) is the transit angle of the electrons. This expression gives the
efficiency of energy transfer between the electrons and the resonator and
is developed in Chap. 17. I t applies only to tubes with fine grids.

12.12. Noise in Phototubes. High-vacuum phototubes produce the
same noise as do hot-cathode tubes with temperature-limited emission.
This is true shot effect, giving rise to a mean-square fluctuation current
of the value

i n
2 = 2e1oB = 3.2040 X 10-19IoB amperes2 (12.36)

This is the same value of current as is produced by a resistance at room
temperature of value

R t1C1 = 72010 ohms (12.37)
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The noise may be represented by a constant-current generator in parallel
\vith the tube considered noise-free. The noise from the tube will often
be of the same order as that produced by the large-value resistor used to
develop voltage. Thus, if a lO-megohm resistor is used to develop
voltage, the noise from the tube will be the same as the noise from the
resistor when the current is 0.005 microampere. At higher currents the
phototube noise predominates. The equivalent circuit of a typical
phototube input circuit is shown in' Fig. 12.12.

Gas is sometimes used in phototubes to increase the plate current
by cumulative ionization. When this is done, the noise is increased by

IofltllJAmPIINert
Actu"f cOJ rcuit

irms=I!4k7;.B/R:
R=oo '

r.:,
irms==Y2eIoB~. ~~, ~ :

~ _~r! f
R= R1 R2 ·· -._-_--_-...--_L...:J_06-----__........_.....J ----oJ

R~TR2 Equivalent noise circuit(Noise free)
elements

o =Zero /mpedance, constanf voltage generator

0= /nfin/fe /mpedC1nce., consfanf curren!genercrfor

FIG. 12.12.-Noise-equivalent circuit of a phototube
input circuit.

about the same amount as the signal but the signal-to-noise ratio is in
general improved because the contributions of noise from other sources
becomes relatively less.

12.13. Noise in Secondary-emission Multipliers. Another type of
electronic amplifier in which noise may be a consideration is the second
ary-emission multiplier. In such a tube there is a series of electrodes at
successively higher potentials, each coated with a material that emits a
large ratio of secondary to primary electrons. Electrons that strike the
first anode give rise to S times as many electrons, which are attracted
to the second anode, where they give rise to S times as many as the
striking electrons, or 8 2 times as many as struck the first anode. After n
such impacts the current is Sn times as great as it was originally, S being
the ratio of secondary to primary electrons-a number that can be
made as high as 9 or 10. It might be thought that with such a system
tremendous amplifications could be obtained. True, they can, but no
improvement in signal-to-noise ratio can be achieved.
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Experimental results indicate that the following laws govern the
noise associated with secondary emission in such a device:

1. Secondary emission from any anode follows the shot-effect law,
i n

2 = 2eB10, where 10 is the emitted secondary current.
2. Shot noise from any anode is multiplied by subsequent stages in

the same way as the signal is. 1

Consider the action in a fe\v successive stages of secondary-emission
amplification. Let the current from a first anode be 10 ; then the mean
square noise current associated \vith this is

(n = 0) (12.38)

When the direct current 10 strikes the next diode, it gives rise to a direct
current S10 and the corresponding mean-square noise current is multiplied
by 8 2, so that the mean-square noise current associated with the current
810 is

(n = 1) (12.39)

in which the first term is the amplifier noise power from the previous
anode and the second is that associated with the liberated secondary
current. The above expression is more simply written

(n = 2) (12.40)

At the next anode the liberated secondary current is 8210, and the mean
square noise current is

tn2 = S22eB1o(82 + 8) + 2eBS21o (n = 2) (12.41)
which is equal to

tn
2 = 2eB1o(S4 + 8 3 + 8 2)

Extension of this process to n stages yields

- 2 _ 2 BI Sn(Sn+l - 1)
tn-e 0 S~l

(n = 2)

(n = n)

(12.42)

(12.43)

(12.44)

This means that the ratio of output to input noise power is

Noise po,ver out _ Sn(Sn+l - 1)
Noise po,ver in - S - 1

Correspondingly, the ratio of signal po\ver out to signal power in is

Signal po\ver out = 8211.

Signal po\ver in (12.45)

1 ZWORYKIN, V. K., G. A. MORTON, a·nd L. MALTER, The Secondary Emission
Multiplier, Proc. I.R.E., vol. 24, pp. 351-375, March, 1936.
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(12.46)

(12.47)

Upon taking the quotient of the last two equations, the relative change in
the ratio of signal to noise power is

Signal-po~~er-to-noise ratio in _ Sn(Sn+l - 1)
Signal-po,ver-to-noise ratio out - S2n (S - 1)

This ratio is slightly greater than 1 but approaches this value as the
secondary-emission ratio S is increased. This simply means that signal
and noise are amplified about the same amount in a secondary-emission
multiplier, and as a result there is no gain on the signal-to-noise ratio.
There is, hOlvever, an advantage to using secondary-emission multiplica
tion in that resistor noises are virtually eliminated. Thus a phototube
with secondary-emission multiplication has a lower signal-to-noise ratio
than a phototube-resistor-amplifier combination at low levels of illumina
tion. A further discussion of this specific case is given in Sec. 19.20.

12.14. Definition of Noise Figure. From all the preceding sections
it is seen that there are inherent limitations to electronic devices deter
mined by unavoidable noise. Most electronic devices will, in fact, be
noisier than simple theory predicts because of an accumulation of various
effects. The smallest amount of noise that an electronic device can
possibly exhibit is the available noise power from the thermal agitation
of a resistor in the frequency band considered, as given by Eq. (12.6).
Usually the noise ,vill be more than this. It is therefore convenient to
use as a figure of merit for an electronic device the ratio of the actual
noise power at its output terminals to that ,vhich it ,vould have if the
noise were limited to the minimum noise from thermal agitation. This
figure of merit is called the noise figure of the device. Basically, the
noise figure is an excess noise ratio.

A rigorous definition of noise figure involves a consideration of the
gain of the device and the available input noise power and the output
power. The gain of a device, invariably a four-terminal network, is
defined as the ratio of the available signal power at the output to the
available signal power at the output of the signal generator,

P · 80ut Gower gaIn = SiD. =

This definition of gain is independent of the output impedance of the
device, but it does depend upon the impedance of the signal generator,
which is taken as the nominal input impedance of the device. In many
applications there is no difficulty in using a signal-generator impedance
that is equal to the input impedance of the device under consideration,
but in some applications, such as extremely broad-band devices, it is
extremely difficult to maintain a constant input impedance. Hence.
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it is logical that the figure of merit should include nonconstancy of the
input impedance. The available noise power between two terminals is
defined as the noise power that would be absorbed by a matched output
circuit. The available input noise po\ver is dimply that given from the
Johnson noise formula of Eq. (12.6),

N in = kTB (12.48)

The noise figure is defined in terms of the factor of most importance
in the ultimate sensitivity of an electronic device, the ratio of output
signal to noise power. The maximum value this can have is the ratio of
available input signal to noise p.9wer if there are no other noise sources in
the device and if all impedances are properly matched. Some four
terminal networks that consist of passive elements only, say a trans
former or a transmission line, have no noise sources present in them, but
electronic devices always have some extra sources of noise. The noise
figure F of the device is defined as the ratio of the available signal-to-noise
ratio at the signal-generator (input) terminals to the available signalrto
noise ratio at the output terminals1•2

SiD
F = "kTB

Bout

N out

(12.49)

The noise figure of an electronic device is always greater than unity.
The reference temperature is invariably taken as 2900 K (63°F).

Some rearrangements of Eq. (12.49) are useful. Upon utilizing the
power-gain definition of Eq. (12.47) the noise figure may be written

F = N out

GkTB

From this the available noise output power is

(12.50)

N out = FGkTB watts (12.51)

'fhe available output noise due only to noise sources in the network is

Nout - GkTB = (F - 1)GkTB watts (12.52)

Example: It is desired to calculate the noise figure of a 250-ohm-input 3D-me
intermediate-frequency amplifier having a band width of 2 me and using 6AC7

1 FRIIS, H. T., Noise Figures of Radio Receivers, Proc. I.R.E., vol. 32, pp. 419-422,
July, 1944.

2 NORTH, D.O., Absolute Sensitivity of Radio Receivers, RCA Rev., vol. 6, pp.
332-343, January, 1942.
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pentodes. Coupling between stages is provided with two inductively coupled
tuned circuits. Let the tube constants be

lp = 10 X 10-3

12 = 2.5 X 10-3

Gm = 9 X 10-3

ampere
ampere
mho

Then, from Eq. (12.21), the equivalent noisy resistor in series with the control
grid is

_ 2.5 10 X 10-3 (1 8 X 2.5 X 10-3)

Req - 9 X 10-3 12.5 X 10-3 - + 9 X 10-3

= 715 ohms

From Fig. 12.1 this corresponds to an rms noise voltage of 4.85 microvolts.
Since the noise is developed across the input impedance in series with the equiva
lent noise resistor, while the signal is developed only across the input impedance,
the noise figure is

In cases in which the stage amplification is low the effect of the noise from the
following stage must be considered. In this case consider that the coupling
network is a unity-ratio impedance transformer with an input impedance of
50,000 ohms. If the second stage is identical to the first in operating charac
teristics, then there is a noise voltage of 4.85 microvolts developed in series with
its grid. This voltage corresponds to a current of 97.0 micromicroamperes
through the plate load of the first stage. Upon referring this current back to the

97 X 10-12

control grid of the first stage, it corresponds to a voltage of 9 X 10-3 ' or 0.01075

microvolt. This is small compared with the 4.85 microvolts due to the first
tube and so can be neglected in this case.

Noise Figure for Two Networks in Cascade. Usually the sources
contributing to the excess noise in an electronic device are principally
in the input circuit of the device. However, when the first stage of
amplification has insufficient gain, the noise sources effectively located
in the input circuit of the second stage of amplification contribute
appreciably to the over-all noise as well. Noise from subsequent stages
is generally so small compared with the amplified noise from the earlier
extra sources that it may be neglected. When the condition cited above
is the case, then the following relations hold: Let the first and second
stages of amplification be designated by subscripts 1 and 2, respectively.
Let over-all characteristics be designated by the subscript 12. The over
all power gain G1! is equal to the product of the gains of the first and
R~"'0nd stages, G1G2• Let the band width be that of the over-all charac-
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teristic as defined by Eq. (12.9). The available nOIse power at the
output of the first stage of amplification is

(12.53)

from Eq. (12.51). The noise po,ver in the output of the second stage due
only to sources in that stage is, from Eq. (12.52),

(12.54)

(12.58)

The total available noise po\ver at the output of the second stage is G?
times the quantity in Eq. (12.53) plus the quantity in Eq. (12.54),

N l2 = GJi\(}lkTB + (F 2 - 1)G2kTB (12.55)
or

N 12 = [Fl + (F2G~ 1)] G1G2kTB (12.56)

Now, upon applying the general formula [Eq. (12.51)1 to the over-all
situation,

N l2 = F l2Gl2kTB (12.57)

The values of available output noise over-all, from Eqs. (12.56) and
(12.57), must be equal; therefore

F2 - 1
F l2 = F 1 +---

G1

This is the important relation that has been sought. It gives the over-all
noise figure of t\VO amplifiers in terms of the separate noise figures and
the gain of the first amplifier. Needless to say, the expression is not
limited to amplifiers but may be applied to mixers and net,vorks in
generaL

Sometimes noise figures of circuit elements are expressed in terms of
equivalent temperatures, simply the room temperature multiplied by the
noise figure. The symbol t is often used to designate the ratio of the
actual noise- to the available thermal-agitation noise of Eq. (12.6).
This is most frequently done with passive elements that produce noise,
such as crystal detectors. The noise figure of a crystal input receiver is

(12.59)

where Lx is the conversion loss of the crystal detector corresponding to
the reciprocal of the conversion gain of a tube mixer, tx is the equivalent
temperature ratio of the crystal, and Fa is the noise figure of the amplifier
into which the output of the crystal detector is fed. If the crystal were
noiseless, t:x; would equal unity.
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The design of electronic equipment ,vith regard to obtaining a lo,v
noise figure is a rather complex problem, ,vhich ,,,ill only be touched
upon here. 1 T'he problem is a combination one, involving consideration
of circuits and noise sources. It is possible in some cases that the mini
mum noise figure ,vill be obtained ,vith a condition of mismatched imped
ances o\ving to the fact that a mismatch ,vill reduce the noise more than
it will the signal. With receivers it is found practical to use r-f amplifica
tion before the mixer only up to a certain frequency. This frequency
is of the order of 600 mc at this time. Beyond this frequency the noise
figure of amplifiers is so great that the signal-to-noise ratio is increased
rather than reduced upon amplification. There is also an upper fre
quency limit at which vacuum-tube mixers are practical. At present,
this limit occurs at about 1,000 mc. It is quite possible that these
frequency limits will be extended ,vith time. The limits occur because
the effective mutual conductance of all tubes decreases with increasing
frequency o,ving to transit-time effects, thus raising the noise. The
ultra-high· frequency induced noise effect also contributes to increasing
nOlS~.

12.16. Measurement of Noise and Noise Figure. It is not difficult to
measure the noise and noise figure of an electronic device when its gain
is sufficiently high so that an appreciable output noise power is obtained.
Square-la\v devices such as thermocouples are preferred in noise measure
ments because the output indication is directly proportional to power.
Crystal detectors may also be used at lo\v levels of power. If the rectified
crystal current is kept below a fe\v microamperes, the crystal is almost
certain to be a square-Ia,v device and as such is extremely sensitive. In
this case the rectified crystal current is proportional to the input power.
If a satisfactory po,ver-output indicating device is used, the noise figure
of a device can be measured by simply introducing signal input power
until the output indication from the noise alone is doubled. The input
po,,'er is then equal to that generated by the internal noise sources, and
the noise figure is given by

F = 8 JD
'

kTB
(12.60)

\yhere Sin is the signal po,ver in. For any other adjustment of signal
input po\ver the noise figure is given directly from the defining relation
of Eq. (12.49), it being remembered that the output-power indication is
the sum of the noise and signal power out.

Diodes operating with temperature-limited emission may be used as a
standard source of noise. Such diodes preferably have either a tungsten

1 See the survey articles by HEROLD and MALTER, op. C'l:t.
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or a thoriated tungsten filament. It is difficult to keep the emitted
current from an oxide-emitting surface constant under temperature
limited conditions of emission. The noise, of course, is due to shot effect,
,vith the mean-square noise current given by Eq. (12.12). Diodes may
successfully be operated as a standard noise source up to 100 mc. Beyond
that frequency the impedance transformation introduced by the leads
cannot be determined very accurately. Undoubtedly, special diodes
can be built for noise measurements at higher frequencies. A standard
noise source for measurements of the noise figure of an intermediate
frequency amplifier would consist of the diode in a shielded can with leads
brought in through properly by-passed chokes. Across the diode there
can be placed a coil that tunes the capacity of the diode to the center
of the band of interest. The tuned circuit thus formed should be shunted
by the nominal input resistance of the amplifier to be tested. Output
leads are then brought from across the tuned circuit to the amplifier under
test. Let the nominal input resistance of the amplifier be R; then the
noise power delivered to the resistor of value R shunted across the diode
is 2eloRB, and the available power into the receiver is one-fourth of this.
Let the diode current lobe adjusted until the normal noise output power
of the receiver is doubled when the standard diode noise is connected to
its input. Under these conditions the noise figure, from Eq. (12.60),

. · b eloRB · e h th · I I f 20 h .IS gIven y 2kTB ; or SInce 2kT as e numerlca va ue 0 , t e nOIse

figure is given simply by

F = 2OIoR (12.61)

where lois the diode current in amperes and R is the nominal resistance
of the receiver in ohms.

12.16. Typical Tube-noise Values. In the table on the next page are
given some typical operating conditions and associated noise values of
representative triodes, pentodes, and mixers.
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CHAPTER 13

ELECTROSTATIC ELECTRON OPTICS

13.1. Introduction. The term "electron optics" as applied to the
behavior of electrons under the influence of electric and magnetic fields
has been in use for some time. As the term implies, there is a close
analogy between the behavior'of light rays and electron beams, particu
larly when the fields through which the electron moves are purely electro
static. Electrons move through an electric field just as do light rays
through a medium of continuously variable index of refraction. Elec
trons can be reflected, refracted, and focused very much as can light rays.

Electron optics is a relatively new field of science, but already its
study has led to the development of the cathode-ray tube, the high
intensity kinescope, the image-dissector tube, the iconoscope, the
orthicon, the various forms of electron multiplier tubes, the electron
microscope, and many other devices. The groundwork for the ne,v
science was laid more than a hundred years ago by Lagrange, Maupertius,
and Hamilton, ",,~ho recognized that the principle of least action as applied
to particles was strictly analogous to the Fermat principle of least time,
which holds for light rays. The modern phase of the subject ,vas
ushered in by Busch, who showed in 1926 that the action of a short
axially symmetrical magnetic field on electron beams ,vas similar to that
of a glass lens on light rays. The science ,vas given a firm foundation
by the early workers in the field, among ,vhom Davisson, Calbick,
Brueche, Glaser, Knoll, Ruska, and Scherzer \vere outstanding. At this
\vriting, the total literature includes hundreds of technical articles, and
already a number of books completely devoted to the subject have been
written. 1- S Because of the extensive nature of the subject, it cannot

1 BRUECHE, E., and O. SCHERZER, "Geometrische Elektronenoptik," Springer,
Berlin, 1934.

2 MALOFF, I. G., and D. W. EpSTEIN, "Electron Optics in Television," McGraw
Hill, New York, 1938.

3 MYERS, L. 1\-:1., "Electron Optics," Van Nostrand, New York, 1939. Contains
excellent bibliography complete to 1939.

4 KLEMPERER, 0., "Electron Optics," Cambridge, London, 1939.
For other,more compact summaries see ZWORYKIN, V. K., and G. A. MORTON,

"Television," McGraw-Hill, New York, 1940, and GRAY, F., Electrostatic Electron
328
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be hoped that the present chapter will be more than an abstract of the
most important aspects of the subject~

It has already been indicated that the electrostatic field between the
\vires of a grid constitutes a cylindrical lens which is capable of focusing
electrons. A more useful type of lens is produced by any axially sym
metric field, whether electric or magnetic. An example is the electrostatic
field about a circular aperture~ All the laws that exist for the lenses
of physical optics apply as ,veIl to the lenses of electron optics. An
analogy can be developed bet,veen the quantities of geometrical optics
and the corresponding quantities of electron optics. In the treat
ment given here, the laws of electron optics will be developed from the
mechanics of electron motion, and the analogy with those of geometrical
optics ,vill then be shown.

Snell's Law. The basic law of geometrical optics is Snell's law of
refraction, from ,vhich all the properties of physical lenses can be deduced.
This law has its exact counterpart in electron optics. Snell's law for
optics is

(13.1)

,vhere nl and n2 are the indices of refraction on two sides of a plane
boundary and 81 and (J2 are the angles of incidence and refraction of a
light ray as measured from a normal to the boundary. The corresponding
situation for electron optics is sho\vn in Fig. 13.1. This shows the
behavior of an electron moving in a region with a uniform potential VI
and suddenly crossing into a region with a uniform potential V 2. This is
approximately the situation that exists at the junction of the D's of a
cyclotron, except that the region in which the potential changes from
one value to the other has a small but finite dimension. In going from
the region of one potential to the other, the component of velocity
normal to the boundary is increased if the potential is increased, but
the tangential component of velocity is unchanged. Equating the initial
and final tangential components of velocity,

(13.2)

where v = 5.93 X 105 VV meters per sec when the potential is given
in volts. Comparing Eqs. (13~1) and (13.2) it is seen that the quantity
in electron optics corresponding to index of refraction is electron velocity.

Optics, Bell Sys. Tech. Jour., vol. 18, pp. 1-31, January, 1939; Zeit. fur Tech. Phys.)
vol. 17 (No. 12), 1936.

6 ZWORYKIN, V. K., and others, "Electron Optics and the Electron Microscope,"
McGraw-Hill, New York, 1946.
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This in turn is proportional to the square root of potential if the electron
starts from rest at a point of zero potential.

The Principle of Least Action. A further correspondence between
electron and geometrical optics lies in the principle of least time and the
principle of least action. The principle of least time states that a light
ray will assume a path such that the time between any two points of its

I
I
I

~82
~ I

i
I

I
I
I
I

FIG. 13.1.-Electron refraction..

path will be a minimum compared with that for all other possible paths
between the same two points. Thus

T = f ~s = ~ f n ds = min (13.3)

where 8 is distance, T is time, v is the velocity of light in a medium of
index of refraction n, and c is the velocity of light in vacuum. In particle
dynamics the corresponding law is that the integral of momentum with
distance assumes a minimum value. The integral of momentum with
distance is defined as action. The principle states that

Action = f mv ds = min (13.4)

'The correspondence between the two principles is quite evident. Again
it is seen that the counterpart of index of refraction is electron velocity.
Note, however, that light velocity does not correspond to electron velocity.

Simple Lenses. The lenses encountered in electron optics are gener
ally of a more complex type than the simple lenses of geometrical optics.
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In general, it is more difficult to analyze and to represent their charac
teristics, on three distinct counts, as follows:

Physical
equivalent

_n_n"""--_

1. In light lenses a discrete number of refractions occur at surfaces
between materials of different indices of refraction, whereas in
electron lenses the refraction occurs continuously through the
equivalent of a material of variable index of refraction.

2. The thin lenses of geometrical
optics, i.e., lenses whose axial ~-J2
dimension is short compared // \\
with their focal length, are 1/\ '~__
often operated in air, i.e., the ~_e-_--\[{M~V;;::::,ec~~o-nlen'S
light rays start and finish in a 1.., II' n

medium with the same index
of refraction, with the result
that the lens characteristic can
be expressed in terms of a
single parameter, the focal
length. Electrostatic electron
lenses on the other hand more
often have initial and final
potentials that are different,
so that the equivalent initial
and final indices of refraction ---
are different, with the result
that it takes two focal lengths,
one for each direction, to
describe the lens.

3. The lenses of electron optics
are usually thick lenses, i.e.,
the axial dimension of the lens FIG. 13.2.-Electron lens equivalent of a

thin physical lens.
is not short compared with the
focal "length. In such a lens it is not correct to measure the focal
length from the center of the lens; rather, it must be measured from
a reference plane known as the ccprincipal plane," which may be
outside the lens. This introduces another parameter for the thick
lens. If in addition the initial and final potentials are different,
four parameters are required to describe the lens: a focal length
and a reference plane for each direction.

Although the electron-optical equivalent of thin light lenses is
seldom used, it is interesting for a first consideration to describe the
equivalent of such thin lenses. In Fig. 13.2 is shown a simple, thin,
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convex lens and its approximate electrostatic equivalent. This latter
consists of two concentric electrodes of revolution, as sho'\vn, with the
inner electrode at a higher potential than the outer. The corresponding
axial variation of the index of refraction is sho\vn for both cases. The
focusing property of the lenses is derived from the combination of the
variation of the index of refraction and the curvature of the bounding
surface. In the case of the light lens the bounding surface is sharply
defined, while for the electrostatic lens it is not so sharply defined. Both
lenses have a convergent action. In the case of the electrostatic lens
the convergent action results because the radial component of the
gradient of potential pushes the electron to,vard the axis on both sides
of the lens. The electron path sho\vn in the figure may be used to define
the term "focal length." An electron entering the lens parallel to the
axis is deflected toward the axis ,vhile passing through the lens and
emerges headed toward it. The subsequent path is a straight line because
the electron is in a field-free region after passing through the lens. If
the initial and final straight-line portions of the path be extended so
that they intersect in the lens, then the axial distance between the plane
of this intersection and the plane at which the electron crosses the axis
is known as the focal length. The point at \vhich the electron crosses
the axis is kno\vn as the focal point, and the plane through this point
normal to the axis is known as the focal plane. For the lenses of Fig.
13.2 the focal lengths in the two directions are the same since the initial
and final indices of refraction are the same. Further, any electron ray
entering the lens parallel to the one shown will cross the axis at the focal
point in the absence of aberrations.

The case in which the initial and final indices of refraction are not
equal seldom occurs in geometrical optics, but it is the most common
case in electron optics. A fictitious example to illustrate the light case
may be Msumed to consist of a thin, convex glass lens in the side of a
tank of oil, so that the light rays start in air and end in oil. (It is further
assumed that the index of refraction of glass lies bet\veen those of oil
and air.) This situation is sho,vn in Fig. 13.3 along \vith the equivalent
electrostatic lens. The equivalent electron lens in this case consists of
circular apertures in t\VO parallel-plane conductors maintained at different
potentials. It is interesting to note that the focusing action of the
electron lens is derived from the curvature of the equipotential surfaces
shown rather than from the shape of the electrodes-this is usually the
case. Also sho\vn are the electron and light rays entering the lenses from
both directions parallel to the axis. These rays are known as the
principal rays of the lens, and their intersection with the axis defines
the focal lengths as indicated above. The ray passing from right to left
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is known as the "first principal ray," while that passing from left to
right is known as the "::;econd principal ray." In this case the focal
lengths in the two directions are not equal. It will be shown later that
the two focal lengths are in the ratio of the initial and final indices of

Double
aperture
lens

w/

FIG. 13.3.-Double-aperture lel}s and physical
equivalent.

refraction, the larger index of refraction being associated \vith the longer
focal length.

The lens action in the case of Fig. 13.3 is more subtle than it appears
at first glance. Referring to the light lens and considering a ray passing
through i~ from left to right, it is seen that the action at the left face
of the lens is convergent while that at the right face of the lens is diver
gent. The net action for the assumed indices of refraction is, how-
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ever, always convergent, as will presently be shown. The ray passing
from right to left, the first principal ray, experiences first a divergent and
then a convergent action. The same type of action occurs in the electro
static lens except that the electron path is smoothly curved instead of
consisting of straight-line segments. The second principal ray, originat
ing at the left, experiences a convergent action in passing through the
left part of the lens because the gradient of potential has a radial compo
nent that is directed toward the axis. In passing through the right part
of the lens the second principal ray experiences a divergent action because

•

Equal diamefer
Two cylinder lens

w____J

Physical eC{lIiva/enf

FIG. 13.4.-Two-cylinder lens and physical equivalent.

the gradient of potential has a radial component that is directed outward
from the axis. It may be noticed that when the electron is traveling
in the direction of increasing potential the curvature of the equipotential
surfaces corresponds to the curvature of the equivalent optical-lens
system. Thus, when the equipotential surface as approached by the
electron is convex, the action is convergent and the equivalent physical
lens surface is also convex. When the equipotential surface approached
by the electron moving in the direction of increasing potential is concave,
then the equivalent optical surface is also concave and the lens action is
divergent. When the electron is moving in the direction of decreasing
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potential, then a convex equipotential corresponds to a divergent action
and a concave equipotential corresponds to a convergent action (as on
the right face of the lens of Fig. 13.2).

It remains only to consider the case of a thick lens. Such a lens is
produced by the field of two equal-diameter coaxial cylinders at different
potentials as shown in Fig. 13.4. Such a lens is characterized by having a
long region in which the potential variation occurs. The corresponding
lens dimensions will generally not be short compared with the focal length.
Also shown in Fig. 13.4 is the equivalent physical lens. Principal rays
for this case have the form shown later in Fig. 13.20. The action here
is very similar to that in the preceding example except that the region in
which the lens action occurs is longer. In all the examples given the
electron-lens action has been shown for only one set of potentials. If
the electrode-potential ratio is increased, then the difference between the
initial and final index of refraction is increased and the lens becomes
stronger and the focal lengths become shorter. Thus, in effect, every
electron lens corresponds to a whole set of physical lenses, one for every
possible voltage ratio. This property makes the electron lens a much
more versatile instrument than the physical lens because the lens strength
can be changed by simply changing electrode potentials instead of having
to move lens components relative to one another.

Lens Formulas. For the simple thin lens of Fig. 13.2 having the same
initial and final index of refraction the formula relating distance from
the lens to object and image and the focal length is

-1 1 1T + Z; = 1 (13.5)

,vhere II = distance from lens center to object
l2 = distance from lens center to image
f = focal length

and the minus sign occurs because II is measured to the left from the lens
center. This is well known to photographers and students of physical
optics and will not be proved here. The general lens formula, of which
this is a special case, will be developed for electron lenses from the differ
ential equation of the electron paths. The geometry of the arrangement
is shown in Fig. 13.5.

For the thin lens of Fig. 13.3, which operates between two different
indices of refra-ction, there are two focal lengths, and the lens formula is
given by

:b. +~ = 1 (13.6)
il l2

wherefl is the so-called "first focal length" associated with a ray entering
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(13.7)

the lens parallel to the axis from the right and 12 is the "second foca
distance" associated with a ray entering the lens parallel to the axi£
from the left, object distance is ll, and image distance is l2. The geo-

FIG. 13.5.-Focal relations in a thin lens.

metrical relations for this lens are sho,vn in Fig. 13.6. Note that a ray
passing through the center of the lens does not make equal angles with
the axis before and after passage in this case. Note, however, that the
principal. rays can still be used to construct an image; in fact, principa!~

rays can so be used to construct the image in general.

FIG. 13.6.-FocaI relations in a lens operating
between two different media.

For the thick lens of Fig. 13.4 the situation is somewhat more com
plicated. The lens formula in this case has the form

11 + 12 = 1
II - P l l2 - P2

where the symbols have the significance shown in Fig. 13.7. Distances
measured to the right are positive, to the left negative. The focal
lengths il and 12 are measured from reference planes Hl.and H 2, which
are designated as first and second principal planes, respectively. These
are located at the intersection of the extension of the initial and final
straight-line portions of the respective principal rays. The distances
PI and P2 measure the distance from the lens center to the principal
planes in the direction of the principal rays. The distance P 2 is negative
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in this case. The focal lengths 11 and 12 are measured from the principal
planes to the intersection of the principal ray with the axis, 11 being
negative. These intersections of the principal rays with the axis are
known as "focal points" and are located at a distance F 1 and F2 from the
lens center. The significance of Eq. (13.7) is that the object and image
distances must be measured with respect to the principal planes rather
than with respect to the lens center. In effect, the behavior of a thick
lens is the same as if the space between the principal planes did not exist,
making them coincident, and a thin lens were located at the plane of
coincidence.

The method of constructing an image from an object is evident from
Fig. 13.7. To find the point on the image corresponding to any point
on the object, draw a first principal ray through that point on the object

~
I

t-===;-:::. -_-:_-?'_~~-_-_-_~==j
~ --i:~_"-1__2"1o-.-__ ~~---------- l2 -~11------------1

--+-__• .--.I----r,--+-_--t----- -+ -.,;;;~~ __--+-_

.---. _.--- ~ ---l----i-.:::j-l':_:..:_::.:__=*~~r-------~-~

L--~---~--~----
~- LE _.---

I ~

J
~

FIG. 13.7.-Thick-Iens terminology.

and through the first focal point until it intersects the first principal
plane. From this point of intersection draw a ray parall~l to the axis
extending to the right. Through the same point of the object draw a
second principal ray parallel to the axis, and extend it until it intersects
the second principal plane. From this point of intersection draw a ray
through the second focal point, and extend it until it intersects the ray
first constructed. The intersection of the ...two principal rays gives the
point on the image corresponding to the point on the object. Thus, if
the t\VO focal lengths and the location of the two principal planes of a
thick lens are known, the image corresponding to any object can easily
be constructed.

13.2. Electrostatic-lens Fields. The analytical treatment of electron
lenses has not been very completely developed. Ideally, it would be
possible to obtain expressions for the potential fields associated with any
given set of electrodes and then solve for the path of an electron through
tbis field. Actually, the fields of electron lenses are not simple of deter-
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mination, and the solution of electron trajectories through them is
even less so. However, by studying all aspects of lens fields and electron
paths it is possible to accumulate enough fragments of information about
electron lenses so that the whole picture can be pieced together rather
well. The sum total of information that can be gathered is still small
enough so that frequent recourse is had to model determination of fields
and numerical solution of path equations. Even this procedure has
its limitations and in the end gives way to experimental determination of
lens characteristics. Nevertheless, no complete understanding of electro
static lenses is possible without a fairly complete examination of the
nature of the fields of electron lenses.

Virtually all the electron-1ens fields are two-dimensional fields having
a symmetry about an axis of rotation. Cylindrical coordinates are best
suited for describing such fields, radial distance being indicated by the
symbol r and axial distance by the symbol z. Because of the symmetry of
rotation the angular coordinate () is not involvoo. Laplace's equation in
the above two-dimensional cylindrical coordinates takes the form

! i (r av) + a2
V = 0

r ar ar dZ 2
(13.8)

All expressions for fields of rotational symmetry must be solutions of
this equation.

General Form of Fields with Rotational Symmetry. One solution of
Laplace's equation as given above is

00

V(r,z) = I (a"Ek" + b"ck")Jo(1r"r)
n==l

(13.9)

where the k's are values of the separation constant encountered in solving
the Laplace equation, the a's and b's result from fitting the potential
to the electrodes, and J 0 is the zero-order Bessel function of the first
kind. The second kind of Bessel function, No(knr), does not appear
because the potential along the axis is finite. The k's can be either real
or imaginary. If imaginary values of k are used, then an integral form
of tb.e expression for the potential field may be written

V(r,z) = fa'" [A(k) cos kz + B(k) sin kz]Jo(ikr) dk (13.10)

where A and B are functions of k that are determined from the shape of
the electrodes. The function Jo(ikr) has real values and is something
like the function E

r
• The parameter k disappears in the integration.

Probably the most useful form of the solution of Laplace's equation
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in cylindrical coordinates is obtained by expressing the potential as a
power series in T. Thid is done by assuming that the solution is of the
form

ClCl

V(r,z) = I an(z)rn

n=O,1,2, .

~13.11)

If this expression is substituted in Eq. (13.8), the values of the coeffi
cients an, functions of z, may be determined and the series is thus
established. Consider the step-by-step operations upon the nth term
of the series in this determination.

(13.15)

(13.13)

(13.12)

(13.14)

The

av- = na (z)r7r-lor n

aV
r or = nan(z)rn

a( av)- r - = n2an (z)rn-lor iJr

1 a ( av)- - r - = n 2an (z)rn- Z
r or or

The corresponding term for the nth power of r is (n + 2)2an+2rn.

other term of Laplace's equation yields

(13.16)

where the primes indicate derivatives with respect to z. Adding terms
involving the nth power of r, a process that takes care of all powers
because Eq. (13.8) is an identity,

(13.17a)

,vhich gives
an" (z)

an+2 = - (n + 2)2 (13.17b)

This is a recurrence formula that gives the coefficient of any po\ver of
T in terms of the coefficient of the second term proceeding.

The symmetry of the field about the axis allows only even powers
of r since values of the field for any positive and negative value of r
must be the same. This requires that

al = aa = a5 = · · · = 0 (13.18)

With this restriction the entire series can be expressed in terms of the
coefficient aQ.
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ao" (z )r2 ao(4) (z)r 4

V(r,z) = aoro - _.~ + 22. 42

(-l)n (r)!~+ · · · + (n!)2 2 ao(2n)(z) + (13.19)

where the superscripts in parentheses indicate the order of the derivative
and n is no longer the n of Eqd. (13.11) to (13.17) but assumes integral
values as before. If now the value of ao can be determined in terms of
the potential, the series will be given in its simplest form. The value
of ao is fixed by the fact that, when r = 0,

yeO,;) = ao(z) = Vo(z) (13.20)

In other words, ao is the value of the potential along the _axis. This
axial potential will be denoted by the function Vo(z) hereafter, to simplify
the notation and to indicate that it is a function of a single variable.
The subscript zero will further serve as a constant reminder that the
potential along the axis only is involved. Expressing the coefficients
of Eq. (13.19) in terms of the axial potential,

V o" (z)r 2 V O(4) (z)r 4

V(r,z) = Vo(z) - 22 + 22.42

+ + (-1)nVo(211)(Z) (r)2n + (13.21)
· . . (n!)2 2

This is the expression that has been sought. It is one of the most useful
and most extensively used relations in electrostatic electron optics.
The significance of this expression is that if the variation of potential
along the axis of a field of rotational symmetry is known then the potential
at any point in the field can be calculated. It follows that if the axial
variation of potential id known then the derivatives of the axial potential
with axial distance are determined. The derivatives can always be
determined numerically or graphicallJ' if not analytically. In fact, the
axial potential need not be and frequently is not capable of analytical
expression. 1

1 Scherzer has given another expression by which the potential at any point in a
field of rotational symmetry may be determined from the axial potential. The value

of V(r,z) is given by the real part of the integral ~ j'Jr Vo(z + ir sin a) da, in which
211'" -'Jr

the expression in the integral is the axial potential function of the argument
(z + ir sin a), a being a parameter that disappears upon integration. This expres
sion converts to the series of Eq. (13.21) upon series expansion and term-by-term
integration. It is of somewhat limited use because it generally requires that the
axial potential be capable of analytical expression.

See SCHERZER, 0., ZUf Theorie der Elektronenoptischen Linsen Fehler, Zeit. fUl'

Ph;Js., vol. 8, pp. 183-202, January, 1933.
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Many important properties of rotational fields ca~: be deduced .from
the series of Eq. (13.21). Let the series be expanded further in· terms
of Zl = Z - Zo in the vicinity of zoo Then

V O(Zl) = Vo(zo) + Vo'(ZO)Zl + ~VO"(ZO)Z12 + · .. (13~22)

by lVlaclaurin series. The corresponding expression for potentia]~ by
Eq. (13.21), becomes

V(r,z) = Vo(zo) + ZlVo'(zo) + ~ Z12Vo"(zo) - r
2
V ~'(zo) + · .. (13.23)

The equipotential V(r,z) = Vo(zo) in the vicinity of the axis reduces to
the hyperbola

(13.24)

Upon applying Eq. (5.26), the radius of curvature of. an equipotential
at the axis is found to be

R = 2Vo'
Vo"

(~3.25)

The radius of curvature generally assumes its smallest value _~hen the
second derivative of the axial potential is greatest.

At a saddle point of potential as shown in Fig. 13.14 at the ap¢rture
center V o' = 0, the radius of curvature tends to become zero, and the
equipotentials are straight lines intersecting and forming a branch
point at the axis. From Eq. (13.24), for the conditions stated it is
seen that

r2

tan2 l' = - = 2
Z12

(13.26)

where 'Y is the angle between one of the equipotential branch lines and
the axis. Equipotential lines at a saddle point will always intersect the
axis as straight lines, making an angle of 54°.44' with it. l

1 It is of interest to record the properties of two-dimensional fields expressible in
the rectangular coordinates x and y and having no variation in the z direction. lRt
the x axis coincide with a line of. symmetry; then . ~

The radius of curvature of an equipotential at a point along the line of symmetry is

given by R = ~::,. At a saddle point on a line of symmetry the equipotentia~;i~

straight lines making an angle of 90 deg with"each other and 45 deg with .the axis.
These relations apply in cases such as the line of symmetry midway btitween the grid
wires of an ideal plane triode.
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The Equal-diam.eter Two-cylinder Lens. The equal-diameter two
cylinder lens is very extensively used in electron optics. The field of
such a lens is shown in Fig. 13.8. Here are shown the equipotential
lines within the coaxial cylinders. All the equipotential lines pass
through the gap between the two cylinders. They also all intersect the
axis at right angles. The plot is further seen to be symmetrical about the
axis and about the midplane. The shape of the field is nearly inde
pendent of the gap spacing, provided that this is small.

FIG. 13.8.-Field plot of an equal-diameter two-cylinder lens.

The axial-potential distribution of the equal-diameter two-cylinder
lens with small gap spacing has been found to be

1.32z
Vo(z) = V 1 tanh1l (13.27)

when the two cylinders have potentials of - VI and +VI, respectively,
and R is the radius of the cylinders. 1t2 If the cylinder potentials are not

1 GRAY, Ope cit., p. 25.
2 BERTRAM, S., Determination of Axial Potential Distribution in Axially Symmetric

Fields, Proc. I.R.E., vol. 28, pp. 418-421, September, 1940. See also BERTRAM, S.,
Calculation of Axially Symmetric Fields, Jour. App. Phys., vol. 13, pp. 496--502,

August, 1942, for general material on this subject.
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equal, then the axial potential takes the form

V ( ) = VI + V 2 + V 2 - V 1 t h 1.32z
oZ 2 2 an R (13.28)

where Viis the first-cylinder potential and V 2 is the second-cylinder
potential. The derivatives of the axial potential are readily found to be

and

Vo'(z) = 1*32 (V2 - VI) 1
R 2 h2 (1.32Z)cos ~

t h (
1.32Z)an --

V t1( ) = -3.48 V 2 - VI R
o Z R2 2 ()h2 1.32z

cos ~

(13.29)

(13.30)

1.4 ~ R 2 ,,·(z)

t----f---+-........-......----...---+---4--1--.A-~~ J f\.
~·~fanh 1.32%, V' X \ +~

I J 1.0 II ~~ ~- -~ - ~
t---+---t---f--+--+- R~~z)/ V I '\. I~~ VQ(z)> 0.8 I J< i\.
t--+--+----+---f.----+-----4-V~----+-----4- 0.6 / V '\ ,

/ / ~ ~
J---+----+------+---f.-....,....,v",£.--f----+-----+---+- 0.4 1 V ""

V ~ ~ ~
~ 0.2V ~ r---.-

~~~ ~~~

..2.l....-~.6 -1.2 Z -0.8 -0.4 A 0.4 0.8 1.2 1.6 2.0

'" -ji ~v.'2 +~
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,~ Ji(,(z!/ I
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FIG. 13.9.-Axial potential and its derivatives-equal-diameter two-cylinder lens.

The axial potential and its first two derivatives for the case in which
VI = - V2 and R = 1 are plotted in Fig. 13.9. Examination of the
curve for the axial potential shows that, at a distance of one radius
from the midplane, the potential is within 8 per cent of its final value.
At a distance of one diameter from the midplane, the potential is within
1 per cent of its final value. The entire region of variation of potential
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is therefore virtually confined to a region within one diameter of the
midplane.

Equal-diameter Spaced Cylinders. Another electrostatic lens fre
quently encountered is that of two coaxial equal-diameter cylinders
spaced, an appreciable distance. A simple approximate formula for the
axial potential in this case takes the form

/',<. ~. Vo(z) = V1 + V 2 + V 2 - VI Inl cosh(~) l (13.31)
2 2.648 [1.32(Z - S)J

. R cosh R

where s is the axial spacing between the cylinders. 1 This expression
reduces properly to Eq. (13.28) for 8 = O. The expression given was
derived on the assu~ption that the potential variation between the two
cylinders at a radiaf distance equal to the cylinder radius is linear. This
is a moderately good approximation, but not exact.

For-this same case, an empirical approximation to measured axial
potential distributions takes the form

Vo(z) = VI ~ V 2 + V 2 ~ VI lZ E-~Z' dz (13.32)

where b is an experimental param.eter equal to the reciprocal of the slope
of the potential curve.·at z = 0 and having the value2

b = 2R [0.73 + 0.53 (2~)2] (13.33)

.For large values of z the value of axial potential assumes the correct
value of the electrode potential by virtue of the fact that the integral

assumes the value; for z = ± 00. The formula is also approximately

correct for small values of zas may be seen by setting s = 0 and expanding
the integral in series. The first few terms give

Vo(z) = VI ~ V
2 + V

2 ~.VI [1.37 i - 0.673 (iY + · ..J (13.34)

whereas the expression of Eg. (13.28) involving the hyperbolic tangent
gives·

Vo(z) = VI ~ V2 + V 2
; VI [1.32~ - 0.790 (iY + · ..J (13.35)

1 B'ERTllAM, S., Determination of Axial Potential Distribution in Axially Sym
metric Fielcis, Proc. I.R.E., vol. 28, p. 420, September, 1940.

1 KIRKPATRICK, PAUL, and J. G. BECKERLY, Ion Optics of Equal Coaxial Cylinders,
lJ,.ev. Sci.. Instr., voL 7, pp~ 2~261 January, 1936.
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The slope of the empirical function thus agrees ,vithin 5 per cent with
the correct value for z = o. The general formula is probably well within
10 per cent as long as the cylinder spacing is less than 1.75 cylinder
diameters. The integral form of Eq. (13.32) is very convenient for some~

lens calculations because of the fact that the function is readily differ
entiated and integrated and because numerical evaluations of the func
tions involved are extensively tabulated. The formula given applies
strictly to the case of electrodes that have toroidal corona rings attached
to the edge of the cylinders that are tangent to the ~ylip.der edges at their
outside diameter and have a radius one-tenth of the cylinder radius.

o

.Cenfer line
-+--1-- --+-- -+----~------

FIG. I3.tO.-Potential field of a two-cylinder lens, D 2/D 1 == 1.25.

Two-diameter-cylinder Lenses. No exact analytical expressions are
available for electrostatic lens made of coaxial cylinders of different
diameters. The fields for such lenses are easily measured by means of an
electrolytic tank. Results of such measurements are given in Figs.
13.10 to 13.12 for diameter ratios of 1.25, 1.50, and 2.0, respectively.
All these electrode arrangements perforIIi' about equally well as lenses so
that there is not much choice bet\veen them. A comparison of their
characteristics is had by plotting their axial-potential variations on the
same graph, as is done in Fig. 13.13.. The differences between these
curves are not of great practical interest. All exhibit the same general
characteristics. They differ only in the amounts and position of their
maximum slopes and curvatures.

Aperture Lenses. Another lens of great interest is that associated
with a circular aperture in a plate perpendicular to an applied field.
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FIG. 13.1t.-Potential field of a two-cylinder lens, D 2/D 1 = 1.5.

o

FIG. 13.12.-Potential field of a two-cylinder lens, D2/D1 = 2.0.



ELECTROSTATIC ELECTRON OPTICS 34'/

Such a lens will have potential variations that are essentially the same
as those between parallel plates except in the immediate vicinity of the

'---~""'-----"'~----'T--1.0-r----r----r---~=-_P_--.,

-2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0 2.5
_~ +Z
~ ~

FIG. 13.13.-Axial potentials of two-cylinder lenses for different diameter ratios.

aperture. The potential expressions for this case have been worked out
by fitting equipotential surfaces which are hyperboloids of revolution to
the circular aperture, the edges of which in any
plane through the axis are the foci of the hyper
boloids. 1 For the case of a plane electrode con
taining a circular aperture of radius Rand
operated at zero potential midway between two
planes at potential V and spaced a distance d
large compared with R, the expression for the
axial potential is

~ Izl R2 [ Z (R) ]Vo(z) = V - - V - - - arctan - - 1
d dr R z ~

(13.36)

where z is the distance measured from the center
plate containing the circular aperture. The FIG. 13.14.-Aperture
resulting potential field is shown in Fig. 13.14. midway between plates

This is a case that exhibits a saddle point at the at the same potentiaL
center of the aperture. Here the potential pro-
files parallel to the axis and to the center plate curve in opposite direc-

t OLLENDORF, F., "Potential Felder der Elektrotechnik," pp. 295-297, Springer,
Berlin, 1932.
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tiolls. -The' equipotentials through this point are seen to be straight lines
making an angle of 540 44' with the axis.

A case of more general interest is that of a circular aperture in a plate
between two plates of different potentials and at different spacings.
Let the plates and their potentials be numbered in order from left to

FIG. 13.15.-Potential
fi~ld of a single-aper
ture lens.

FIG. 13.16.-Potential field
of an Einzel lens.

right, the circular aperture being in plate 2. The axial potential is then
given by

v ()'- (VI - V 2)d23 + (V3 - V 2)d12 {II 2R[Z t (R) I]}
I> Z - 2d

12
d

23
Z - --;- R arc an z -

+ (Va - V 2)d12 - (VI - V 2)d23Z + V
2

(13.37)
_ 2d12d23

'yhere V 1 is potential of first plate
V 2 is potential of plate containing aperture, the second plate
,Va is potential of third plate

:, d 12 is distance from first to second plate
d23 is distance from second to third plate

z is axial distance measured from plate containing aperture
R is aperture radius

The resultant potential field for the case of V l and V 2 having a value of
zero is shown in Fig. 13.15. The penetration of the equipotential lines
into the region of zero _potential gradient is seen to be quite small. At
one aperture diameter the potential gradient falls to about 5 per cent
of the gradient -on the other side of the aperture.



ELECTROSTATIC ELECTRON OPTICS 349

A type of electrostatic lens using apertures that has proved very
useful in some electron microscopes is shown in Fig. 13.16. This lens
is called an H Einzellens" (single lens) because it initiates and terminates
in a single value of potential. It has the advantage that it may be placed
a.nywhere along an electron stream without disturbing adjacent potential
relations. The electrons leave this lens at the same potential at which
they enter. The axial potential forms a symmetrical hill with a saddle
point at the center.

13.3. Electron Paths. The general differential equation for the path
of an electron in an electrostatic field of rotational symmetry is a little
too complex to be generally useful. If, however, the considerations are
restricted to electrons that move close to the axis and make a small
angle with it, the so-called" paraxial rays," then the differential equation
of motion becomes relatively simple. In electron optics as in physical
optics it is found that most of the properties of lenses can be determined
from the behavior of the paraxial rays.

The general differential equation in two-dimensional cylindrical
coordinates is the same as that for two-dimensional rectangular coordi
nates as given in Eq. (6.59), with z and r substituted for x and y,

2V ~:: = (~~ - ~~ ~:) [ 1 + (~:r] (13.38)

where the potential V is understood to be a function of rand z. If
attention is restricted to paraxial electrons, then the angle that these

make with the axis is small and hence the term (~:)
2

is small compared

with unity and can be dropped. Further, if the radial distance of an
electron from the axis is small, use can be made of the small value approxi
mations derived from the series expansion for potential as given in Eq.
(13.21). Thus

av 2rVo" 4V o(4)r3

aT = 0 - -4- + 64 +
Of, for small r, approximately

av "" rV0"a:;: = - -2-

Likewise,
av r 2V'"
az = Vo' - --;- +

or, for small r, approximately

(13.39)

(13.40)

(13.41)

(13.42)



350 VACUUM TUBES

(13.43)

(13.44)

(13.45)

Upon making these substitutions into Eq. (13.38) and letting V = Vo
for the conditions of small radial distance imposed, the differential
equation of motion of a paraxial electron becomes

d
2
r + V 0' dr + V 0" r = 0

dz2 2Vo dz 4Vo

In all the above, the argument z has been understood to be associated
\vith axial potential Vo• Equations (13.43) and (13.21) are probably
the two most important equations in electrostatic electron optics. From
these all the important relations regarding lenses may be derived. The
above equation may be redqced to several alternative forms that are
sometimes more useful. By combining the first and second .derivatives
there results

~~ (VVo dr) = _ Vo"r
dz dz 4

The first-derivative terms may be eliminated from Eq. (13.43) by m~kiLJg

the substitution:
p = rVo~

The differential equation of motion then becomes

~~ + 1
3
6 (~:r p = 0 (13.46)

All the above differential equations confirm the observations previ
ously made on the properties of the electron paths. The path is seen
to be independent of the charge and mass of the electron. The path depends
only upon the shape of the potential field and not upon the magnitude of
the potential. If the electrode configuration £s enlarged, the electron path
is correspondingly enlarged.

In general, the expressions for axial potential are sufficiently complex
in even the simplest cases so that it is not possible to solve explicitly
for the electron paths. It is, however, possible to solve the differential
e~u.ation of the electron path numerically in all cases. In spite of the
fact that the differential equations of motion are in general insoluble,
most of the important properties of lenses may be deduced from them.

13.4. General Lens Properties. Thin Lenses. A thin lens is one in
which the lens dimensions are short compared with the focal length.
The focal length of such a lens may be determined from Eq. (13.44)
by studying the path of an electron that enters a region of potential
variation parallel to the axis. If the angle at which this electron emerges
from the lens can be determined, the focal length will be known without
solving for the path completely. Let the lens under consideration be ono



(13.47)

(13.48)
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similar to that shown in Fig. 13.3. Let the initial and final values of
potential relative to a path from left to right be VI and V 2, respectively.
A first integration of Eq. (13.44) gives

[
_ITT dr]2 _ l1z2

TVO".V V o - - - - -- dz
dZ l 4 Zl~

If the lens is very short, then the value of r will not be greatly changed
in passing through the region of potential variation though the direction

of the electron and hence the value of ~: will be. The coordinate r

may accordingly be treated as a constant and removed from within the
integral sign. If, in addition, attention be restricted to the second
principal ray, i.e., the ray entering the lens parallel to the axis from the
left, then the lower limit of the left-hand term of the equation is zero and
the equation reduces to

vv; (dr) = -r rZ2~ dz
dz 2 4 JZl~

In passing through the lens the electron is bent toward the axis.
As soon as the electron is a short distance beyond the lens, it is in a field
free region and hence its path is subsequently a straight line. From
simple geometry

/2 = (~)r
dz 2

(13.49)

(13.50)

(13.51)

where r is the radial position of the electron on passing through the lens.
From this the formula for focal length becomes

1 1 (Z2 Vo"

h = 4 -vv; JZI ~dz
A similar treatment of the case of an electron entering the lens parallel
to the axis from the right yields

1 -1 {Z2 Vo"

f;. = 4 v'~ JZI v'Vodz

When the axial potential of a lens is known, it is necessary only to
V"

measure the area under the curve of _~ and then multiply by the
v Vo

reciprocal of four times the square root of external potential. Com-
paring Eqs. (13.50) and (13.51), it is seen that the two focal lengths
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of the lens are in the ratio of the square root of the limiting values c>f

potential,

(13.52)

This is exactly analogous to the law for light lenses, which says
that the focal lengths are in the ratio of the indices of refraction on the
two sides of the lens.

FIG. 13.17.-Axial potential functions of a double-aperture lens.

Some typical curves of axial potential and the integrand of Eqs.
(13.50) and (13.51) for the lens of Fig. 13.3 are shown in Fig. 13.17.
The first part of the lens has a convergent action, and this is associated
with a positive value of the second derivative of the axial potential.
The second part of the lens has a divergent action, which is, however,
weaker because of the higher velocity of the electron, and this is asso-
ciated with a negative value of the second derivative of the axial poten...
tiaL The reason for the association of the sign is evident from Eq.
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(13.40), from which it is seen that the radial component of the gradient
of potential is directly proportional to the second derivative of the axial
potential as long as the distance from the axis is not too great. As a
result ot this, the radial force on an electron is directed toward the axis
when the second derivative of the axial potential is positive, and vice
versa. It may be stated as a general rule that the action of a lens segment
is convergent whenever the second derivative of the axial potential is positive
and divergent whenever the second derivative of the axial potential is negative.
In the case of a symmetrical lens such as is shown in Fig. 13.3, the con
vergent and divergent forces in the two halves of the lens are the same,
but the deflection that results is always greater on the low potential
side; for here the velocity of the electron is less, and the deflection for a
given force is greater.

An alternative form of Eqs. (13.50) and (13.51) that yields much
useful information is obtained by evaluating the integral by parts. Let

Then
and dv = Vol! dz

du = - .72Vo-~~Vo' dz and v = Vo'

l\1aking use of these substitutions in the well-known formula for integra
tion by parts,

there results

fu dv = uv - f v du (13.53)

(13.54)~ = V O'(Z2) - VO'(Zl) + 1 {Z2 (VO')2 dz
12 4VO(Z2) 8yVO(Z2)}Zl VO~2

where Zl refers to a point to the left of the lens just outside of the region
of appreciable potential variation and Z2 refers to a corresponding point
to the right of the lens. The corresponding formula for the firfSt focal
length is had by simply interchanging the subscripts 1 and 2 in the above
equation. _

For the case of lenses whose initial and final gradients of potential
are zero, the first term of the right-hand ~ide above becomes zero, and
the integral alone gives the focal length.

1 1 !Z2 (VO')2
j; =8~ z, V o* dz

(13.55)

The form of the integral in this case is particularly revealing. It is
apparent that the integrand is always positive because the first derivative
of the axial potential, ,vhich may be negative, is squared and hence the
focal length is positive. The~ interpretation 0f this is that the len8 i~
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(13.56)

convergent in all cases in which the initial and final gradients of potenttal
are zero.

When the initial and final gradients of potential are not zero, as is
the case with most single-aperture lens, the first term of Eq. (13.54)
will usually make the major contribution to the focal length.

1 _ VO'(Z2) - VO'(Zl)
/2 - 4VO(Z2)

This formula is generally accepted as a sufficiently accurate one for
single apertures. The lens action of such an aperture may either be
convergent, f positive, or divergent, f negative. In the simple case of an
aperture at a positive potential in front of a plane cathode a.nd having
a field-free region beyond, the lens action is divergent and the focal

o )

\~ -
f--- .......

--t---+------- ./

-'l
-

--- - -

~(2

--==--=----==:.----I ----
l-------------f - - -

FIG. 13.18.-Divergent action of a single-aperture lens.

length is four times the cathode-aperture spacing, as may be seen by
substitution into Eq. (13.56).1

The focusing properties of single apertures are illustrated in Figs. 13.18
and 13.19. Figure 13.18 shows the case of an aperture with a positive
gradient of potential on its left and a zero potential gradient on its right.
The difference of the gradients is therefore negative, and the lens is
divergent. Figure 13.19 shows the case of an aperture with a zero
gradient of potential on its left and a positive one on its right. The
difference of gradients in this case is positive, and the lens is convergent.

1 The corresponding formula for the focal length of a lens consisting of a straight
slit in a plane electrode is

1 V O'(Z2) - VO'(Zl)
h = 2VO(Z2)

This means that the cylindrical lens of a slot is twice as strong as the circular lens of an
aperture.
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Because of the positive gradient to the right of the lens the electron
paths upon emergence from the aperture are slightly curved, being
parabolic rather than straight. This results because the aperture imparts
a crosswise component of velocity which is proportional to the distance
from the axis at which the electron crosses the aperture plane. The
subsequent field adds a constant axial component of acceleration to this
constant crosswise component of velocity.

Thick Lenses. No simple formulas exist for the parameters of thick
lenses. In order to treat this subject it is first necessary to define the
lens parameters. Then a number of basic relations between the param
eters can be pointed out. It can later be shown how the lens parameters
may be calculated or measured. Mter that it is desirable to present
the resultant lens characteristics in some simple compact form. These

~------------ f------------1
---+-- -= - - -_~__---==---:=_-=-'":A.-

FIG. 13.19.-Convergent action of a single-aperture
lens.

steps \vill now be t~ken up one at a time. Attention will be restricted
to those lenses whose initial and final gradients of potential are zero.

The differential equation of motion of the paraxial electron given in
Eq. (13.43) is a second-order linear differential equation. As such, it
has two linearly independent solutions, and any general solution can
be expressed as a linear combination of thes~ two independent solutions.
It is convenient to take as the independent solutions of the equation the
ray that leaves the lens parallel to the axis and the ray that enters the lens
parallel to the axis. The two rays that leave and enter the lens parallel
to the axis, respectively, are known as the "principal rays" of the lens. The
ray that is parallel to the axis to the right of the lens is known as the
"first principal ray." It is usually considered to be moving from right
to left, but it may just as well be considered as moving from left to right.
The ray that is parallel to the axis on the left side of the lens is known as
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the "second principal ray." For lenses with initial and final gradients
of potential that are zero the initial and final portions of the rays will
be straight lines. The principal rays of an equal-diameter two-cyJinder
lens are shown in Fig. 13.20. Any general ray may be expressed as a
combination of these two rays.

As mentioned before, the left portion of a lens such as that of Fig.
13.20 has a convergent action, while the right portion has divergent
action. The strength of these t\VO portions is such that the convergent
action always dominates. The first principal ray, taken as moving from
right to left, first experiences divergent action and then a stronger

HZ' r~

L----Pr----l---------EZ ------~
Jf l-----i-----~----f2 ----------..J

~""!--------+---+-_I '
I

--- I

I
I
I
I
I I

-..,t--------...f----+..;;::........;-I r --------+---_..........l~

~------------ fJ -----------+-Ji..-l
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M= Reference plane oflens Hj= {"irs! principal plane
ra = F/rsf prine/pal ray H 2 =Secondprine/IXIIplane
Til =Second prlnCipdl ray ft =Flrsl focal/e/1qlh
~/r:r>1 f 2 =Second foctll/enqlh

FIG. 13.20.-Thick-Iens terminology.

convergent action. The second principal ray, taken as moving from
left to right, first experiences a convergent action and then a weaker
divergent action.

The principal rays serve to define the four thick-lens parameters.
1f the initial and final straight-line portions of the principal rays are extended
until they intersect, the intersections locate what are known as the" principal
planes." The principal planes are sho\vn as HI and H 2 in Fig. 13.20.
The location of the principal planes relative to the reference plane, usually
the midplane or electrode junction, is given by the distances P l and P2.
Almost without exception, the relative location of the principal planes
is as shown in Fig. 13.20. Both principal planes lie on the foreside of the
lens. Furthermore, the principal planes are crossed, i.e., the seco~<;l

principal plane lies before the first principal plane. Although this is
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the usual relative disposition for electrostatic electron lenses, it is not
for light lenses. A thick double-convex light lens, for instance, has
its two principal planes on opposite side of the lens center and not
crossed.

A focal length of a thick lens is defined as the distance from the principal
plane of the lens to the point at which the corresponding principal ray crosses
the axis of the lens. There are two focal lengths, one associated with each
axis. These are designated by the symbol f as shown in Fig. 13.20.

The intersections of the principal rays with the lens axis are known as
"focal points." The distance from the lens center to a focal point is
indicated by the symbol F. The above definitions are sufficient to
describe completely the characteristics of a thick lens.

Let the two principal rays of a lens be Ta(Z), the first principal ray,
and rb(Z) , the second principal ray. Then any general ray may be
expressed as a linear combination of these two principal rays,

(13.57)

Although it is not ordinarily possible to write the expressions for the
complete principal rays, it is possible to write expressions for the initial
and final straight-line portions and the general lens formula can be derived
from these partial expressions..

Let the radial offset of the portion of the principal rays parallel to
the axis be unity. Then, to the left of the lens, as in Fig. 13.20 the
straight-line portions of the principal rays are given by

Zl - PI - i1
raCzl) = h (13.58)

and
(13.59)

Assume that the general ray starts at a point on the axis of the lens to
the left of the first focal point. The general ray will then pass through
the lens, be deflected toward it, and cross the axis again at a point to the
right of the second focal point. At the point where the general ray
crosses the axis to the left of the lens, from Eq. (13.57),

(13.60)

To the right of the lens the principal rays are given by

Ta (Z2) = -1
and

(13.61)

(13.62)
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At the point on the right of the lens where the general ray crosses the
axis, r is zero, and from Eq. (13.57)

~ = _ ~ = -z,- +P2 +12 (13.63)
Cb ra 12

Equating the ratio of constants at the t\VO axial crossings of the general
ray,

-It!2 = (Zt - P t - !t)(P2 + 12 - Z2)

This is readily rearranged to give

-/t + /2 = 1
Zl - PI Z2 - P 2

(13.64)

(13.65)

This is the lens formula of a thick lens of the type shown in Fig. 13.20.
It is the counterpart of Eq. (13.7) for light lenses. The sign conven
tion used here has been that all quantities measured to the right from a
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FIG. 13.21.-Graphical construction of a thick-lens image.

reference plane are positive, while those measured to the left from a
reference plane are negative.

The significance of Eq. (13.65) is that the focal lengths are measured
not from the lens center but from the corresponding principal planes.

The lens parameters defined above are known as the "cardinal
characteristics" of the lens. It takes four of these to describe the thick
lens. The quantities that are usually given are the two focal lengths and
the distance of the focal points from the reference plane. In electron
lenses the parameters change with voltage ratio so that it is necessary
to present curves of these four quantities as a function of the voltage
ratio.

Knowing the focal lengths and the position of the principal planes
makes it possible to construct an image corresponding to any object.
The construction involved is shown in Fig. 13.21. Through a point
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on the object draw a line through the first focal point until it intersects
the first principal plane. From this point of intersection draw a line
to the right parallel to the axis. These two segments of straight line
correspond to the first principal ray. From the same point on the object
draw a line parallel to the axis to the right until it intersects the second
principal plane. From the point of intersection draw a straight line
through the second focal point until it intersects the first principal ray.
This last point of intersection defines the point on the image corresponding
to the point on the object from which the two principal rays originated.

From Fig. 13.21 the lateral magnification of the lens can be defined as

M= Y2
Yl
X2

- 12
_ 11

Xl
(13.66)

where the y's are the radial coordinates of corresponding points on object
and image and the x's are the distances from object and image to the
nearest focal point. From the above relations there results Newton' 8

law,
XIX2 = ILf2 (13.67)

From Fig. 13.21 it is also seen that object and image distances from
the lens reference plane are given in terms of the cardinal lens parameters
by

and

Zl = P = F 1 - {;. (13.68)

(13.69)

To determine the remaining laws of importance applying to thick
lenses, ref.erence is again made to the differential equation of motion of
the paraxial electron [Eq. (13.44)]. Consider the linearly independent
principal rays ra(z) and rb(z). Substitute r(J into Eq. (13.44), and multiply
by Tb. Then substitute Tb into the same equation, multiply by Ta , and
subtract from the first equation. Indicating derivatives with respect to
z by primes,

rb(~ra')' - ra(~rb')' = 0

Add and subtract the quantity vVora'rb'; then

:z (rb vVora' - ra -VV;rb') = 0

(13.70)

(13.71)
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Integrate between limits Zl and Z2 far enough to the left and right of the
lens so that the potential variation is negligible. This allows r a'(z2)
and Tb' (Zl) to be considered zero, and the result of the integration reduces
to

(13.72)

From this equation t,vo very important conclusions may be drawn.
Observe that

(13.73)

(13.74)

(13.75)

(13.76)

and
rb(Zl)/;= ---
Tb' (Z2)

Upon making these substitutions into Eq. (13.72), it follows that

/2 ~
it = - -y!VO(Zl)

This is a perfectly general proof that the ratio of the focal lengths of a
lens is the same as the ratio of the corresponding indices of refraction.
The relation is valid, however, only if the focal points of the lens lie
outside of the region of appreciable potential variation.

Returning to Eq. (13.72) again and identifying the ratio _ ra «Z2»)
rb Zl

as the lateral magnification M, and - Tb: «Z2) as the angular magnification
ro Zl

Mma v'~ = 1
VVO(Zl)

which is Lagrange's law. The angular magnification is the ratio of the
tangents of the angles that the second and first principal rays make
with the axis. For small angles, the tangent is approximately equal to
the angle. The above law states that the product of the lateral magnifica
tion, the angular magnification, and the ratio of the final and initial
indices of refraction is unity. This law has its exact counterpart in
geometrical optics.

13.5. Calculation of Lens Characteristics. Since analytical methods
fail in general in determining the characteristics of thick lenses, recourse
is frequently had to numerical computation. From the previous dis
cussion it is known that, if the potential along the axis of an electrostatic
lens is known, then the potential anywhere in the lens is determined and
can be calculated. Further, the differential equation for an electron
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moving close to the axis and making a small angle with the axis, a so-called
"paraxial electron," can be ,vritten in terms of the axial potential. It
is necessary only to solve such an equation numerically for rays entering
and leaving the lens parallel to the axis, the principal rays, to obtain the
cardinal lens characteristics, i.e., the focal lengths and the location of the
principal planes.

Numerous methods for calculating the principal rays of electrostatic
lenses have been proposed. The most important of these will be briefly
described, and then two of the simplest methods will be given in more
detail.

Klemperer and Wright have proposed an application of the trigo
nometric ray-tracing method of physical optics. 1 The electrostatic field
is broken up into a succession of thin lenses having a constant ratio of
equivalent index of refraction for adjacent lenses. Formulas are given
for calculating the effect of every refraction at a lens surface upon the
angle of a ray and the point at which it crosses the axis. Lens surfaces
are assumed to be spherical, and their radius of curvature must be
determined either graphically or from the axial potential. This method
requires a large number of equivalent thin lenses, at least 20 for an
accurate determination, and the results converge slowly as the number
of segments taken is increased.

Maloff and Epstein have proposed several methods based upon a
step-by-step solution of the differential equation of motion of the paraxial
electron. The methods give the electron path as an exponential of the
axial distance in any increment and join the paths in successive increments
both in magnitude and in slope. The methods are capable of good
accuracy, but the tabulations are very numerous. 2

A method of joined circular segments based upon Salinger's formula
for the radius of curvature of an electron path has also been proposed.
Increments of radial and axial displacement are expressed in terms of
axial potential and associated factors. 3 This method likewise requires
rather extensive tabulation.

Method of Linear Axial-potential Segments. One of the simplest
methods proposed is based upon the differential equation of motion of

1 KLEMPERER, and W. D. WRIGHT, Investigations of Electron Lenses, Proc. Phys.
Soc. (London), vol. 51, Part II, pp. 296-317, March, 1939.

2 MALOFF and EpSTEIN, Ope cit., pp. 81-89.
See also SCHLESINGER, KURT, A Mechanical Theory of Electron-image Formation,

Proc. I.R.E., vol. 32, pp. 483-493, August, 1944.
:\ SPANGENBERG, KARL, and L. M. FIELD, Some Simplified Methods of Determining

the Optical Characteristics of Electron Lenses, Proc. I.R.E., vol. 3, pp. 138-144,
March, 1942.
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(13.77)

the paraxial electrons} The axial potential is replaced by a number of
straight-line segments that approximate it as closely as possible, as
shown in Fig. 13.22. The differential equation is then solved for the
successive regions in which the potential is linear and the gradient is
constant. At each boundary between segments there is a jump in the
slope of the electron path because of the jump in the gradient of potential.
The final path as determined by this method consists of a number of
curved segments of path connected together, giving a path that is con
tinuous but that has discontinuities in slope at the corners of the seg
mented approximation to the axial distribution of potential. Such a

VQ(zJ

-z 0 +z
FIG. 13.22.-Approximation of axial potential by linear
segments of potential.

path cannot represent accurately the true nature of the path within
the lens, but it can be used to obtain relations between initial and final
values ,vith considerable accuracy. The method is relatively easy
to apply and gives fair accuracy for as fe,v as six straight...line segments in
the approximation to the axial-potential curve.

If the axial potential is assumed to be made up of straight-line
segments, then the second derivative of the axial potential is zero and the
differential equation of motion of paraxial electrons of Eq. (1.3.43)
reduces to

II + 1 r' V' - 0r 2 Vo 0 -

where both r and V 0 are functions of axial distance z and the primes
denote derivatives with respect to z. A first integration of this equation
gives

(13.78)

1 GANS, R., Electron Paths in Electron Optics, Zeit. fur Tech. Phys., vol. 18,
pp. 41-48, February, 1937.
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A ~econd integration gives

() ()
2C[VO~~(Z2) - Vo~(zl)l

r Z2 - r Zl = V
o
' (13.79)

(13.80)

where subscripts 1 and 2 refer to the left and right extremities of a seg
ment. These two general equations give the electron path along any
segment of axis. At the junction of two segments there is a discontinuity
in the slope of the axial-potential function. Upon integrating the first
and last terms of Eq. (13.43), the difference of the slopes of the electron
path on the two sides of the junction is proportional to the difference of
the first derivative of axial potential on the two sides of the junction,

r'(zb) - r'(zlJ) = _r[Vo'(Zb)4~oVo'(ZIJ)]

where subscripts a and b refer to values on the left and right side of the
junction, respectively. In the particular case where the derivative of
the axial potential is zero, integration of Eq. (13.77) gives

(13.81)

The above set of equations suffices to calculate approximate principal
rays. By alternate use of Eqs. (13.80) and (13.79) and the occasional
use of other equations where necessary, the focal lengths and focal points
of a lens may be obtained.

Method of Equivalent Thin Lenses. The usual electron lens has a
convergent behavior on the low-potential side and a divergent behavior
on the high-potential side, the net lens behavior being convergent.
The behavior is convergent when the second derivative of the axial
potential is positive and divergent when the second derivative is negative.
It is reasonable, therefore, to consider that the lens is made up of two
thin lenses, a convergent lens followed by a divergent lens. 1 If the
strength and location of these lenses are known, the cardinal points of
the equivalent thick lens may be determined.

The focal lengths of the convergent lens as shown in Fig. 13.23 are
given by

and

1 MYERS, Ope cit., p. 131.

1 Jzm V"- = dz
F Zl 2 V2V (13.82)

(13.83)

(13.84)
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where F is a focal term from which the focal lengths are derived, VI
is the lo\vest potential on the lens axis, and V In is the potential at the
point at which the second derivative assumes a value of zero, changing
sign. The integration of (13.82) is carried over the region in which the
second derivative is positive.

FIG. 13.23.-Thin-lens components of a thick lens.

Similarly, the focal distances for the divergent component of the
lens are given by

and

l- = {Z2 V" dz

F' Jzm 2 V2V
(13.85)

(13.86)

(13.87)

where V 2 is the highest value of potential reached on the axis on passing
through the lens.

. When the focal lengths of the convergent and divergent components
of the lens are known, the focal characteristics of the entire lens are
readily determined, this being a simple problem in the combination of
lenses. When the distance between the second focal point of the con
vergent component and the first focal point of the divergent component
is d12, then the focal lengths of the entire lens are l

N' = - !IN (13.88)
d 12

H' = f2N (13.89)
d12

1 ROSIN, S., and O. H. CLARK, Combinations of Optical Systems, Jour. Opt. Soc.
Amer., vol. 31, pp. 198-201, March, 1941.
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The location of the first principal plane measured from the first focal
point of the convergent component is

Xl = (f112
) + !1" (13.90)

d12

and the location of the second principal plane as measured from the second
focal point of the di vergent component of the lens is

- (11112
') f "X2 - -- - 2

d 12

The method is extremely rapid in application. The location of the
lens components is best taken as being at the center of gravity of the
area represented by the integrals of Eqs. (13.82) and (13.85), as shown
in Fig. 13.23.

13.6. Measurement of Lens Characteristic~. All the computational
methods referred to in the previous section are subject to some error that
is difficult to determine except by extensive calculations. In general,
it may be said that, although computational methods are adequate,
experimental methods are preferable and usually more dependable.

As with computation so with experimental determination, several
methods are available. One method involves construction of a special
electron gun, which generates filamentary rays parallel to the axis that
are put through the lens being measured. 1 Lens characteristics are
obtained from the voltages required to produce a focus.

Another method makes use of an ordinary electron gun followed by a
movable mesh grid and then by the lens under test. Data are taken on
the voltage ratio necessary to apply to the lens to focus an image of the
mesh on a fluorescent screen for all positions of the mesh. Magnifications
are also noted and lens characteristics are deduced from these data. 2

Another experimental method used in determining the lens charac
teristics is based upon observed magnifications of measuring grids
placed before and after the lens structure.3 This method will be described
in some detail.

Double-grid Method of Measuring Lens, Characteristics. The experi
mental method used in determining the lens characteristics is based upon
observed magnifications of measuring grids placed before and after the
lens structure.

A grid of closely spaced parallel wires (for measurement purposes
only and not for control of the beams) is placed in the fore part of the
lens. This grid casts a shado,v upon a fluorescent screen following the

1 KLEMPERER and WRIGHT, op. cit.
2 MALOFF and EpS~EIN, Ope cit.
J SPANGENBERG and FIELD, Ope cit.
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lens. In order to avoid the need of a tube having parts that can be
moved relative to one another while in a vacuum, another measuring
grid is used between the end of the gun and the fluorescent screen.
This arrangement is shown schematically in Fig. 13.24, in which the
measuring grid in the fore part of the lens is indicated by a vertical
row of dots.. With this arrangement of measuring grids, it is necessary
to make observations on the magnifications of two grids, as the voltage
ratio of the main lens electrodes is varied for each of two distances
of the lens from a point source of electrons. Hence two complete runs

"-.J-l.. -:--__

d (}'

~I~ ~

~~ &
Q.~ 0

~.~ ~ ~
~~ ~~

~~ ~~
~~

~~
FIG. 13.24.-Experimental determination of electrostatic lens characteristics.

must be made to obtain the data from which the complete lens charac
teristics can be measured.

The details of the mathematical relations involved can be seen from
Fig. 13.24. The cathode-lens structure gives the effect of a point source
of electrons at a known point near the cathode. The location of thie
point and the constancy of its position under varying conditions of len~

voltage ratio are determined by placing two measuring grids in the fore
part of the lens and observing the ratio of their magnifications. The
constancy of the ratio of magnifications indicates that the location of
the point source changes very little with lens voltage ratio and also over
the normal range of control-grid voltages used. The location of the
point source is very nearly at the control-grid aperture in front of th~

cathode. When these facts have been checked from a test run, it is no
longer necessary to use two measuring grids in the fore part of the lens.
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With the point source of electrons available the following general
method is applied: The angular magnification of the bundle of rays is
determined from screen patterns obtained on the fluorescent screen,
such as that shown in Fig. 13.25. Here the lines in one direction are the
shadows of one measuring grid, and the lines in the other direction
are the shadow of the other measuring grid. When the angular magnifi
cation is known, then for any given voltage ratio the lateral magnification
can be determined from Lagrange's la,v, ,vhich states that the product
of the internal magnification and the angular magnification is equal to
the square root of the ratio of the final and initial potentials. Image

FIG. 13.25.-Shadow8 of measuring grids on a
fluorescent screen.

distances at each of the two object distances used are given for various
voltage ratios from magnifications of the second grid alone. The object
distances are known from physical measurements on the gun assembly.
When lateral magnification, object distance, and image distance are
known as a function of voltage ratio for two different values of the object
dIstance, then the cardinal quantities iI, !2, F1, and F2of the lens may be
calculated readily.

The method by which this calculation is made will be briefly indicated.
Object and image distances can be expressed in terms of the lateral
magnification and focal distances as

p = - 11 + F 1M
Q = -Mj2 + F2
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These two equations involve the four quantities i1, 12, F 1, and F 2 as
unknowns. In order to determine them, it is necessary to know two
sets of associated values of P, Q, and M for the same voltage ratio.
When subscripts 1 and 2 are used to indicate values of P, Q, and M for
t\VO different values of P at a given voltage ratio, then there may be
obtained from the above relations the following expressions for the
cardinal focal distances:

(13.94)

(13.95)

(13.96)

(13.97)

Up to this point the relations are the same as those used by Maloff and
Epstein. It is now necessary only to show how the lateral magnification
may be deduced from the screen patterns to complete the collection of
:lecessary relations. In Fig. 13.24 it is seen that the angular magnifica
tion is given by

8'
M =-a (J (13.98)

For small angles such as are encountered in the gun the angular magnifica
tion in terms of the dimensions is given very closely by

0' ad
7j = be

in which c is the distance beyond the fluorescent screen to the point at
,vhich the ray would focus. This distance is determined from the
spacings of the grid images as follows:

For focus beyond fluorescent screen,

e
c=--

1 - ~
g

where the symbols have the significance given in Fig. 13.24.

(13.100)
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For focus between second measuring grid (crosses) and fluorescent
screen

e
-c=--

1+~
g

(13.101)
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When the angular magnification
is known, then the lateral magni
fication may be calculated from
Lagrange's law as previously in
dicated.

With the above relations the
cardinal quantities are readily cal
culated. In practice, this is most
easily done by plotting curves of
the various quantities involved
against voltage ratio, for the same
voltage-ratio observations may
not have been taken on one run as
on the other. There is a small
hole in each curve at the point
where the beam focus is at the
fluorescent screen, for the image
becomes so small here that it is
not possible to measure the spac- ~ - 2
ings of the wires on the images. §
However, there is no trouble in cD-4

drawing smooth and continuous
curves through these holes if the
data are taken with care.

The accuracy achieved by this
method is of the order of 10 per
cent for lenses with small open
ings and 20 per cent for lenses
with large spacings.

13.7. Optical Characteristics
of Lenses. By means of the
method of double g rid s jus t
described in the previous section
it is possible to determine experi- -20
mentally the optical character- FIG. 13.26.-0ptical characteristics of a

istics of lenses over a wide range two-cylinder lens, D 2/D 1 = 2/3.

of voltage ratios. The lens characteristics are completely prescribed
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-20
FIG. 13.27.-0ptical characteristics of a
two-cylinder lens, D2/D1 = 1.

FIG. 13.28.-0ptical characteristics of a
two-cylinder lens, D 2/ D I = 1.5.
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if the two focal lengths and the location of the two principal planes
are given as a function of the voltage ratio. In Figs. 13.26 to 13.34
there are plotted the focal lengths and location of the focal points of
nine of the commonest electrostatic electron lenses. l

Examination of the lens-characteristic curves of Figs. 13.26 to 13.34
reveals that all these lenses have the following characteristics in common:

1. Focal lengths are always uniformly decreasing functions of voltage
ratio.

2. Principal planes always lie on the low-voltage side of the lens.
3. Principal planes are crossed, with the exception of the large

diameter aperture lens, i.e., the first principal plane lies between the
second principal plane and the lens center on the low-voltage side
of the lens.

4. Focal length in the direction of increasing potential is always
greater than the focal length in the other direction.

5. The position of the principal planes does not change much with
voltage ratio except at very lo\v values.

A comparison of the focal properties of the specific lenses yields the
following observations:

1. The focal length of two-diameter cylinder lenses increases, i.e., the
lens grows weaker for all but the highest voltage ratios, as the ratio
of second to first cylinder diameter increases.

2. The focal length of equal-diameter cylinder lenses increases, i.e.,
the lens grows weaker, as the axial spacing of the cylinders increases.
The change is small for small spacings but increases rapidly as the
spacing is increased.

3. The focal length of aperture lenses increases, i.e., the lens grows
weaker, as the aperture diameter increases. The change is small
for small diameters but increases rapidly as the diameter increases.

4.. Aperture lenses have for the most part shorter focal lengths than
cylinder lenses if aperture spacing be taken equal to first cylinder
diameter as a unit of length.

5. The cylinder-aperture lens has the shortest focal length of all
lenses tested.

6. The equal-diameter lens with axial spacing of one diameter has the
longest focal length of all the lenses in this collection.

Mter all the comparisons bet\veen lenses have been made, it must be
admitted that there is not much choice bet\veen them, for the focal

1 SPANGENBERG, KARL, and L. M. FIELD, The Measured Characteristics of Some
Electrostatic Electron Lenses, Elec. Commun., vol. 21 (No.3), pp. 194-204, 1943.
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length of any of the lenses can be adjusted at will by simply changing the
voltage ratio applied to the electrodes. Cylinder lenses are usually
preferred to aperture lenses as objective lenses because the electron beam
is shielded from the effect of any charges that may accumulate on the
glass walls of the vacuum envelope. They also permit the use of limiting
apertures within the cylinders to reduce the beam diameter.

13.8. Calculation of Lens Characteristics. In general, electrostatic
lenses are not amenable to extensive analytical treatment. The lenses
that can be calculated cannot readily be built, and vice versa. It is of
interest, however, to confirm the results observed in the previous section
by noting the results of such cases as have been completely solved. A
complete solution of the lens for which the axial potential is of the form

(
4 y3 z)Vo(z) = A exp -3- R arctan a

has been given.! In this expression for axial potential the constants A
and R are related to the initial and final values of potential by

R = 3 In V 2

4y31r VI
and

(
2 V31r)A = Vi exp 3 (13.104)

(13.106)

This axial-potential distribution is not greatly different from that found
in two-diameter cylinder lenses, as may be seen in Fig. 13.35, in ,vhich
there is plotted the potential distribution Vo(z) = exp (arctan z).

The general solution of Eq. (13.46) with the axial-potential distribution
of Eq. (13.102) is

r(z) = ~1 + (~y exp ( - v; R arctan~)

[ C1 sin (w arc cot~),+ C2 (w arc cot~)J (13.105)

where w = vI + R2. From this the focal lengths are found to be

V3Rr
, aE~

11 = sin (;)

1 HUTTER, R. G. E., Rigorous Treatment of the Electrostatic Immersion Lens
Whose Axial Potential Distribution Is Given by q,(z) = </J"J. exp(acctan z)J Jour. Appl..
Phys., vol. 16, pp. 678-699, November, 1945.
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V3R1f
-aE--aw-

12 = -Sin-(~----"'-w)

The focal lengths as a function of voltage ratio are given in Fig. 13.36.
The position of the principal planes is given by

E~+COS(;)
PI = a sin (;) (13.108)

E~ - COS(;)
P 2 = a sin (~) (13.109)

The position of these is also plotted in Fig. 13.36. All the properties of
lenses observed experimentally are confirmed by this example. It is of
interest to note that the ratio of focal lengths as given by the square root
of the electrode potential ratio holds only to a ratio of about 6 in this case.
At a voltage ratio of 16 the ratio of the focal lengths is 3.7 instead of
4. This departure from the theoretical value occurs because the lens is
a very strong one and for moderately large electrode-potential ratios the
principal rays cross the axis within the region of potential variation,
whereas in the derivation of Eq. (13.75) it was assumed that the rays
crossed the axis outside the region of appreciable potential variation.
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13.9. P-Q Curves of Lenses. The optical characteristics of lenses
presented in the previous section do not tell a great deal directly about
the lens performance. These optical characteristics are parameters that
enter into the calculation of image distance corresponding to object
distance {.of any voltage ratio. The lens parameters disappear in the
calculation, and only the associated object and image distance and
corresponding magnification remain. It would therefore seem logical to
present lens characteristics in such a \vay that the resultant properties
and not the construction parameters \vere revealed. This has been done
in a type of curve that will be referred to as the P-Q curves of a lens. The
significance of the letters is that the curves present associated object
distance P and image distance Q, as in Fig. 13.21, and corresponding
lateral magnification M for any voltage ratio. The object distance,
image distance, and lateral magnification are calculated by means of
Eqs. (13.68) and (13.69).
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The P-Q curves of the nine common lenses discussed before are shown
in Figs. 13.37 to 13.45. In these curves there are shown contours of
constant lateral magnification and constant voltage ratio against axes of
object and image distance. The P-Q curves are in effect a graphical
presentation of the solution to ail the first-order image problems asso
ciated with the lens. The advantage of this presentation is that it gives
design data immediately, without calculation. The presentation is
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further sufficiently explanatory so that it can be used without a complete
understanding of the theory of electron optics.

A study of the P-Q curves of Figs. 13.37 to 13.45 reveals the following
characteristics as being common to all lenses:

1. As object distance is increased at a given voltage ratio, the corre
sponding image distance decreases, as does also the magnification.

2. For a given object distance the image distance and magnification
decrease as the voltage ratio is increased.

3. In any lens there is a minimum object distance that can be used
at any given voltage ratio. This minimum object distance is the



50

~ ~

- :~ tV2-
-'--P--+--Q---:.--

I

z

50J------+--+----+--f-___+_~

5 10 20
Object clistance, P/D1

FIG. 13.38.-P-Q curves of a two-cylinder lens, D2/D 1 = 1, S ==
O.ID I •

100 ~--..,--~__r_---r---r--..,.-.,."'""T_r---.,__-r__""""r""""~_y__r_r..,._.

2 ~---+--+-~E--J--::'l~~-..l::-+--~--~~7.Lx----+--t-~t-t-t-I

Cf.O
9.0

'lao
1/.0

~ 20 f-------+------T-~+r-~_+_t1~_t__\t'_-
\:Y
oi
u
C
D

-; 101----..............A----1r----\3A-\--+--~~PIt_-___7'iI~~
""t:5

eu
C'
cs
E

50 t-------+---+--+--t--r-~

~ 20 r----+--~f---biIIll+-+7f--+--:I~_t_7f_
o
cu
<.J
C
cs
~ 10 ~-----4+--\"ll!"___\_~~~-+--"'I~~-~""oio::"+-~-t--t_
"t5

C1>
(5'l

es
E
~ 5 1-----~~....J-7Ilir--+-~~~N__F~~~C:___-t---:~.......____t_+___t_"+_1

1 I 2 5. 10 20 50 100
Object distance, plP1

FIG. 13.39.-P-Q curves of a two-cylinder lens, D 2/D 1 == 1.5.
379



100

,100

so

50

~ l/ 1\ .1 I I I I

2

aSOD1
~ -1r- ~

t----+--+--:JA---wc:--+--I~+_Il_--~ iDl Dzt
P ..-----+---.a

2

2 t-------J-

50

5 10 20 '
Object distance,P/D.l

FIG. 13.41.-P-Q curves of a two-cylinder lens, D2/D1 == 1, S == 1.0D1•

380

]00

50

~io
W\O·

~1-0c::r
Q)'"

~p(,.)

c:
cs ~.....
~ I?
cu
~

ts
E'

- 5



l+A~

If I 11 L--.I.-+--+-+~----+----+---f-I--+-+-4-+-I

I IJ; 1------t--f:.,F---+-+--+---+------.r---f--+-+-+-+---4--l

p~----~---..(}

50

'I"'----"-2--------.L..~5---1....-I---oIo~IO:-----20..L-----'"'""-~5....L.O...............L.....L.~k)O

Object dist~nce, P!A
FIG. 13.42.-P-Q curves of a double-aperture lens, AID = 5.

(l)
o
c:
1:5

:; 10
"1S
v
0""
I:S

E
- 5

-!!-r1~
50 ~II=TD~

.. -- p---->k-- -.-

~20
o
Q)
o
] 10 t-t--:..,.-:;---+-::-J;IC-----+-t----7'L-.......-----+T-t---+-:~--+--~-J
.Y!
"'tS

Q)

O"l
1:5

i 5~r___-~---:.IIfI<---.....:lIlt--+-------t.~~ --+~~-l----t~:::!f"""'-"""-=~':.oIl"'=+-lH

1 j 2 5 10 20 50 100
Object distance I PIA

FIG. 13.43.-P-Q curves of a double-aperture lens, AID :=: ~.

381



10050

" A
1 " \

-~ ~-A / / ,/ / \

~I~
/ / /~ / (

n/ / \/ v "-r\..k-"

--+ -::;D- v ~/ V\ V ~~

ii' / V1~v A / ,1/ ~
~

-e--- p-- --~--D--~ IIvv~~x / '" ~
V f

~K
v

~v )(
v

V
V'l'o-

~~V t"-o-
~ 1/

] v'
K

~

I~f>< ~)
Vo~

~ ( \tV [/r--. r--~~-j?' l r""o....
~~ j \1\ \ " ~

.l"~ () '1 A , ,/ / / ........
~ IL' II

~~. '\ \j" K V V
:1 LI I \ IA "- ~~ V ~

I\~{ J~... , /r"i' L--""'"r----.lL "
~\ X",'rr--.~ ./ V '4.01-

() If 'l.j ~r/~~V ~rrs.?.,\' ~ " ~~ L ~'O.O

~ - 1.0 ~~ 7~ I ~~J ~l:J' ~V VS- fTlO
X3~~l{ifl' ~'1 -f /5'll (;).

I
I

2

100

5

Q.)

o
C
IS

~ 10
"'lS

cu
C'l
(5

.§

~20o

50

5 10 20
Object cjish_nce, PIA

FIG_ 13.44.-P-Q curves of a double-aperture lens, A = D = 1.
IOOr------,r---,..---,r---1-...,..."""T"""1~--~__:~.......,..___r__r_"T"""T"~

~---4~--+---+---+-+--+-+-+I_+__- ~=-t l

--+---+--+--~~

~---4r__--+-----i--+-+--f--f--++-- ~=f} --+--+--+-+-+-t--t

50 f,.q~-
I--_+---......p.--~-....i!)~.r. v. -.j~ •.t--+--1r--t-+--t

/f(~~JO - :,Dt~ -l'zo~--+--/-+--C~V~D""""'~l~ -~2 ~t-+--t

~ /r1/x/v~~~\~.~O Pl~---I+----.-Q->->-

J! /J/CV' ) ~..., £A~O·
~ 10 / V \./ \ ~ '" ~ " ~ ."t~ ~

IA X' Y "V ~ ~ ... l.,u- 0-'"
~ r V \ ./ \ 'v .x.. ---~~.. & ~r-
t5 \/\ v~ , /1' ~ ~v r----~ ~~-r--r-

E \ V\ IV f'~" ./" --..........~~2.S-~~1-
- 5 Y\ 1\../ '\ ",I/' ~~V V '3.0

\ \,K ~Pf'~ ~~" -----p40
v' "K vl""r--~~

. ,,~ ~V LL!!.~,< ~~~ -r--r---~p'1'o Jf--t--+---+---+--+-+-+--t

'''<...- .......~~.J~o
~--~.~ -,-

I 1'"------'2L...----.Ioo.-..J1-o.o.ooI5'---'-.....&......I~IO~--""20---'--.a..--"-SO-"'-~....L....lII00

Object distance, P/D1

FIG. 13.45.-P-Q curves of a cylinder-aperture lens.
382



ELECTRosTATIC ELECTRON OPTICS 383

first focal length of the lens, plus the displacement of the first
principal plane from the lens center.

The outstanding magnification characteristics of electron lenses as
observed from the P-Q curves are as follows:

1. The contours of constant magnification are approximately straight
lines, with a slope of 1. This is exactly the case for thin lenses.

2. An approximate universal magnification formula that fits all lenses
shown is

QM =kp (13.110)

where P and Q are the object and image distance, respectively.
Values of the constant for the lenses tested are

Cylinder lens: ~: = 0.667

d2 = 1 S = 0.1
d 1

~: = 1.5

d2 = 1 S = 0.5
d1

d2 = 1 S = 1
d 1

Aperture lens: ~ = 5
d

~=3
d

~ = 1
d

Cylinder-aperture lens:

k = 0.82

k = 0.78

k = 0.76

k = 0.80

k = 0.60

k = 0.95

k = 0.80

k = 0.78

k = 0.82

It is~seen that, with only t\VO exceptions, the value of the constant
is within a few per cent of 0.8.

The observed magnification property is strictly in accordance with
theoretical expectations, though the agreement is not at all apparent.
From Lagrange's la\v [Eq. (13.76)] it is expected that the lateral magnifica
tion will equal the product of the ratio of image to object distance multi
plied by the square root of the reciprocal of the voltage ratio, namely,

M = ~ ~. This follows from the fact that the angular magnification

is nearly equal to the ratio of object to image distance. The actual con-
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tours of constant lateral magnification do not seem to follow this law, but
the discrepancy is only an apparent one, not a real one. The apparent
discrepancy is due to the fact that the object and image distances are
measured from an arbitrary point in the lens, whereas they should be
measured from an equivalent thin lens located between the principal
planes. If in the above modification of Lagrange's law the distances
P and Q are measured from a point midway between the principal planes,
then the calculated contours of constant lateral magnification are almost
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FIG. 13.46.-Comparison of the P-Q curves of two-diameter lenses.

indistinguishable from the measured ones in sample cases that have been
tested.

Comparison of Lenses. An important feature of the P-Q curves is
that they make possible a comparison of the focal lengths and magnifica
tions of various types of lenses over the ,vhole range of voltage ratios and
object distances. In Figs. 13.46 to 13.48 are dra,vn, for comparison,
parts of the complete curves of similar types of lenses.

In Fig. 13.46 are sho\vn the effects of changing the ratio of diameters
in a two-diameter cylinder lens. The curves show that, for ratios of
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diameters between 1 and 1.5, there is not much difference in magnifica
tion. For the smaller ratio of diameters the magnification is distinctly
more (object distance and voltage ratio held constant). In the vicinity
of useful application, say P = 3 and Q = 20, the voltage ratio required
for any ratio of cylinder diameters is about the same.

In Fig. 13.47 is given a similar comparison of equal-diameter cylinder
lenses for different spacings between cylinders. This comparison reveals
that the magnification of such lenses is about the same for small axial
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spacings up to about 0.5 diameter and then increases considerably as the
spacing is increased (object distance and voltage ratio held constant).
For the most part the lens becomes "","eaker as the axial spacing between
cylinders increases.

A comparison of aperture lenses is given in Fig. 13.48. It is a little
hard to draw any general comparisons because of the pronounced cross
overs in the P-Q characteristics for different lens dimensions. In the
vicinity of a short object distance and a long image distance the magni
fication is not greatly different for different ratios of aperture spacing to
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diameter. For a fixed object and image distance the voltage ratio
necessary to obtain a focus increases as the ratio of aperture spacing to
diameter increases.

The Einzel Lens. Another lens which is more or less in a class by
itself is the so-called" Einzel lens" (after the German word" single,"
indicating that there is a single value of the limiting potential). The
Einzel lens consists of three apertures equally spaced, the outer two of
which are maintained at the beam potential and the inner of which may
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FIG. 13.48.-Comparison of the P-Q curves of double-aperture lenses.

be at either a higher or a lower potential. The electrode arrangement
and potential field of such a lens have already been shown in Fig. 13.16.
Such a lens exhibits a convergent action whether the center electrode is
more or less positive than the outer electrode. The nature of the focusing
characteristics of a special type of Einzel lens are shown in Fig. 13.49.

The lens exhibits a focal length which decreases as the ratio V 2 ~1 V I

increases, where V 2 is the inner-electrode potential and VIis the outer
electrode potential. For negative values of the same potential ratio the
focal length decreases until the center electrode is sufficiently negative
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to make the saddle point at the center of the lens assume a negative
potential. Beyond this POillt the electrons cannot penetrate the lens
but are reflected back. The reflection is of such a nature that the action
as the center-electrode potential is made still further negative is first
that of a concave mirror and then that of a convex mirror. This change
in the nature of the reflection occurs because at first the electrons can
penetrate to a point ,vithin the lens ,vhere the equipotential lines are
concave and then as the center electrode becomes more negative they are
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FIG. 13.49.-FocaI characteristics of an Einzel lens.

only able to penetrate slightly into a region where the equipotential lines
are convex.!

13.10. :Aberrations. As is the case ,vith physical lenses, electron
lenses are not perfect image-forming devices but are subject to a number
of distortions or lens errors kno,vn as "aberrations." Because of the
almost exact analogy that exists bet\veen geometrical and electron optics,
everyone of the aberrations found in light lenses is also found in
electrostatic lenses. Thus the terminology of light lenses is directly
transferable to electron lenses.

All the lens theory that has been given so far has been a first-order
theory. This is the so-caned "Gaussian optics." The differentIal

1 JOHANNSON, H., and O. SCHERZER, Uber die elektrische Elektronen Sammelli.nse,

Zeit. fur Phys., vol. 80 (No.3, 4), pp. 183-192, 1933.
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(13.111)

equation of the paraxial electron was obtained by dropping all terms in

rand ~: of order higher than the first. If the restrictions on the electron

under consideration are made more liberal and only terms in rand ~:

higher than the third are neglected, then the theory of so-called "third
order imagery" is obtained. This third-order theory reveals all the
defects in image formation that are encountered.

The differential equation of third-order imagery is obtained by start
ing again ,vith the general differential equation of motion of Eq. (13.38),
then using the first two terms of Eqs. (13.21), (13.39), and (13.41), and

------~.

II HJ~h velocily

-~~-------=-----,-:f-!-~I----::::::.-~=-_II L~w ve!ocl1y

FIG. I3.5Q.-Chromatic aberration.

then neglecting any terms of order higher than the third. The resulting
differential equation of motion of an electron of third-order imagery is

" + Vo'r' [1 + 2 (Vo" _ Vol") + 12J
r 2Vo r 4Vo 4Vo' r

+ Vo"r [1 + 2 (Vo" _ VO(4») + 12J = 0
4V r 4V 0 8V 0" r

where the primes indicate derivatives ,vith respect to z.
A study of Eq. (13.111) reveals five distinct types of monochromatic

aberration possible in electrostatic lenses. The five types are generally
classified as coma, astigmatism, curvature of field, distortion of field, and
spherical aberration. In addition to these types, chromatic aberration
may be present. This makes six defects that are possible with perfect
structures and low currents. Distortions due to space charge and
imperfections in the electrode structure may also be present. Each of
the above defects ,vin no,v be briefly described.
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Chromatic Aberration. This is the well-known effect in geometrical
optics that causes light of different ,vave lengths to have different focal
lengths as shown in Fig. 13.50. In electron optics the analogous effect is
that electrons with different velocities will focus at different points. In
electron lenses the velocity of the electrons varies only to the extent that

ObJ"eef Image
FIG. 13.51.-Coma.

the velocity of emission is different for different electrons. Since this
variation in emission velocity is generally small compared with the
accelerating potentials used, the error is not a serious one.
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(13.56)

FIG. 13.52.-Astigmatism.

As an example of the effect of chromatic aberration, consider the case
of a single-aperture lens for which the focal length is given by

f = 4Vo
V O'(Z2) - VO'(Zl)

If the different electrons have energies corresponding to different values
of Yo, then

df f
dVo = Vo

(13.112)
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which is really just another way of saying that the focal length depends
upon the electron energy; the higher the energy, the lower the change in
focal length.

Coma. This is an extraaxiaI aberration, i.e., one that appears only
for images and objects not lying on the axis of the lens system. The

+---t---+
Objecf Image

FIG. 13.53.-Curvature of field.

effect is due to the fact that different circular zones about the~axis have
different magnification. As a result, a set of concentric circles off the
axis is imaged as a set of slightly distorted circles that are not concentric
but that have a drop-shaped envelope with the tail pointed away from

Obj ect Positive Negative
d j stor tion cl istorti on

"(Pin cushion) (Barrel) ".

FIG. 13.54.-Distortion of field.

the axis. The type of distortion resulting is shown in Fig. 13.51. The
effect is lessened if a smaller portion of the lens center is used, but this
reduces the amount of light or beam current and may not always be
desirable.

4-------rioo=
3--------.1-4~

~===m~~~~~~~~~b~~

FIG. 13.55.-Spherical aberration.

Astigmatism. This is a well-known effect in geometrical optics. The
effect is that, in any object off the axis, lines directed toward the axis
have a different focal length from those at right angles to these. A
compromise focus gives an image of least diffusion in which neither of the
lines is clear. This effect is illustrated in Fig. 13.52. As focusing voltage
is changed, a focus is first obtained at the center of the image, then along
a radial line, and then along circumferential lines. This is another of
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the extraaxial effects. In cylinder lenses, if the electrodes are slightly
elliptical the beam focus will be a short line instead of a spot. As the
focusing voltage is adjusted, the short line "rill become a fuzzy spot and
then a sharp short line again, but at right angles to its former position.

Curvature of Field. This lens defect usually accompanies but is more
pronounced than astigmatism. The effect evidences itself by the fact
that an object lying in a plane perpendicular to the axis has an image
\vh.ich does not lie on a plane but which lies on a slightly curved surface, a
surface of revolution about the axis approximately spherical which is
concave toward the lens. The result of this form of aberration is that an
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FIG. 13.56.-Focal length as a function of the radial coordinate in the lens.

object consisting of a set of circles concentric about the axis gives an
image whigh is sharp at only one radial distance. If the image plane is
adjusted to make the center sharp, then the outside circle will be fuzzy,
and vice versa. This lens defect is illustrated in Fig. 13.53.

Distortion of Field. This defect is due to variations of the linear
magnification \vith radial distance in the lens. If the object is a small
checkerboard, then the distortion evidences itself by giving rise to pin
cushion- and barrel-shaped images shown in Fig. 13.54. If the magnifica
tion increases with radial distance, it is considered positive and the
pincushion-shaped image results. If the magnification decreases with
radial distance, it is considered negative and the barrel-shaped image
results.
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Spherical Aberration. This is another lens defect well known in geo
metrical optics. Basically the effect is that rays entering the lens parallel
to the axis have a focal length which changes with the radial distance at
which they pass through the lens, as shown in Fig. 13.55. The focal
length as a function of radial position in the lens can be measured by any
of the experimental methods previously described and yields curves such
as those of Fig. 13.56. In the curves shown the focal length reduces
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FIG. 13.57.-Minimum spot size as a function
of aperture radius.

as the radial distance increases. This is known as "positive" spherical
aberration and is the kind invariably encountered in electron lenses. The
focal length is seen to decrease slo,vly at first and then more rapidly.
This is an axial aberration that has the effect of giving a spot focus
instead of a point focus. The minimum size of spot that can be obtained
for any lens aperture increases with the radius of the aperture. A typical
curve illustrating this effect is shown in Fig. 13.57.

Spherical aberration is one of the most serious of the various aberra-
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tions. It is always present and in electron lenses is invariably positive.
In physical lenses it is possible to combine elements with equal positive
and negative spherical aberration to obtain a lens that is free of this
effect. In electrostatic lenses it is possible only to reduce this effect, as,
for instance, by using a two-diameter cylinder lens with the high-potential
cylinder having a smaller radius than the lower. 1 It is also possible to
reduce spherical aberration in aperture lenses by the use of specially
shaped thick electrodes with curved surfaces corresponding to the
equipotential2

V(r,z) = (a sin kz + b cos kz)Jo(ikr) (13.113)

It has also been shown that a symmetrical lens with an axial-potential
variation given by3

(13.114)

has minimum spherical aberration. Unfortunately, it is very difficult to
build a lens having such an axial variation of potential since the electrode
structure required is not a practical structure at all. In general, the
spherical aberration associated with a given lens structure may be
reduced by simply eliminating sharp corners and edges on the electrodes.
A rounding of corners and edges eliminates large gradients, which seem
to contribute considerably to the lens defects.

Other Lens Defects. In addition to the above optical defects, electro
static lenses are subject to a few ills to which physical lenses do not fall
heir. The space-charge mutual repulsion between electrons prevents
electron beams from coming to a point focus and in general exhibits the
same effects as spherical aberration. This subject will be given an
analytical treatment in the chapter on Cathode-ray Tubes. In addition,
imperfections in the electrode structure will give rise to some remarkable
distortions. In lenses with small apertures, if the plane of the apertures
is not perpendicular to the axis, the beam will focus into a tadpole-shaped
figure. Modern techniques are, however, sufficiently good so that
distortions resulting from electrode imperfections seldom appear in
commercial tubes. 4'

1 KLEMPERER and WRIGHT, op. cit.
2 GRAY, op. cit.
3 SCHERZER, 0., Die Schwache elektrische Einsellinse geringster spharischer Aber

ration, Zeit. jur Phys., vol. 1, pp. 23-26, June, 1936.



CHAPTER 14

MAGNETIC LENSES

14.1. Focusing Action of Axial Magnetic Fields. Electron beams can
be focused with magnetic as ,veIl as with electric fields, though the analogy
,vith optics is not so readily... established. Reference has already been
made to one type of magnetic focusing In Sec. 6.6 there wa~ discussed
the case of a long uniform magnetic field parallel to an axis. Electrons
leaving a point on the axis \vith their principal component of velocity
directed parallel to the axis move out \vith helical paths of approximately
the same pitch and come to a focus farther along the axis. This action
is sho,vn in Fig. 14.1. The motion of the individual electrons is a com
bination of a linear translation parallel to the axis and a circular motion
in a plane perpendicular to the axis, giving rise to a helical path. The

Side View End View
FIG. 14.1.-Helical electron paths in a uniform magnetic field.

radius of the circular component of travel is given by Eq. (6.67). It is
proportional to the radial component of velocity and inversely to the
magnetic-flux density at the starting point. The focal length (pitch
of the helices) is given by Eq. (6 68). The focal length depends upon
the axial component of velocity directly and upon the magnetic-flux
density inversely. Thus the focal lengths of the different electrons are
within 1~ per cent for initial angles with the axis that are less than
10 deg, and a pretty good focus is obtained. The radial and angular dis
placement associated with this motion is shown in Fig. 14.2. The radial
displacement is sinusoidal in form. The angular displacement is uni
formly increasing with distance.

The action of the long field parallel to the axis is more or less typical
of the action of all magnetic lenses. All magnetic lenses depend upon a

394
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component of magnetic field parallel to the axis. The electron paths
start from a point on the axis and return to it at a later point. In doing
so the electrons move in a plane through the axis, ,vhich rotates con
tinuously as the electron pas s e s
through the magnetic field.

The action of a short magnetic
lens may be understood by consider
ing a fictitious case in which the mag-
netic field is short but uniform and
parallel to the axis, as sho,vn in Fig.
14.3. In this case an electron leav
ing the axis will move in a straight
line at a constant velocity until it
enters the magnetic field. When
this happens, from Eq. (6.70), the
radial component of velocity will FIG. 14.2.-Radial and axial displacel

ment of an electron in a uniform axia
react with the axial component of field.
magnetic flux to produce an angular
component of force. This imparts a twist to the electron path, and at
the same time the angular (0) component of velocity developed will react
,vith the axial component of field to produce a radial component of force

-.----------t/?
Q
End
View

z .....
FIG. 14.3.-Action of a short fictitious magnetic lens.

directed toward the axis, that serves to focus the electron and bring it
back to the axis. The radial and angular displacements along the axis
for this case are shown in Fig. 14.3.
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·Hlines

In an actual short magnetic lens the magnetic-flux lines cannot
terminate abruptly as in the fictitious example above. A typical field,
such as might be produced by a circular current coil, is sho\vn in Fig.
14.4. Fundamentally, the action here is the same as that described in
the previous paragraph except that the action is more uniform. In parti
cular, the angular displacement has no sharp corners but is continuous
in slope. Note that the action in each of the three cases cited is appar
ently a function of the axial component of magnetic flux. It will be
shown in subsequent sections that this is indeed the case and that the
entire action of a magnetic lens can be described in terms of its axial

variation of its axial component
of magnetic field. Note further
that if the magnetic-field strength
in the last two cases cited is not
of just the right value the electron
may not hit the axis even though
it is deflected back toward it.
This is not the case with electro
static lenses and means that mag-
netic lenses have an extra type of
aberration to \vhich the electro
static lens is not subject.

14.2. Magnetic Fields with
Rotational Symmetry. In th e

~ 6_ case of electrostatic fields \vith
rotational symmetry it ,vas found
that the potential at any point in

FIG. 14.4.-Action of a short magnetic lens. the field could be expressed in
terms of the axial potential and

its derivatives by means of a series expansion. This series proved
very useful in studying the behavior of paraxial electrons. A similar
situation applies to magnetic fields. The z component of a magnetic
field obeys Laplace's law provided that the region under considera
tion does not include any current flow. If attention is restricted to
the vicinity of the axis of a field produced by something like a circular
coil, there is no current flow except that represented by the electron beam
and this is so weak in terms of the magnetic field it produces that it can
be neglected. The axial component of magnetic flux is of most impor
tance; Laplace's equation for it is

(14.1)
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This can be solved for B z in the form of a po'\ver series in r by the technique
used to obtain an expansion for electrostatic potential. The result is

r2 r4

B (r z) = Bo - - B o" + -- B O(4) + · · ·z , 22 22 .42
(14.2)

where B o = Bz(O,z), the axial value of the axial component, and the
primes indicate derivatives with respect to axial distance z. This series
can also be written as the summation

co\' ()2n-2 B (2n-2)

B.(r,z) = '-' (-I)n+1 ~ [en 0_ 1) !]2
n=l

(14.3)

Magnetic fields of rotational symmetry ,viII not have an angular
component of flux but will have radial and axial components of flux.
The radial and axial components of flux are related by the fact that the
net outward flux over any small volume not containing current is zero.
Mathematically, this is stated by saying that the divergence of magnetic
flux is zero, and this condition is expressed by

(14.4)

(14.5)

or

~ ~ (rBr) + aBz = 0
r ar az

Equation (14.4) is simply a shorthand vector notation for the relation
of Eq. (14.5). When the series of Eq. (14.2) is substituted
into Eq. (14.5) and this solved for B r , there results

_ r, r3
'" r5

(5)
B r - - "2 B o + 4 . 22 B o - 6 . 22 . 42 B o + (14.6)

in which the constant of integration has been set equal to zero because
B r is an odd function of r. This series may also be written as the
summation

(14.7)

14.3. Electron Motion in a Magnetic Field Expressed in Cylindrical
Coordinates. The equations of motion of an electron in a magnetic
field as expressed in cylindrical coordinates have previously been given
in Eq. (6.70) but will be repeated here for convenience of reference. In
general, the force on a charged particle moving in a magnetic field is
given by

F = qv X B (14.8)
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where F, v, and B are vector quantities representing force, velocity, and
magnetic-flux density, respectively, and q is the charge of the particle ..
The symbol X indicates the so-called "vector product," ,vhich is a short
hand notation to indicate that the product lies at right angles to the plane
of the vectors being multiplied and has the direction a right-handed scre\v
would advance if the slot in its head were turned from alignment with the
first to alignment with the second.. Furthermore, the resultant vector
has a magnitude equal to the product of the magnitude of the vectors
being multiplied and the sine of the angle between them.. Upon apply
ing Newton's second law and the fact that the electron charge is -e,
Eq. (14.8) becomes

ma = eB X v (14.9)

since A X B = -B X A. In Eq. (14.9) a is acceleration and m is mass.
Expanded in component form, this becomes three differential equations
as follows:

m [r - r82] = Boz - BzrO
e

mId ( 2') B .. B·"- -~ - r 0 = zr - .,.z
e r dt

m- z = BrrO - BoT
e

(14.10)

(14.11)

(14.12)

in which the dots above the component variables indicate derivatives
with respect to time.

14.4. Differential Equations of Motion of the Paraxial Electron. The
set of component equations can be greatly simplified to yield the case
of an electron in a magnetic field of rotational symmetry, moving close
to the axis and making a small angle with it. In the first place, the rota
tional symmetry of field means that the angular (IJYcomponent of magnetic
flux is zero. The first terms of the series expansions of Eqs. (14.2) and
(14.6) can then be substituted for the other components of magnetic
flux; and when terms of order r 2 and higher are neglected, tremendous
simplification results. Equation (14.11) can be integrated once with the
above substitutions to give

· e B o0=--
m2

(14.13)

(14,1 i~

the constant of integration being zero since the angular velocity is zero
when the magnetic field is zero. This rather remarkable equation states
that the angular velocity is proportional only to the axial component of
magnetic field. Applying these substitutions to Eq. (14.10),

.. (e BO)2r = -r m"2
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Equation (14.12) reduces to
z=o

399

(14.15)

which is approximate only to first order, of course, but is reasonable
since there is no electric field contributing to the motion.

Time may be eliminated from Eq. (14.14) by using the approximate
relations

v = z
and

.. 2Ve d2rr:=.....--
m dz2

Substitution of these values into Eq. (14.14) yields

Evaluating the constant of the second term numerically,

::: + 2.20 X 1010 B;r = 0

(14.16)

(14.17)

(14.18)

(14.19)

for rationalized mks units. This expression is similar to the reduced form
[Eq. (13.46)] of the paraxial differential equation for the electrostatic
case. By the procedures indicated above the electron motion has been
separated into radial and angular components. In most focusing
problems the radial component may be treated alone without regard for
the angle. It need be remembered only that the plane of the electron
rotates progressively as the electron moves through the lens.

14.6,. Focusing Properties of Magnetic Lenses. General. By exactly
the same reasoning and process as that used in Sec. 13.4 the focal length
of a thin magnetic lens can be deduced from Eq. (14.18). The result
of this process is

lIe {Z2
- J;. = j; = 8mV J.. B 0 2 dz

Evaluating the constant

1 1 2.20 X 1010 l Z2

- - = - = B 02 dz
jl j2 V Zl

meters-1

(14.20)

(14.21)

where Zl is a point to the left of appreciable field variation and Z2 a cor
responding point to the right and B o is the axial component of magnetic
flux density in webers per square meter (104 gausses). Two important
conclusions are immediately available from the above equations for
focal length. The first is that the focal length in the two directions is



400 VACUUM TUBES

(14.23)radians

the same. The second is that the lens is always oonvergent since the
quantity in the integrand is always positive.

The corresponding rotation of image is given directly from Eq.
(14.13), making use of Eq. (14.16). It is

o = 2 ~v& 1:' Bo dz (14.22)

Evaluating the constant,

() = 1.480 X lOs1z2
B

o
dz

vV Zl

The rotation has a clock,vise direction in a magnetic field that has a
component in the positive z direction.
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FIG. 14.5.-Axial magnetic-field distribution of a circular turn of wire and of the
Glazer lens.

Magnetic Lens of a Circular Turn of Wire. A simple source of a
magnetic field suitable for a magnetic lens is that of a circular turn of ,vire
about the electron beam. Such a turn produces the necessary axial
component of magnetic field having the desired rotational symmetry.
The shape of the field is shown in Fig. 14.5. This is seen to approximate,
roughly, a short uniform field parallel to the axis. The axial component
of magnetic-flux density associated with a circular turn of wire is given by

(14.24)
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where fJ.o is 1.257 X 10-6 henry per meter, the constant of proportionality
between magnetic intensity and flux in rationalized mks units, and R is
the radius of the turn of wire. Upon evaluating the coefficient, this
becomes

webers per meter2 (14.25)

By using this expression for magnetic-flux density along the axis it IS

possible to evaluate the integral of Eq. (14.21), ,vith the result

f
= 9'7.9VR

12 meters (14.26)

It is not possible to get a sufficiently strong lens with a single turn
of wire, and therefore a coil of many turns is ordinarily used. When this
is the case, the focal length becomes

(14.27)metersf 97.9VR 'I f f t= (N1)2 X COl orm ac -or

where N is the number of turns and the coil form factor will generally
assume a value between 1.00 and 1.25. The coil lens is weaker per
ampere turn than the single-turn lens because the magnetic field is not
so well concentrated. Where extremely strong lenses are desired, the
field is further concentrated by means of iron pieces surrounding the
coil.

The Glazer Lens, It is possible to calculate exactly the characteristics
of a magnetic lens having an axial-flux-density function of the form

B1

1 GLAZER, W., Strenge Berechnung magnetischer Linsen der F eldform H = 1+(~) 2'

Zeit. fur Phys, vol. 117, 285-315, 1941.
2 MARTON, L., and R. G. E. HUTTER, Optical Constants of a Magnetic Type

Electron Microscope, Pl'oc. I.R.E., vol. 32, pp. 546-552, September, 1944~
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Upon applying the approximate expression for focal length of Eq.
(14.20) to the assumed field form the focal length is found to be

f 16mV meters (14.28)= RB12er

The paraxial differential equation for the assumed field form is

(14.29)

(14.31)

By means of judicious substitutions this equation can be converted to a
form that is directly integrable.!

This yields a general-ray solution in the form

r(z) = R ~I + (nY {Cl sin [ VI + p2 arc cot (~)]

+ C2 cos [ VI + p2 arc cot (n)]} (14.30)

where C1and C2are arbitrary constants and p2 = e:~:2 is a lens

strength parameter. By proper choice of the constants 0 1 and C2 the
general ray can be made to pass through any two points or meet any
two conditions in general.

Since the general-ray equation is known, the focal points, focal lengths,
and location of the principal planes of the Glazer lens can be found.

The first principal ray is found by letting ~: be zero and r finite at

z = + 00 • The second principal ray is found by letting the slope be zero
and the displacement finite at z = - 00 • The principal planes are
located at the intersection of the initial and final straight-line portions
of the principal rays. The focal points are found at the points at which
the principal rays cross the axis.

The focal length of the Glazer lens is

11 = -12 = R

sin n (VI: p2)

where n assumes integral values. The significance of the focal length
being multiple-valued is that for very strong fields a principal ray enter-

1 Let y = R.!...' x = R~' and then make the further substitution y = ~(tb) and x = cot 4>.
sm</>

This yields the differential equation v"(q,) = -(1 + k 2)v(t/J), which is readily solved.
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ing the lens parallel to the axis ,vill advance and oscillate transversely,
crossing the axis several times. For normal applications the value of n
is taken as 1. The above value of focal length has the same low-field
value as given by the approximate formula of Eq. (14.28), that is,
2R
~. For larger v~!ues of field there may be a considerable divergence
7rp2

from the appro~:imate value. The divergence does not, however, occur
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FIG. 14.G.-Focallengths of the Glazer lens by exact and approximate formulas.

(14.32)

until the lens is strong enough for the electron to cross the axis within
the region of appreciable field. A comparison of the focal lengths as
determined by the exact and approximate formulas is given in Fig. 14.6.

The location of the focal points is given by

F 1 = - F 2 = R cot n ( 7f' )VI +p2
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This has the same weak-field asymptotic value as the focal length, which
means that for weak fields the principal planes are located at the lens
center. As the lens field is increased, the focal length becomes greater
than the distance from the lens center to the focal points. This means
that the first principal planes move away from the focal points. The
first principal plane is to the right of the lens center and the second
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FIG. 14.7.-Focal length and principal-plane location of the Glazer lens.
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to the left. A plot of the focal length and focal-point position is sho\vn
in Fig. 14.7.

14.6. Practical Magnetic Lenses. A coil of fine ,vire, square or rec
tangular in cross section, about the beam axis is a practical lens. Its
strength is not very great, however, and its field is not very well confined.
Both these features may be improved by partly shielding the coil with
an iron shield but still maintaining a gap along which magnetic lines will
pass parallel to the axis. In Fig. 14.8 are shown some practical lenses
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and their approximate fields. For extremely strong lenses such as are
needed in electron microscopes the gap is made very small and is brought
as close to the axis as possible by extended pole pieces. Such a lens is
shown in Fig. 14.8e. It is not possible to calculate the performance of
such a lens because of nonuniform saturation of the pole pieces. In

fa) (6) (c) (dJ

FIG. 14.8.-Practical magnetic focusing coils.
(e)

part d of the figure there is shown a double lens composed of two sectio.ns
containing coils passing currents in opposite directions. This makes
the net image rotation through the lens zero for equal currents in the
halves and tends to reduce the distortion associated with the image
rotation.

14.7. Magnetic-lens Defects. Magnetic lenses are subject to all the
aberrations encountered in electrostatic lenses, plus a type of distortion

·0 bj ect rmage
FIG. 14.9.-Spiral distortion in magnetic-lens
images.

associated with the image rotation. This type of distortion is kn~wn

as "spiral distortion" and is illustrated in Fig. 14.9. It results from
the fact that the rotation of different parts of the i~age is a funQtio~'~f
the radial position. Its effect may be reduced by limiting ..the beam by
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very small apertures, or it may be largely eliminated by using pairs of
lenses giving rotation in opposite direction.

In addition to spiral distortion there may be distortion from current
ripple in the magnetic coils or from stray fields. The effect of current
ripple is to cause a point focus to become a blurred spot. Stray alter
nating fields will cause a point focus to become a short line.

14.8. The General Equations of Motion in Combined Electric and
Magnetic Fields. In the previous work in this chapter there have been
described the effects of a nonuniform magnetic field upon an electron
presumed to be moving in a region of constant electrostatic potential.
For completeness there will be outlined in this section the basic relations
that apply to electrons moving in combined electric and magnetic field~

of rotational symmetry. This involves considerable analysis the end
point of which is the differential equation of motion of a paraxial electron
in terms of the axial potential and the axial component of magnetic
field. Although the yield for a great deal of work is quite small, the
methods involved are fundamental and instructive enough to make the
inclusion of this section worth while.

The force on an electron in a combined electric and magnetic field is
given by

F = ma = e[VV + B X v] (14.33)

where VV is the gradient of potential and the components of B X v
have been given in Eqs. (14.10) to (14.12). Equation (14.33) is a com
pact representation of three coordinate equations and needs to be
expanded for any specific application.

In the work with electrostatic fields it was found that the electric
intensity and the corresponding forces on electrons were all derivable
from the electric potential. Similarly, it is convenient to consider that
the magnetic-flux vector B is derivable from a vector potential A. The
relations for the electrostatic case are similar but not exactly analogous
to those for the magnetic case. Electrostatic potential fields are analo
gous to the irrotational flow of an incompressible fluid. Magnetic fields
are analogous to the sourceless rotational flow of an incompressible flow.

The basic relations for electrostatic potentials are quickly listed.
First the line integral of electric intensity around any closed path is
always zero.

(14.34)

where the dot indicates the so-called scalar product, which is equal to
the product of the magnitude of the vectors by the cosine of the angle
between them. An equivalent statement of this is that the curl of the
electric intensity, i.e., the microscopic circulation, is always zero.
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VXE=O

407

(14.35)

Whenever the curl of a vector is zero, then that vector is the gradient of
some scalar function. Specifically,

E = -VV (14.36)

or intensity is the negative gradient of potential. The electrostatic
potential results from a summation of the effect of various electric
charges by the relation

1 f pdvv=- -
411'"£0 r

(14.37)

The corresponding relations for the magnetic field are also quickly
given. The net outward flux through any closed surface is always
zero.

!Bods=O (14.38)

An equivalent statement of this is that the divergence of magnetic flux
is zero.

V·B = 0 (14.39)

When the divergence of a vector is zero, then that vector is the curl of
some other vector.

B=VxA (14.40)

(14.41)

The vector A is called the "magnetic vector potentiaL" Just as the
electrostatic potential results from a summation of the effects of individual
charges, so does the magnetic vector potential result from the summation
of the effect of various currents.

A = J.Lo f Jdv
411'" r

in which J is vector current density. The vector A is seen to have the
same dire~tionas the currents that create it. The divergence of A is taken
as zero in the static case.

When Eq. (14.40) is expande~ and w;itten in component form using
cylindrical coordinates, it becomes, first in determinant form,

ir ri8 iz

1 iJ a a
"(14.42)B =-

iJr iJO iJzr
Ar rA 9 A2

where ir, i 9, and iz are unit vectors in the T, 8, and z directions, respec
tively. When this determinant is expanded, the component equatiQus
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(14.43)

(14.44)

(14.45)

'fhese are the general equations relating B and A for cylindrical
coordinates.

For the particular problems of electron optics most of the magnetic
lens fields are like those of a ~ircular coil. In such there is only a 8
component of current and hence only a 8 component of A. _Further,
the f} component of either current or A does not vary with angle. Hence
we may write

AT = A z = 0
A = Aeio

aA o = 0
ao

(14.46)
(14.47)

(14.48)

With these restrictions the component relations between B and A become

B = - aA u (14.49)
r az

B o = 0 (14.50)
1 0

B z = rar (rA o) (14.51)

From the above set of equations and the fact that V X B = 0 it is possible
to obtain a differential equation for A (J alone. In subsequent work the
(J subscript for A ,vill sometimes be dropped for simplification, though it
will be remembered that the vector A has a () component only. Setting
the curl of B equal to zero in terms of the 8 component of A,

iT rie i z

1 a a a
(14.52)v XB =- or of) lizr

aA
0

1 a(rA)
dz

---
r or

which expands into

r component of V X B = 0 - 0

d (1 a(TA)) iJ2A
(J component of V X B = - ~ - -- --

iJr r ar dZ2

z component of V X B = 0 - 0

(14.53)

(14.54)

(14.55)
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(14.56)

Upon setting the 8 component of curl B above equal to zero there is
obtained the differential equation for the vector potential A,

<1
2
A + o2A + ~ (~) = 0

OZ2 <1r2 CJr r

which, of course, applies only to magnetic fields having a rotational
symmetry and produced by currents flowing exclusively in the (J direction.
This equation is similar to but not identical with Laplace's equation but
serves the same function in defining A as Laplace's equation does in
defining V. This equation may be solved by series exactly as was done
for potential and magnetic flux. In this case the series is restricted to
odd powers of r because the vector potential like the current that gener
ates it is an odd function of T. The resultant series expansion for A
IS

B 3B" 5A ( ) - r 0 r 0 + r B (4) +
8 1 ,Z - 2 - 22 . 4 22 . 42 . 6 0

+ (-1) n+ 1Bo(2n--2) (:.)~n-l (14.57)
n[(n-l) !]2 2

where Bo = B(O,z) is the value of the axial component of magnetic
flux.

By restricting Eq. (14.33) to fields of rotational symmetry and
utilizing Eqs. (14.49) to (14.51) there result the component equations
of motion

m ("" ·2 • a ( A av- r - rO) = -0 - r 0) + -
e ar ar
~! ~ (r 28) = i <JAo + ~ a(rA o)
e r dt iJz r ar

1 d= - - (TAo)
r dt

!!! Z = -r8 aA o+ av
e oz az

(14.58)

(14.59)

(14.60)

(14.61)

These are the basic equations from ,vhich now some simplified relations
will be obtained. These equations are so far exact.

Equation (14,,60) integrates to

2 er2~o
mr () = crAil = ~

2
(14.62)

-

for the paraxial case. The constant of integration is zero since A o = 0
for r = 0 as may be seen by reference to its series expansion. Sub
stituting the v9,lue of () from Eq. (14.62) into Eq. (14.58) yields
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.. a(v 1 e A 2)mr=e iJr -2m 8

A similar operation upon Eq. (14.61) yields

mit = e i (v - ! ~ A82)
dZ 2 m

(14.63)

(14.64)

The energy equation is obtained from these last two equations by
multiplying the first by r and the second by z, adding, and integrating.
The result is

(14.65)

Use has been made in obtaining this of Eq. (14.62). Note that the kinetic
energy is independent of A and hence of the magnetic field. This is
consistent with the idea previously propounded that· a magnetic field
can change only the direction of an electron and cannot change its energy
because the force is always directed at right angles to the electron's
velocity.

From Eq. (14.62) the approximate rotation of an electron is given by

Ie! B o
8 = ~8m .yvdz (14.66)

Inserting the series expansions for A and V into Eqs. (14.63) and
(14.64) gives

mf = e {- !(Vo" +!.!!.. B02) +~ [VO(4) + 2e BoBo"] + · · · }2 2 m 22 • 4 m
(14.67)

~d

.. [V ' r
2 (v'" + eBB ') + J.mz = e 0 - 220m 0 0 • · · (14.68)

The paraxial components of these last two equations are found by
retaining only first-order terms,

- _ re (v "+ 1 e B 2)T--~ 0 -- 0
2m 2m

... e V'z = - 0m

(14.69)

(14.70)

Note that the radial component of acceleration due to the magnetic field
is always convergent. The paraxial differential equation may now be
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(14.71)

(14.72)

obtained by eliminating time from the last two equations by the use of

dr r
dz - Z

d2r rz - rz
dZ2-~

and
.2 2eVoz =-

m

With these substitutions the paraxial differential equation is

d
2
r + V o' dr +~ (Vo" + eBo2) = 0

dz 2 2Vo dz 4Vo 2m

This can also be written in the form

~~(~dr) = _ !-(Vo" + eBo2)
dz dz 4 2m

(14.73)

(14.74)

(14.75)

These equations are seen to be of proper form because the paraxial
differential equation of either a varying electric or magnetic field alone
is derivable from them.

If in addition to the effect of the electric and magnetic fields there be
considered the defocusing effect of the mutual radial repulsion of the

electrons, then a factor of the form - 2
rp

must be added within the paren-
£0

theses of the last term of the above two equations, where p is the space
charge density within the beam and £0 is the dielectric constant of free
space ..

Note that the paraxial differential equations of Eqs. (14.74) and
(14.75) are second-order linear differential equations. This means that
even with combined electric magnetic fields a general ray can be expressed
in terms of two independent principal rays.



CHAPTER 15

CATHODE-RAY TUBES

15.1. The General Form of Cathode-ray Tubes. The external
physical fOfm of cathode-ray tubes is well known. They generally
have a glass envelope shaped Jike an Erlenmeyer flask. The electrical
leads to the tube come out through a base at the mouth of "the flask.
The inside of the flask is coated \vith aquadag. The bottom of the
flask is coated inside ,vith a fluorescent material.

The internal parts of the cathode-ray tube include an electron gun,
devices for horizontal and vertical deflection of the beam, and a fluores
cent screen. The electron gun is a combination of electrodes for pro
ducing and focusing a beam of electrons. It consists of a cathode, a

H- Healer FE-rocusinq
C-Cothode elecfrodeor

fHS-HeQtshie/d secondanode
EO-Emifting oxide EB-Elecfron beam
CE-Conrrol elecfrode FS- Fluore$~entscreen
AS-Accelerating electrode on Inside gltls?

or firsf anode AC-Aqu,!da,q eMf/ng
LA-Limifinq aperture on Inside fJlt:1sS

FIG. I5.I.-Schematic cathode-ray-tube structure.

control electrode, and two or more electrodes forming an objective lens.
One commonly used arrangement of these parts is shown in Fig. 15.1.

The general description of the parts of the electron gun and their
function is as follows: The cathode consists of a small capped cylinder
of sheet nickel. The cap is coated with emitting material. The cathode
is indirectly heated by an insulated filament wire inside the cylinder.
The cathode is generally surrounded by a close-fitting but nontouching
cylinder, which acts as a heat shield and increases the thermal efficiency
of the cathode. The heat shield is supported at the nonemitting end of
the cathode and projects slightly beyond the cap at the other end. This

412
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projection at the emitting end serves to keep the emitted electrons from
spreading. Figure 15.2 shows this cathode construction. The control
electrode takes the form of a cylindrical can completely surrounding
the cathode and having a circular aperture in front of the emitting cap.
It performs the same function as the control grid in a triode. The
main focusing lens is in the form of one of the lenses described in the
chapter on Electrostatic Electron Optics. The first part of this lens
always has limiting apertures to keep the electrons from spreading too
much by reducing the angle of the beam. With the arrangement shown

---~

FIG. 15.2.-Typical cathode structure.

in Fig. 15.1 there is a crossover point of the electrons between the control
electrode and the first electrode of the objective lens. The spot seen
on the screen of the tube is an image of the crossover portion of the beam,
which is the cross section of minimum diameter. In the two-cylinder
objective lens shown in Fig. 15.1 the small cylinder is called the" first
anode" or "accelerating electrode." The large cylinder is called the
"second anode" or "focusing electrode."

The relative potentials on the electrodes of the electron gun are quite
important. For a typical tube with the electrode arrangement of Fig.
15.1 the electrode potentials are as follows:

Electrode

Filament , .
Cathode .
Heat shield .
Control electrode .
First anode .
Second anode .
Aquadag coating .

Potential
relative to

cathode, volts

o
o
o

-10 to +10
+200
+800
+800

Potential
relative to

ground, volts

-800
-800
-BOO

-790 to -810
-600

o
o

The physical construction of the electron gun requires a high degree
of precision in the alignment of the electrodes. The electrodes are
usually supported from glass or (l,eramic insulating rods, in turn sup-
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ported on a stem similar to that used in vacuunl tubes. Mica spacers or
metal springs serve to center the gun within the neck of the envelope.
Extreme care must be used in aligning the electrodes axially. Such
alignment is usually achieved by means of a mandrel, which is removed
after the electrodes have been spotted or crimped into place.

The beam-deflecting devices most commonly used are electrostatic
deflecting plates or magnetic deflecting coils The deflecting plates
are always placed inside the tube and are usually supported from the
end of the electron gun. Some special-purpose tubes have the deflecting
electrodes supported directly from the neck of the envelope, with leads
brought out directly through the glass. Magnetic deflection, when used,
is achieved by coils external'to the tube. The coils are arranged so
that they produce a component of magnetic field perpendicular to the
axis of the tube.

The fluorescent screen at the end of the tube serves to reveal the
position of the electron beam and to translate electrical impulses into a
visual picture. The screen consists of a thin layer of fluorescent material
on the inside of the tube, which lights up when struck by electrons. The
fluorescent~coating is generally a fairly good insulator so that it is neces
sary for the electrical circuit consisting of the power supply and the beam
to be completed by means other than electrical conduction. The means
in this case is secondary emission. As beam electrons strike the fluores
cent screen, they liberate secondary electrons, which look for a more
positive electrode to be dra,vn toward. This electrode is found in the
aquadag coating, ,vhich is at beam, or ground, potentiaL The fluorescent
screen will assume a negative potential because of an accumulation of
beam electrons that are slow to leak off. This means that there exists a
potential difference between the fluorescent screen and the aquadag
coating that is in the right direction to attract the secondary electrons
liberated by the beam impact.

15.2. Electron-gun Design. The fields and electron paths in the
vicinity of the cathode of an electron gun are extremely complex. This
makes the exact design of electron guns necessarily at least partly
empirical. Although it is not possible to give equations resulting in
exact design relations, it is possible to indicate the nature and magnitude
of the effects encountered.

For low-current guns such as are used in ordinary cathode-ray
tubes the electrostatic field in the vicinity of the cathode has the general
shape shown in Fig. 15.3. The fields will be similar to those encountered
in the vicinity of simple apertures, but modified by departures in the
shape of the electrodes from that ideal configuration. Between the
control electrode and the first anode the field will be approximately
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linear. In the vicinity of the cathode the field will be strongly curved
in such a way as to cause all electrons emitted from the cathode to be
drawn strongly to,vard the axis. Only a limited portion of the center of
the cathode emitting area will present a positive gradient of potential
to the emitted electrons. At cutoff the gradient of potential will be zero
at the cathode center and negative in other parts. As the control grid
is made more positive, a region of positive gradient will grow from the
0enter until at sufficiently positive control-electrode potentials the entire
surface of the cathode may emit.

Cutoff Relations in the Electron Gun. The control electrode has an
action somewhat similar to that of the control grid in a vacuum tube

-/0 volts +SOOVO/1S

ovalls

.......-~---sOOv

Ov

FIG. 15.3.-Ficld in the vicinity of the cathode of an electron gun.

except that in addition to controlling the gradient at the center of the
cathode it controls the size of the emitting area. For this reason it is
difficult to write a current-voltage relation, but it is possible to estimate
the cutoff 'relation. Exact relations for the configuration of Fig. 15.3
are almost impossible to write, but the field ~onfiguration is approximated
by the idealized electrode configuration of Fig. 15.4. For this configura
tion the aperture-field formula of Eq. (13.37) will apply very closely.
Here the axl.al potential is given by

V ( ) - - V2il23 + (V g - V2)d 12 [l I 2R (z t R 1)]
o z - 2d

12
d

23
Zl - -;: R arc an z -

+ (Va - V 2)d12 + V 2d23 Z + V
2

(15.1)
2d12d23

when VI = O.
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The gradient of potential at the cathode is found by taking the derivative
of this expression ,vith respect to z and then setting z = -d12• The
resulting expression is

dVo( -d12) = V~23 - (V 3 - V2)d12 [1 _ 2R (-.! arctan.!i. - d12 )J
dz 2d12d2a 7r R dli R2 + d12

2

+ (V 3 - V 2)d12 + V'Jf123 (15.2)
2d12d 23

t-_
e
__•

--dJ2·--t-~ -d23
--

v
R

~=o ~ ~

FIG. 15.4.-Idealized cathode-electrode configuration.

The cathode current will be cut off when the gradient at the cathode is
zero. The equivalellt amplification factor of the control structure is

found by setting dro at z = -d12 equal to zero and then taking the neg

ative ratio of V 3 to V 2.

(15.3)

(15.4)

This is an amplification factor that determines the current cutoff.
The amplification factor has the specific value

arctan~ ~ 1 - ~ (~~: + 1)]
d 12 ~ + d 12

d12 R

A nomographic chart of equivalent amplification factor as a function of
control-electrode-aperture radius and grid-first-anode distance, each
expressed in units of cathode-grid distance, is given in Fig. 15.5. These
values, while not exactly the same as those for the electrode structure
of Fig. 15.3, will serve to indicate the order of magnitude and the nature
of the variation of the equivalent amplification factor with the critical
dimensions. Measured values of JJ. for the structure of Fig. 15.3 will
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be considerably higher than those obtained from Eq. (15.4) because of
the shielding effect of the control-electrode-cylinder extension. Meas
ured data on some specific electrode structures are available in the
literature.!

2 1.5

I 1.4

/
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1.6
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...... , ,
........

........
........

........
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~O
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-3--3 .
I J.d23
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lrIG. I5.5.-Nomographic chart of the equivalent amplification factor of an tlectron
gun as given by Eq. (15.4).

Electron Paths in the Electron Gun. As may be seen from the equi
potential plot of Fig. 15.3, the field in front of the gun cathode is strongly
convergent~ It is not easy to apply the methods described in the
chapter on Electrostatic Electron Optics to this portion of the gun
because the focusing field is so strong relative to the lo,v-velocity electrons
that a focus is obtained within the region of field variation. The type

1 MALOFF, I. G., and D. W. EpSTEIN, "Electron Optics In Television," pp. 167-169J

McGraw-Hill, New York7 1938.
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of lens encountered here is sometimes referred to as an "immersion lens"
because the object is immersed in the lens.

Some typical electron paths in the vicinity of the cathode of an
electron gun are shown in Fig. 15.3. Rays leaving the cathode are
propelled forward and attracted toward the axis. As a result of this
action, the rays cross the axis at a point not very far out in the field.
Mter crossing the axis the rays are curved the other way and are again
bent toward the axis, but the action in this portion of the field is so weak
that the rays invariably retain their divergent characteristic. Shown
in the figure are three rays. These rays differ by virtue of the direction
of the velocity of emission of the electrons. The three rays show the
effect of emission velocity dire~ted toward the axis, normal to the cathode,
and away from the axis. All three rays are seen to come to -a focus on
the plane a-a. This represents an image of the cathode. The minimum
diameter of the cross section of the beam occurs at the plane b-b. This
plane of minimum cross section is called the "crossover" of the beam.
It is seen to be much smaller in diameter than either the cathode or its
image. The best spot is obtained by focusing this crossover rather than
the cathode or its image on the fluorescent screen. Actually, the cross
over cannot serve as object, but rather its virtual image at c-c, as found
by projecting back straight lines from the region of uniform field, serves
as object. This virtual image of the crossover is slightly larger than the
crossover itself but is still smaller than the cathode or its image.

Since the beam crossover is used as the object whose image forms the
working spot of the beam, its location and size are of considerable
importance. These values are rather hard to determine exactly, but
some good approximations can be given. The location of the crossover
can be estimated by making use of the fact that the field in the vicinity
of the cathode is approximately spherical. Hence, if the radius of
curvature of the zero-potential contour can be found, it is to be expected
that the crossover will occur at this radial distance from the cathode.
It was shown in the chapter on Electrostatic Electron Optics that the
radius of curvature of any equipotential surface in a field of rotational
symmetry is given by

2Vo'
Ro = V0" (15.5)

where V o' and V O'1 are the first and second derivatives of the axial poten
tial, respectively. The curvature radius can be obtained in a straight
forward manner from Eq. (15.1), and at the cathode has the value

Ro
[ 1 1( R 1)][ (d 12)2] ~Ii = 1r (V 3 ) d

12
+;;: arctan d12 - .!!:... + d12 1 + R

--1 --1 d vV 2 d23 12 .llt

(15.6)
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for V 1 = o. As an example, if R = d1'i = d23 and V 2 = 0, then the
value of J.L from Eq. (15.4) is 9.02 and the value of Ro from Eq. (15.6)
is 1.14 ~'. The very lo,v value of #L results from the fact that the control
electrode-aperture diameter is twice the cathode-control-electrode
distance in this example. From the value of the zero-potential radius
of curvature the crossover is expected to occur nearly in the plane of the
control electrode. If the cathode is flat, Eq. (15.6) will predict a smaller
radius of curvature than actually exists because of the influence of the
flat cathode upon the field. Cathodes may, ho,vever, readily be curved
to fit the normal aperture fields.

The size of the crossover diameter may also be estimated by assuming
that the field in the vicinity of the cathode is spherical. The finite size

~
~
~G

FIG. 15.6.-Idealized cathode with spherical field. This
gives the notation for use in Eq. (15.7).

of the crossover results from electrons being emitted at all angles from
each point on the cathode, and with appreciable velocity. The larger
the emission velocity, the larger the crossover diameter. The electron
behavior encountered is like that shown for the idealized spherical
electrodes of Fig. 15.6. For this situation the radius of the crossover is
given by

TO = +2rc (15.7)
~. 2'\)"V: Sin 8

where Tc is the radius of the cathode, To is the radius of the crossover,
V 2 is the potential of the crossover, V e is the voltage equivalent of the
velocity of emission, and () is the half angle of the cathode as viewed from
the crossover.!

1 RUSKA, E., Zur Fokusierbarkeit von Kathodenstrahlblindeln grosser Ausgangs
querschnitte, Zeit. fur Phys., vol. 83 (Nos. 9, 10), pp. 684-698, 1933.
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This equation results from an analysis of the electron path in a
spherical field. It is properly valid only for small values of 8, say less
than 20 deg. Actually, electrons will be coming off the cathode with all
possible velocities so that an average value of V e must be used. If a
value of V e, that is, the voltage equivalent of the velocity not exceeded
by 80 per cent of the electrons is used, then the crossover radius of Eq.
(15.7) will contain at least 80 per cent of the beam current and probably
more, for not all electrons emitted with greater velocities will have
tangential components greater than that corresponding to Vee The
virtual image of the crossover will generally be larger than the actual
crossover. An enlargement by a factor of two is, however, not often
exceeded. The position of the virtual image of the crossover will be on
the cathode side of the actual crossover and may even lie behind the
actual cathode. It may generally be expected to lie \vithin a distance
equal to the cathode-control-electrode distance of the actual cathode,
which is close enough for design of the subsequent lens system.!

Current-voltage relations for the electron gun are not readily specified
analytically. If a lo\v-mu gun structure is used and the control electrode
is operated at zero potential, the cathode will come very close to being
temperature-limited. Some specific measured data on gun current
voltage relations are available in the literature. 2

The concept of the screen spot as an image of the beam crossover
in front of the cathode is largely one of convenience. There is evidence
that the screen spot is actually an image of the cathode. The size of the
crossover may be obtained from optical considerations of the field in
front of the cathode. At lo\v beam voltages, however, the thermal
velocities of emission of the electrons from the cathode are large enough
compared with the potential of the crossover so that they are an appre
ciable factor in determining the spot size. At large beam voltages the
thermal velocities may be expected to be lo\v compared with the potential
of the beam crossover so that they do not add appreciably to the size
of the cathode image. An examination of the operation of tubes with
beam potentials greater than 1,000 volts, from the vie\vpoint of straight
forward cathode imaging, yields some useful information on the properties
of beams. 3

A rough optical approximation to the field action in front of the

1 ZWORYKIN, V. K., and G. A. MORTON, "Television," pp. 368-383, Wiley, New
York, 1940.

2 MALOFF and EpSTEIN, op. cit., PP. 171-176.
3 LIEBMANN, G., Image Formation in Cathode Ray Tubes and the Relation of

Fluorescent Spot Size and Final Anode Voltage, Proc. I.R.E., vol. 33, pp. 381-389,
June, 1945.
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cathode may be had by considering the equivalent lens to be made up of
two regions of constant index of refraction with a spherical refracting
surface between them, as shown in Fig. 15.7. For this equivalent lens
Lagrange's law will hold,

(15.8)

where nl and n2 are equivalent indices of refraction, M l = 'IE. is the lateral
Yl

magnification, and M a = a2 is the angular magnification. The lens
at

equation in this case is

(15.9)

I ~ -~

l---- -------zo-----------1- ----- Zi-----J
FIG. 15.7.-Spherical-surface refraction equivalent of cathode
lens action.

where Zo and Zi are object and image distance, respectively, and R s

is the radius of curvature of the spherical refracting surface. 1 Solving
Eq. (15.9) for Zi,

n 2Rszo
Zi = zO(n2 - nl) - nlR. (15.10)

From Eq. (15.8) the linear magnification !s

M l = ~ = ntZi (15.11)
Yl n2Zo

Substituting the value for Zi from Eq. (15.10) into Eq. (15.11),

M l = 1 (15.12)

(
n 2 _ 1) Zo - 1
nl Ra

1 A derivation of this expression is available in almost any book on geometrical
optics.
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If it is now considered that the object is located very close to the refract
ing surface so that Zo is small compared with Rs, then approximately

M z =-1 (15.13)

which says that the image is the same size as the object and is roughly
independent of the indices of refraction. Further,

(15.14)

from Eq. (15.8), which says that the angle which a ray makes with
the axis at the image is inversely proportional to the index of refraction
n2 if nl is held constant. If the assumptions made here are approximated
in a cathode-ray tube, then it is to be expected that the size of the
cathode image is independent of the voltage of the first accelerating
electrode. Then, since, as was shown in Figs. 13.37 to 13.45 of the
chapter on Electrostatic Electron Optics, the magnification of the usual
electrostatic objective lens is approximately eight-tenths of the ratio
of image to object distance independent of voltage ratio, it is to be
expected that the spot size is also independent of the beam voltage.
It also follows from Eq. (15.14) that the product of the beam voltage
and beam area in the fore part of the objective lens is a constant,

1rr2V o = K (15.15)

where r is the radius of the beam in an arbitrary plane. Measurements
on actual tubes show that both these expectations are realized very
closely for beam voltages above 1,000 volts.! The above performance
applies only if the limiting apertures intercept a negligible amount
current.

Focusing System. The production of a beam crossover of small
diameter and high current density is the principal problem in electron-gun
design. The rest of the design problem is relatively simple. The beam
crossover need only be followed by one of the types of objective lenses
described in the chapter on Electrostatic Electron Optics. The cylinder
lenses are found to be most suitable, and there is not much to choose
between them. In fact, almost any kind of lens will do, for it is always
possible to find a voltage ratio that will focus the beam crossover on the
screeD. When cylinder lenses are used, it is necessary to put limiting
apertures within the first cylinder to limit the initial divergent action
of the beam. This is illustrated in the schematic drawing of Fig. 15.1.
A limiting aperture is often put at the end of the second cylinder as well.

1 LJEBMANN~ Ope cit.
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The data of Figs. 13.37 to 13.45 can be used directly to design the
focusing system. The object distance is simply taken as the distance
from the beam crossover to the reference point in the lens. The image
distance is the distance from the reference point in the lens to the fluoresoJ

cent screen. Focusing, with the electrode arrangement of Fig. 15.1, is
obtained by adjusting the first-anode voltage, all other voltages being
kept fixed. Intensity of the beam is controlled by adjusting the control-

A L CE A 2 A 351 ~_I_, ---,_

:::::::::J 1-I I ~ (c)

CE Al A 2 Aa
I1TI I I' I --,

--~=:lIi-'-,---,-'-~-(d-J-
e-Cafhode A 1 -Firsftlnode

CE"'ControJ A2 --Secondanode
electrode A 3 ... Third anotle

FIG. 15.8.-Typical electron-gun structures
using electrostatic focusing. I

electrode voltage. With this arrangement the two adjustments indicated
will have a principal effect upon focus and beam intensity, respectively,
but it will be noticed that the adjustment of the beam intensity affects
the focus some,vhat, and vice versa. While adjustment of the control
electrode has the principal effect of changing the beam current, it also
changes the location of the beam crossover and so affects the focus.
Adjustment of the first-anode voltage has the principal effect of adjusting
the focus, but the field of the first anode reaches back to the cathode and
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changes the intensity somewhat. This interaction of controls can be
improved by making use of a different electrode arrangement.

Alternative Electrode Structures. In Fig. 15.8 are shown some alter
native electron-gun structures that are extensively used. In the arrange
ment of electrodes shown for gun a the cathode-control-electrode
structure is about the same as that just discussed. The focusing action in
this case, however, is divided into two parts so that there are really two
objective lenses. Thus, the accelerating anode is split in two, with
the focusing anode located between the two parts. The principal

CE A
c _111....---1-.--~ _

::::::::J 1..............1 _----&..._

faJ

M

CE A.t -B LT I _ A 2 -

==.J L.L -..1'0.....---'--

(6)

C-Cafhode
CE-Contro/ electrode
Al-RTS; anode
A2-Second anode
M -MQqneilc, Tocusinq coil

FIG. 15.9.-Electron guns with magnetic
focusing.

advantage of this electrode arrangement over that shown in Fig. 15.1
is that the interaction bet,veen the intensity and focusing controls is
greatly reduced. With this arrangement the electrodes adjacent to
the control electrode are kept at a fixed potential. This means that any
changes in the focusing field of the objective lenses are shielded from the
control-grid region by the first part of the accelerating electrode. A
better capture of secondary electrons liberated at the limiting apertures
may also be effected. The action of the other guns is evident from their
structure.

Wh~re magnetic focusing is used, the simple arrangements of Fig.
15.9 are adequate. The arrangement of gun a consists of only a cathode,
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control electrode, accelerating electrode, and magnetic focusing coil.
The magnetic coil can usually be put outside the tube. This arrange
ment, while simpler of construction, requires that part of the po,ver
supplied to the tube must be regulated to give constant current for
the magnetic focusing coils. The arrangement of gun b actually involves
a combination electrostatic and magnetic focusing action.

15.3. Deflection Devices. Electrostatic Deflecting Plates.-Electro
static deflection plates have already been discussed in the chapter on
Laws of Electron Motion. The deflection obtained from electrostatic
deflecting plates is given by Eq. (6.23), which states that the deflection
is equal to h·alf the beam length multiplied by the ratio of the deflecting
voltage to the beam voltage and by the ratio of the axial deflecting-plate
length to the deflecting-plate spacing.

IbVd (6.23)
Ys = 2a~

,vhere Ys is the spot deflection at the fluorescent screen in any units
of length, l is the beam length from plates to screen in the same units, b
is the deflecting-plate length in the same units, a is the deflecting-plate
spacing in the same units, V d is the deflecting potential, and V 0 is the beam
potential. Of principal significance is the fact that the spot deflection
is proportional to the deflecting voltage and inversely proportional
to the beam voltage.

Magnetic Deflection. Magnetic deflection of a beam may be achieved
by applying a magnetic field perpendicular to the beam for a short
distance of its length. The electrons moving through this magnetic
field will move in a short section of an arc of a circle if the field is constant,
emerging at an angle ,vith their original direction. The radius of curva
ture of an electron moving at right angles to a constant field was given
by Eq. (6.62) as

R = 3.37 X 10-6 ~v meters (6.62)

(15.16)

\vhere V is in volts equivalent to the veloctty and B is webers per square
meter (10 4 gausses). Consider the deflecting arrangement of Fig. 15.10.
The magnfitic field is shown by the dots in the rectangle astride the
beam. If the field is constant within this rectangle, the beam will move
in the arc of a circle of radius given by Eq. (6.62). Upon emerging
from the magnetic field the electrons ,vill move in straight lines at an
angle (J with the original path given hy

tan 0 '" ~ = ~.
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Hence the deflection is given by

lb lbB
y. = R = 3.37 X 10-6 vV

meters (15.17)

for B in webers per square meter. To obtain deflection in centimeters,
express B in gausses, and drop the factor 10-6 in the denominator.
Magnetic deflecting coils are invariably placed outside of the tube neck
and take the form of a saddle-shaped coil.

Relative Merits of Electrostatic and Magnetic Deflection. Both electro
static and magnetic deflection are capable of giving linear deflection
over the entire tube face. T~e differences in their operation lie only in

~,\
I \
I \

I 'I \
I \
I \

R \
I \
I \
f \
I \ :
~ 1, Ya
I· • • 1 1 I

[~_~J--- -------L

J
'

j.---~~~----- ------1------------

FIG. 15.10.-~lagnetic deflection of an electron beam by a
region of uniform magnetic field, as given by Eq. (15.17).

their sensitivity and frequency characteristics. There is an advantage
in using magnetic deflection at high beam voltages, for a relatively smaller
increase in deflecting field is necessary. This results from the fact that
electrostatic deflection is inversely proportional to beam voltage, whereas
magnetic deflection is inversely proportional to the square root of the
beam voltage. Hence, if beam voltage \vere raised from 1,000 to 4,000
volts, four times the voltage would be necessary to give the same electro
static deflection, whereas only twice the magnetic coil current would be
necessary to give the same magnetic deflection. For this reason, mag
netic deflection is commonly used in high-voltage television viewing tubes.
A disadvantage of magnetic deflection is that a negative-ion spot forms
in the middle of the screen, due to negative ions emitted from the cathode,
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which, because of their great mass, are scarcely deflected by the magnetic
fields. 1 With electrostatic deflection a negative-ion spot does not fonn
because the negative ions are deflected the same as are the electrons.
Electrostatic deflection has the advantage as far as frequency charac
teristics go. With ordinary construction, electrostatic deflection can
resolve frequencies as high as several hundred kilocycles. The practical
upper limit of magnetic deflection is of the order of 10 kc. Magnetic
deflecting coils are most suitably fed from a high-impedance source.
Since the coil represents a fairly high inductance, the voltage appearing
across it for the same current increases linearly with frequency. This
means that excessive voltages are reached at relatively low frequencies.

4.0

2000 4000 6000 8000 10,000
Second anode voJtOlCle

FIG. 15. I 1.-Brightness and luminescent effi
ciency of willemite as a function of beam
voltage. (Maloff and Epstein.)

An advantage of magnetic deflection which electrostatic deflection does
not possess is that it is more suitable for radial deflection and polar
representation. Magnetic deflecting coils can be made to rotate about
the tube ~nd so give polar representations where the frequency of rota
tion required is not too high.

Visual versus Deflection Sensitivity. Tne light output from a spot on a
fluorescent screen under beam excitation is found to be approximately
linear with beam voltage in accordance with Lenard'8 equation,

CP = AI(V - Yo) (15.18)

where CP is the candle-power output, A is a constant of the material
of the order of 2 candle power per watt, I is the beam current, V is

1 BACHMAN, C. H., and C. W. CARNAHAN, Negative-ion Components of the
Cathode Ray Beam, Proc. I.R.E., vol. 26, pp. 529-539, May, 1938.
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the beam voltage, and Vo is the voltage at which fluorescence starts,
somewhere between 500 and 1,000 volts. Curves of candle power
and candle power per watt as a function of beam voltage for willemite
are shown in Fig. 15.11. From this and Eq. (6.23) it is seen that if the
attempt is made to increase the brightness of the trace by using a higher
beam voltage a corresponding decrease in deflection is suffered.. With
the gun arrangement of Fig. 15.1 this sets a practical limit to the deflec
tion sensitivity of the order of 0.1 mm per d-c volt with a beam volt...
age of 3,000 volts. The deflection sensitivity can be increased by
reducing the beam voltage, but this correspondingly reduces the spot
brightness. . .

Postdejlection Acceleration. The dilemma of having to sacrifice
deflection sensitivity to achieve visual sensitivity, or vice versa, can be

G- Glass envelope
C-Calhode
CE- Con/rolelectrode
AE-Accelercding electrodes
FE-Focusing electrodes
IE-lnfensifier elecfrode-inside glass
AC-Aqua:gCOalinq-inSideg~

cEAE FE AE
--z"IT I i I

,..-.---~-----
::::J I I

FIG. 15.12.-Structure of the postdeflection-acceleration tube.

circumvented by making use of the principle of postdeflection accelera
tion. 1,2 A schematic drawing of a tube making use of this principle is
shown in Fig. 15.12. The principle that is used increases the deflection
sensitivity by deflecting the electron beam at relatively low voltage and
then subsequently accelerating it before the electrons hit the screen.
With this arrangement the beam is deflected at relatively low velocity,
giving a good deflection sensitivity, and then is subsequently accelerated,
giving a good visual sensitivity.. Part of the increase in deflection

1 DE GEIER, J., A Cathode Ray Tube with Post Acceleration, Pfilips Tech. Rev..
vol. 5, PP. 245-252, September, 1940.

2 PIERCE, J. R., Mter Acceleration and Deflection, Proc. I.R.E., vol. 29, pp. 28-31~
January, 1941.
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sensitivity gained by this arrangement is lost because the final accelerat
ing field is somewhat convergent, thus reducing the deflection.

The postdeflection-acceleration arrangement makes use of an ordinary
electron gun supplemented by a so-called "intensifier electrode," which
takes the form of a ring of conducting material inside the tube near the
fluorescent screen and operated at about twice the voltage of the last
previous electrode.

Some typical voltages as used in this arrangement are as follows:

Electrode

Cathode .
Control electrode .
Accelerating electrode .
Focusing electrode. . . . . . . . . . . . . .
Intensifier electrode .

Potential
relative to

cathode, volts

o
-10 to +10

1,500
375

3,000

Potential
relative to

ground, volts

-1,500
-1,490 to -1,510

°-1,125
+1,500

With this arrangement of electrodes the deflecting plates, which are
situated between the second part of the accelerating electrode and the
aquadag coating, are operated at zero direct voltage, as are also the
adjacent electrodes. With the above operating conditions a deflection
sensitivity of 0.3 mm per volt may be realized. In general, an improve
ment of 3 to 5 times in deflection sensitivity may be obtained by this
arrangement of electrodes.

The amount of the beam intensification may be extended considerably
even beyond that indicated above. By putting in a number of intensifier
electrodes with potentials progressively greater, spot brightness may be
increased by a factor of 10, and yet the deflection sensitivity may be
increased slightly over that which would obtain if the final intensifier
potential -were applied to the last gun electrode and the intensifier
electrode were removed. Tubes with final intensifier-electrode potentials
as high as 15,000 volts are considered commercially feasible.!

15.4. Fluorescent Materials. The characteristics of the fluorescent
material used for a cathode-ray screen are critical factors in the successful
operation of the tube. The various characteristics such as spot bright
ness, spectral characteristics, trace persistence, secondary emission, and
voltage characteristics are all controllable by the composition and pro-

L CHRISTALDI, P. S., Cathode Ray Tubes and Their Applications, Proc. I.R.E.,
vol. 33, pp. 373-381, June, 1945.
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cessing of the materiaL Hundreds of fluorescent materials have been
studied, and by now the data on such materials are very numerous. 1-5

Definitions. Strictly speaking, the term "fluorescence" as applied to
cathode-ray-tube screen operation is a misnomer, but it is so widely used
that it will also be applied here. Properly, one should distinguish
between the three terms "luminescence," "fluorescence," and "phospho
rescence." These may be distinguished, briefly, as follows:

Luminescence. This refers to visible and near-visible radiation in
excess of black-body radiation due to some form of excitation. The term
applies to the radiation both during and after excitation. It can be
classified according to the means of excitation into many classes, such
as cathode luminescence (the 1uminescence produced by the impact of
electrons), photoluminescence (the luminescence caused by ex1posure to
radiation), electroluminescence (the luminescence given off by ionized
gases), and bioluminescence (the luminescence of living organisms).
About 10 kinds of luminescence can be enumerated.

Fluorescence. Fluorescence is luminescence during excitation. In
the case of cathode luminescence this refers to the light emitted during
the period of electron bombardment.

Phosphorescence. Phosphorescence is the luminescence occurring
after excitation. In a cathode-ray tube this is the radiation given off
after the beam excitation has ceased.

Phosphor. Materials that manifest cathode luminescence are known
by the general name of phosphors. 6

Since phosphorescence as well as fluorescence is involved in cathode
ray-tube operation, it would be more suitable to refer to screen action
as "cathode luminescence" than as "fluorescence."

General Make-up of Phosphors. A great number of materials will
exhibit luminescences when bombarded with electrons. Practically
all nonmetallic inorganic crystals will exhibit this effect, as will also
glasses and some organic materials. Most of these will, howevet:, react so

1 LEVERENZ, H. W., and F. SEITZ, Luminescent Materials, Jour. Appl. Phys.,
vol. 10, pp. 479-493, July, 1939.

2 ZWORYKIN and MOR'TON, op. cit., Chap. II.
3 LEVERENZ, H. W., Cathode Luminescence as Applied in Television, RCA Rev.,

vol. 5, pp 131-175, October, 1940.
4 STAUFFER, L. H., Characteristics of Fluorescent Materials, Electronics, vol. 14,

pp. 32-34, October, 1941.
6 KUSHEL, I., Phosphors and Their Behavior in Television, Electronic Ind., vol. 4,

pp. 100-105, 132, 134, December, 1945
6 PERKINS, T. B., Cathode Ray Terminology, Proc. I.R.E., vol. 23, pp. 1334-1343,

November, 1935.
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,veakly as to be useless. To be suitable for practical purposes a material
must produce a high brightness, be stable under electron bombardment,
have a suitable color, and have a persistence that is not too great.

The basic ingredients of a practical luminescent material are a base
material, a flux, and an activator. The base material is generally a
crystalline, colorless semiconductor. Good base materials are the oxides
and sulphides of zinc, cadmium, magnesium, and silicon. Oxides of
copper, iron, and nickel are not good bases. The flux is some material
such as sodium chloride that is used to catalyze crystallization of the base
and is subsequently removed. The activator is one of a group of metals
~ncluding silver, copper, manganese, and chromium. The presence of
10 to 100 parts per million of such metals may increase the light output
of the base material by a factor of 10 to 100. Various other metals such
as lead, iron, nickel, and cobalt will inhibit radiation to such an extent
that the presence of one part per million of these metals ,vill ruin the
luminescence. The activator serves to furnish a material with additional
energy levels for the excited electrons to jump between. The theory
of luminescence is qualitatively understood, but so many anomalies
exist that there is no direct procedure that can be applied to synthesizing
a suitable phosphor.!

Phosphors are prepared by mixing the base material and flux, heating
to crystallize, drying, and regrinding for application. Screens may be
deposited from settling out of a liquid suspension or by spraying the
material suspended in a volatile organic liquid such as acetone to ,vhich
has been added a small amount of binder. In the settling process a mild
electrolyte such as ammonium carbonate is used to prevent the particles
from settling nonuniformly.

Luminous Properties of Fluorescent Materials. One of the best
and most widely used fluorescent materials is zinc orthosilicate,
ZnO + Si0 2 :Mn, with a manganese activator. In its natural form this
is known as "willemite." The natural material is subject to great
variations in performance due to impurities, and therefore only synthetic
materials' are now used. Synthetic willemite gives the bright-green
trace so well known to users of test oscillt>scopes.

The light output of synthetic willemite follows quite closely Lenard's
la,v as previously given. Curves of light output in candle power and
luminous efficiency in candle power per watt as a function of beam
voltage were previously given in Fig. 15.11. Actually, Lenard's law
does not hold exactly for the fluorescent material but does so only
apparently in Fig. 15.11 because the output is plotted against beam

1 LEVERENZ, H. W., Phosphors Versus the Periodic System of Elements, Proc.
I.R.E., vol. 32, pp. 256--263, May, 1944.
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potential, which is higher than the screen potential. When the output
is plotted against screen potential, then it is found that the light output
is given by

CP = A/(Va - Yo)>> (15.19)

where A is a constant, / is the beam current, VB is the fluorescent-screen
potent.ial and V 0 is the screen potential at which luminescence starts,
and n is an exponent that is nearly 2 for synthetic. ,villemite and in general
has a value between 2 and 2.8. 1,2

The spectral characteristics of willemite are compared with the
sensitivity of the human eye in Fig. 15.13. This figure shows that most

>- t---+----+---lf-+-#---v----4""'--1~
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0::::

4600 5000 5400 5800 6200 6600 7000
W",velength) Anqstrom units

FIG. 15. 13.-Spectral characteristics of
willemite.

ot' the radiant energy from this material is concentrated in the green
legion of the spectrum. Phosphors are available giving almost any
desired color response. A fe\v of the most useful phosphors are listed in
Table VII. A white luminescence may be obtained by mixing a yellow
color-producing phosphor such as zinc cadmiwn sulphide with a green
blue-color-producing phosphor such as zinc sulphide. Further specific
characteristics of commercial phosphors are given in Appendix IV.

The persistence characteristics of the luminescence are quite impor
tant. In test oscilloscopes and television kinescopes a relatively short
persistence time is desired. In some transient studies and most radar
applications a long persistence is desired. Most of the phosphors have
short-persistence characteristics, while a few of the yellow-green sulphides
have long-persistence characteristics. Synthetic willemite will build
up to 50 per cent of its maximum radiation in about 2.5 milliseconds.

1 NELSON, H., Method of Measuring Luminescent Screen Potential, Jour. Appl.
Phys., vol. 9, pp. 592-599, September, 1938.

2 FONDA, G. R., Phosphorescence of Zinc Silicate Phosphors, Jour. Appl. Phys.,
voL 10, pp. 408-420, June, 1939.
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The radiation ,viII decay to 50 per cent of its maximum in 3 to 5 milli
seconds. The decay is approximately logarithmic except for the first
half millisecond, during which time it is more rapid than logarithmic. l

Electrical Characteristics of Phosphors. The potential that a fluores
cent screen will assume will depend upon the beam potential, the second
ary-emission characteristics of the screen, and the current-voltage
transmission characteristics of the screen to the more positive adjacent
electrodes. The secondary-emission characteristics of the screen have
the form of the general characteristics described in the chapter on

1.4
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FIG. 15.14.-Ratio of secondary- to primary-electron current as a function of screen
voltage of a fluorescent screen.

Electronic Emission. A typical secondary-emission characteristic show
ing the ratio of secondary to primary current is shown in Fig. 15.14.
The screen can function properly only over the range of voltages for
which the ratio of secondary to primary currents is greater than unity.
Below the voltage at which the ratio is first unity the screen will block
and repel beam electrons. The screen will "stick" at the potential
at which the ratio again drops to unity, and it will not be possible to
raise the screen above this potential. The screen-voltage-beam-voltage
characteristics can be estimated by combining the effect of the secondary
current characteristic with the current-voltage transmission characteristic
of the screen in conjunction with its adjacent electrode. The current

1 NELSON, R. B., R. P. JOHNSON, and W. B. NOTTINGHAM, Luminescence during
Intermittent Electron Bombardment, Jour. Appl. Phys., vol. 10, pp. 335-342, May,
1939.
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taken from the screen secondaries by the adjacent electrodes will depend
upon the relative potential of the screen and the adjacent collector
electrode. This function will have the general form shown in Fig. 15.15.
When the collector is more than 20 volts more positive than the screen, it
will collect virtually all the secondary electrons liberated by it. When
the collector and the screen are at the same potential, the collector will
still collect about half the secondary electrons. When the collector is
more than 20 volts more negative than the screen, it will take virtually
none of the secondary electrons. The relation between Figs. 4.18

1.0

-20 -10 0 +10 +20
V 0 Its

Potential difference between collector and Screen
FIG. I5.I5.-Collector current of a cathode-ray tube as a
function of the difference of collector and fluorescent
screen potential.

and 15.15 will be apparent. The difference is due to the difference in
physical form of the electrodes corresponding to each curve. Let the
collector current be indicated by

(15.20)

,vhere Ie is the collector current, 12 is the secondary current liberated
by primary-electron impact, V c is the collector potential, VB is the screen
potential, and T(V c - VB) is the current-transmission function shown in
Fig. 15.15. Let the secondary-ratio function of Fig. 15.15 be given by

(15.21)

\vhere 11 is the beam current striking the screen and S(VB) is the second
ary-ratio function shown in Fig. 15,14. For Cllrrent equilibrium the
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collected current must equal the beam current. Equating the collected.
and beam current as given in the above t,vo equations,

(15.22~

This neglects conduction-current components, which are, however,
ordinarily quite small. It is possible to find the screen-voltage-beam
voltage (the latter being the same as the collector voltage) function

a .,_,_
8(1:5)

81

c

62 345
Screen potentiOiI J kv

FIG. 15.16.-GraphicaI construction of the screen-potentiaI-beam
potential characteristic.

graphically from Eq. (15.22). The method of construction is shown in
Fig. 15.16. In this are plotted the reciprocal of the current-ratio function
of Fig. 15.14 and the collector-current-voltage-difference function of
Fig. 15.15 on a scale of screen voltage.

From Eq. (15.22) the screen potential is given by the intersection
of the two curves for any reference beam potential. The entire curve
desired is constructed point by point by shifting the collector-current
voltage-difference curve to correspond to different beam voltages and
taking the corresponding intersections. 1,2 Some shifted transmission
curves are shown. The resulting screen-voltage-beam-voltage charac
teristic is shown in Fig. 15.17. Points a, b, and c are taken from the
similarly designated intersections in Fig. 15.16. It is seen that the screen

1 NOTrINGHAM, W. B., Electrical and Luminescent Properties of Willemite under
Electrical Bombardment, Jour. Appl. Phys., vol. 8, pp. 762-778, November, 1937.

2 N O'ITINGHAM, W. B., Electrical and Luminescent Properties of Phosphor under
Electron Bombardment, Jour. Appl. PhYS'1 vol. 10, pp. 72-831 January, 1939.
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potential never exceeds the beam potential. The curve confirms the
conclusion that the screen will not accept electrons belo\v the potential
at which the secondary current ratio is unity, nor can the screen be raised
to a higher potential than that at \vhich the ratio again drops to unity.
Sticking potentials for screens ordinarily lie between 5,000 and 8,000
volts, though they can be raised to as high as 15,000 volts.! The critical
blocking voltage \vill ordinarily lie in the vicinity of 200 volts.

1 ~~~~£~~~~~~/-/-/--__c--
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~5 b
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V) t:hI
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~I
ctl l

A1
/

°0 3 4 5 6 1
Beam voltage, kv

FIG. 15.17.-Screen-potential-beam-potential
characteristic of a fluorescent screen.

15.5. Limitations of Spot Size. Effect oj Thermal Velocity of Emission.
It has already been mentioned that the size of the beam crossover in
front of the cathode which is subsequently imaged into the spot is deter
mined by the thermal velocities of emission of the electrons. The
approximate size of the crossover for any limiting velocity of emission
is given' by Eq. (15.7). Actually, electrons are coming off the cathode
with all velocities, as given by a Max,v~llian distribution, so that there
is no sharp edge to the beam; rather, it is found to have a cross section
approximating the Gauss error curve

(15.23)

\vhere J(r) is the current density at any radius r and A and Bare con-

1 Beam pote~tialsmay be raised to as high as 30 kv by the use of metallized screens.

See EpSTEIN, D. W., and L. PENSAK, Improved Cathode Ray Tubes with Metal

Backed Luminescent Screens, RCA Rev., vol. 7, pp. 5-10, March, 1946.
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stants related to the total current and rate of decay of current with radius,
respectively. 1

Associated with this effect, it is found from a consideration of the
optics of thermally emitted electrons that the maximum current density
with perfect focusing at a crossover of cathode image is given by

J _ 1 [ 1 (1 M2· 2) Ve ( M2 sin
2 ~ ) ]

J 0 - M2 - - SIn c/> exp kT 1 - M2 sin2 c/> (15.24)

where J is current density at the crossover or cathode image, J 0 is cathode
current density, M is the ratio of crossover or cathode-image diameter
to cathode diameter, c/> is the half angle of the cone including all electron
paths reaching the point in question, T is cathode temperature in degrees
Kelvin, k is Boltzmann's constant, and V is the potential at the point
in question. 2-4

Limiting values of Eq. (15.24) are of interest. For ,M large,

For M small,

J m _ (1 + eV) · 2 A..- - - SIn 'IIJ o kT

(15.25)

(15.26)

where the symbol J m is substituted for J because this is the largest pos
sible value of current density that can be achieved under any conditions.

A curve of fm for various values of M and ep is shown in Fig. 15.18

for the case of ~~ = 10,000 (this corresponds to a voltage of about 800

volts since ~ has a value of 11,600 and T is ab!)ut 10000 K for an oxide

emitter.) cf> in this case is understood to be the value determined by a
stop or limiting aperture at, before, or after the crossover. As cP is
decreased, more and more electrons ,vith high thermal-emission velocities
are thrown away so that a greater fraction of the cathode current is

1 LAW, R. R., High Current Electron Gun for Projection Kinescopes, Proc. I.R.E.,
vol. 25, pp. 954-976, August, 1937.

2 LANGMUI~, D. B., Theoretical Limitations of Cathode Ray Tubes, Proc. I.R.E.,
vol. 25, pp. 954-976, August, 1937.

3 PIERCE, J. R., Limiting Current Densities in Electron Beams, Jour. Appl. Phys.,
vol. 10, pp. 715-724, October, 1939.

• PIERCE, J. R., A Figure of Merit for Electron Concentrating Systems, Proc.
I.R.E., vol. 33, pp. 476-478, July, 1945.
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FIG. I5.18.-Intensity efficiency of an
electron gun as a function of cathode
magnification for various aperture
sizes.

I · ffi· J-ntenSlty e clency = J m

The value of this expression is readily
obtained from the quotient of Eqs.
(15.24) and (15.26). Let the fraction
of cathode current used be called the
current efficiency.

wasted and yet the more nearly the maximum possible current density
is realized.

Since the extent to which the limiting current density can be
approached depends upon the fraction
of current used, it is convenient to
draw a curve relating these two quan
tities. Let the ratio of the actual to
the maximum current density be
called the intensity efficiency.

JM2
Current efficiency = h (15.28)

V
For a given value of T both of the above expressions are functions

0.80.6

'"
r-r--
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1.0
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~I~
0.2

0.2 0.4
JM2
Jo ' Ft"Qction of current used

FIG. 15.19.-Intensity efficiency of an elec
tron gun as a function of current efficiency.

of M sin <p alone. It further
turns out that the relation
bet,veen the two efficiencies varies
numerically only a fe,v per cent
for voltages above 10 volts. A
curve showing the relation be
tween the intensity efficiency and
the fraction of the current used is
given in Fig. 15.19. Also shown
in the figure is the curve for the
line-focus case. These curves
snow that in order to approach

1.0 the limiting maximum value of
current density it is necessary to
waste most of the current with
limiting apertures. The above
equations do not include the

effects of electron collisions or lens aberrations but are limitations
imposed by thermal velocities alone. A figure of merit for electron guns
is the ratio of the area of the aperture that, in an equivalent ideal sys-
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tern, would pass as much cathode current as does the actual gun to the
area of the actual aperture. 1 An equivalent figure of merit for television
kinescopes in terms of the deflection angle and the number of scanning
lines can be worked out by application of the above formulas. 2

Space-charge Limitation of Spot Size. Another serious limiting
factor in the production of small beam spots is the space-charge mutual
repulsion between electrons in the beam, which prevents the electrons
from coming together into a point focus. In a convergent beam, as
the beam tends to come to a smaller diameter, the electrons get closer
together, the space-charge density increases within the beam, and hence
the mutual-repulsion forces become greater. This means that the radial
components of velocity which the electrons have become less and less
as the beam becomes more and more constricted, until finally they· become
zero at some finite beam diameter and then the beam begins to spread
again. 3-5

This action may be pictured by considering the behavior of the
electrons in a cross section of the beam as seen by an observer moving
along with the electrons. To such an observer, there is no axial motion,
and only radial effects can be observed. The action is actually inde
pendent of the axial velocity. To make the problem soluble the follo\ving
cond~tions will be assumed:

1. Electrons are uniformly distributed throughout the cross section
of the beam.

2. Every electron has a radial component of velocity that is propor
tional to its radial distance from the axis.

These conditions are close enough to the actual conditions to make
the answers based upon these assumptions usefuL The first condition
,viII hold if only a small fraction of the cathode current or if a high
current-density cathode, to be described later, is used. The second
condition is the assumption made in treating paraxial electrons and is
the condition for uniform convergence of the beam when small angles
are involved. The general picture encountered in a convergent beam

1 Ibid.
2 LAW, R. R., Factors Governing Performance of Electron Guns in Television

Cathode-ray Tubes, Proc. I.R.E., vol. 30, pp. 103-105, February, 1942.
3 WATSON, E. E., The Dispersion of the Electron Beam, Phil. It!ag., Ser. 7, vol. 3,

pp. 849-853, April, 1927.
4 BOBBIES, B. V., and J. DOSSE, Zerstreuung von Elektronenstrahlen durch eigene

Raumladung, Arch. Elektrotech, vol. 32, pp. 221-232, 1938.
6 THOMPSON, B. J.J and L. B. HEADRICK, Space Charge Limitations on the Focus

of Electron Beams, Proc~ I.R.E.. vol. 28, pp. 318-324, July, 1940.
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is shown in Fig. 15.20 (the radial scale in this figure is greatly exaggerated,
and the axial scale is foreshortened). The beam is seen to decrease in
diameter to a minimum cross section and then expand again. At any
cross section as in a the radial velocity at any point in the cross section
is given by

Vr = kr (15.29)

(15.30)

The outward force on any electron in the cross section is given by

eX epr*
F = eE = -- =-

2nor 2£0

c

G)
I
I
I
I

I I
_·--+--~~I--

I
I

a
FIG. 15.20.-Effect of space-charge repulsion on a convergent beam.

where A is the charge per unit length of the beam. This follows from
the expression for electric intensity about a linear distribution of charge
and from the fact that

(15.31)

,vhere p is the volumetric space-charge density ,vithin the beam. It is
seen that the outward force on any electron is proportional to the radial
distance also. As a result of this relation, the percentage change in radial
velocity of any electron will be constant throughout the beam, and hence

* In addition to the outwardly directed electrostatic force there is also an inwardly

directed magnetic force. This magnetic force is only ~ times as big as the electro
c

static force, where f) is the electron velocity and c is the velocity of light, and thus it is
negligible for beam voltages under 10,000 volts. See BORRIES and DOBBE, op. cit.
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(15.32)

the beam will constrict uniformly, maintaining the conditions that the
electrons are distributed uniformly throughout the beam and that the
radial velocity of any electron is proportional to its radial distance from
the axis. At b the cross section of the beam is less than at a. At c the
cross section of the beam assumes its minimum diameter. At this point
the radial velocity of the electrons is zero. Beyond this point the beam
expands to the larger diameter ShO'Vll at d. In the region to the left
of c the radial velocities of the electrons are directed inward, while to
the right the radial velocities are directed outward. The behavior
of the beam will be the same whether the electrons are moving to the
left or to the right in Fig. 15.29. The shape of the beam envelope will
not change with beam voltage or beam current, though the radial and
axial scales will change. For purposes of analysis it is conv~nient to
start at the cross section of minimum diameter and to study the beam's
subsequent spread. This study yields a universal beam-spread curve,
,vhich can then be applied to any problem.

From Eq. (15.30) the radial acceleration of any outer electron of an
initially parallel beam is given by

m d2!.. = F = 1rTo2po e
dt 2 21rEoT

in which the numerator is the charge per unit length in terms of the
initial values of radius and space-charge density. If this equation is
simplified by the substitutions

then there results

R=~
To

R' = dR,
dz
dz

v =-
dt

R" = d
2

R
dz2

(15.33)

(15.34)

(15.35)

2EOmv2 RR" _-e- - Po

This may be integrated by putting it into the form

2 R'tomv 2R'R" = -
epo R

with the result
K(R')2 = In R

(15.36)

(15.37)

(15.38)
2

where K = Eomv and the constant of integration is zero since R' = 0,
epo

R = 1, for z = O. Extracting the square root,
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R' = K-l/J VillR
which for purposes of integration is best put into the form

dz = KYJ dR
-vlln R

This has the solution

z = Kill {R dR
il -vlln R

443

(15.39)

(15.40)

(15.41)

This equation gives the envelope of the beam as an integral function
of R for any position z. Not much can be done to simplify this expres
sion, for it does not integrate into simple standard functions. The shape
of the envelope of the beam is best presented in curve form. First
observe that the constant can be converted into a simpler form, making
use of the fact that

and

so that

mv2

V =-
2e

(15.42)

(15.43)

(15.44)~ = 323 Vkv~ rR~
To • ImaIA J1 -vllo R

where Vkv is the potential in kilovolts and I ma is the current in milli
amperes. Although the integral cannot be expressed in terms of simple
functions, one further change of variable is useful. If the substitution
R =. et2 is made, then

(15.45)

Values of the right-hand integral above are tabulated on page 106 of
Jahnke and Emde's Tables of Functions.! The plot of the values of
Eq. (15.44) yields the universal beam-envelope curve of Fig. 15.21.2

The universal beam-spread curve of Fig. 15.21 gives the shape of a
beam of initially parallel electrons. The curve applies for electrons
moving either to the right or to the left and is symmetrical about the value
z = o. To apply the curve to any problem it is necessary only to enter

1 Teubner, Leipzig, 1933.
2 The spread of a beam subjected to an axial gradient of potential can be analyzed

by a similar method. See Moss, H., A Space Charge Problem. Wireless Eng., vol. 22,
pp. 316-321, July~ 1945.



444 VACUUM TUBES

the curve properly and then take nuraerical values from the curve.
The curve will apply to low-current cathode-ray beams as well as to high
current po\ver-tube beams. The curvE' sho"\\"s that the spread of a beam
is increased as the current is increased and the voltage is decreased.
Considering the action of a convergent beam, the minimum spot diam
eter is decreased as the current is decreased and the voltage is increased.

An alternative representation of Fig. 15.21 is given in the nomographic
chart of Fig. 15.22. This nomographic chart gives the spread of a beam
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FIG. 15.21.-Universal beam-spread curve. This is a graphical representation of
Eq. (15.44).

with initially parallel electrons directly from the beam current, beam
voltage, and beam length, without calculation. The diagonal line from
lower left to upper right is a construction line. To use this graph dra\v
a line from the left to the right scale through points corresponding to
the voltage and current involved. Through the intersection of this line
\vith the diagonal construction line draw a line through the proper
point on the beam-length scale at the bottom, and extend it until it
intersects the beam-spread scale at the top. The value from this scale
,vill be the beam spread directly.

The functional relations of Eq. (15.44) have been verified experi...
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mentally. 1 It is found that although the current and voltage dependence
predicted is obeyed correctly the actual values of spread are about six
tenths of the theoretical value (at pressures of 5 X 10-7 mm of mercury).
This reduction is due to a partial neutralization of negative space
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FIG. 15.22.-Nomographic chart of be;m spread as a function of
beam voltage, beam current, and beam length, as given by Eq.
(15.44).

charge by the presence of positive ions, which are created by collision of
beam electrons with gas molecules. Even at the highest vacuums
obtainable, there are theoretically enough positive ions cre9.ted to

1 See "The Production and Control of Electron Beams," by K. R. Spangenberg,
L. M. Field, and R. Helm, published by Federal Telephone and Radio Corporatio~t

New York, 1942.
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neutralize the beam completely. This does not occur) however, for
the positive ions drift down the beam from positive to negative electrodes
and run out of the beam at the cathode end. almost as fast as they are
created. l

A number of important problems can be solved by the use of the
universal beam-spread curves of Fig. 15.21. In the design of high-power
klystron tubes there arises the practical problem of putting the maximum
current down a cylinder of given dimensions with a given voltage. From
the above discussion of space-charge spread it would be expected that the
beam should be initially convergent, come to a minimum diameter some
where in the cylinder, and then spread again until it just fills the end of
the cylinder. From symmetry it may be predicted that the )Jearn will
have its minimum diameter at the middle of the cylinder. It therefore
only remains to specify the initial angle of convergence and find the
current that can be transmitted. If the beam enters the cylinder at a
point on the curve of Fig. 15.21 having coordinates x and y, then for the
minimum beam diameter to occur at the center of the cylinder of length
l and diameter d

(15.46)

where

and

Therefore
r = yro

l (Ima)YJ = 32 3 ~~
(Vkv)~ . Y

(15.47)

(15.48)

(15.49)

Therefore, to transmit maximum current at minimum voltage, that is,
to have the beam impedance a minimum, the beam must enter the
cylinder at a point on the curve of Fig. 15.21 that has the maximum
ratio of x to y or the minimum ratio of y to x. This is the point on the
curve where a line through the origin is tangent to the curve. The
coordinates of this point are

and

1 Ibid.

r
y = - = 2.35

ro

(15.50)

(15.51)
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Thus the initial angle is

447

(15.52)8 = arctan ( ~)

since substitution of Eqs. (15.50) and (15.51) into Eq.. (15.49) gives
z l
- - · The maximum current is transmitted at a given voltage whenr - d
the beam is so directed on entering the cylinder that in the absence of
electrostatic repulsion between the electrons it would converge to a point
at the center of the cylinder. Under these conditions the minimum

~~
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FIG. 15.23.-Diagram showing transmission of maxi
mum current through a cylinder.

radius is 2.~5 = 0.425 times the cylinder radius. These relations

are illustrated in Fig. 15.23. The value of 8 is not extremely critical,
for the optimum is very broad. The minimum beam radius may be
varied from 0.25 to 0.6 of the cylinder radius, ,vith a loss of only 10 per
cent of the maximum current.

When the beam is directed into the cylinder as shown in Fig. 15.23,
the maximum value of current that can be transmitted is

rna* (15.53)

* Even with a strong axial magnetic field t9 prevent beam-spreading there is a
maximum current that can be transmitted along a beam. As current is increased,
the potential at the beam center drops below the value at the edge by the amount
V = 0.478 Ima(V.h ,) - ~ volts. This potential difference finally becomes so large that
the beam is blocked by space-charge action at a value of [max = 1.025 (Vkll)~~ amperes
for a beam completely filling a conducting tube, independent of the tube dimensions.
If the beam does not completely fill the tube, then the blocking action will occur at a
lower beam current. Greater current can be transmitted if the negative electron
space charge is neutralized by positive ions, although even here there is a limit to the
~urrent that can be transmitted. See HAEFF, A. V. Space Charge Effects in Elec-
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'The beam impedance corresponding to this condition is

(15.54)ohmsZ = 813 GY (Vk11)-~

and this is the minimum that can be achieved under the applied
restrictions.

As an example of the operation of the above equations, let it be desired to find
the maximum current that can be transmitted through a cylinder 74: in. in diam
eter and 1 in. in length at 1,000 volts. Equation (15.53) gives I max = 77 rna.
The corresponding beam impedance is 13,000 ohms. Actual currents may be
slightly higher in practice becaut'e of a partial neutralization of the negative
space charge by positive ions in the beam.!

Higher values of current cannot be passed through a cylinder if it is
permitted to ,vaste current. Thus, consider the case of a beam of initially
parallel electrons, and let the current be increased. As the current is
increased the beam ,vill spread. The current transmitted down a
cylinder ,vill increase at first as the effect of increasing the current
predominates and then decrease as the effect of beam spread predomi
nates. Maximum current "Till be transmitted ,vhen the cylinder area is
18 per cent of the area of the beam if it has been permitted to spread.
Under these conditions the transmitted current is

(15.55)rnaI maI = 305 (~Y (Vkv)"

which is about one-fourth of the value for a properly convergent beam
with no current \vasted.

Effect of Secondary Emission. Beam spots ,viII be enlarged slightly
by the effect of stray secondary electrons liberated at the limiting
apertures. This mayor may not be serious depending upon the particu
lar electrode configuration used. In general, secondaries from limiting
apertures located near the cathode \vill give most trouble because these

tron Beams, Proc. I.R.E., vol. 27, pp. 586--602, 8eptember, 1939; SMITH, L. P., and
P. L. HARTMAN, Formation and l\laintenance of Electron Beam:.::., Jour. Appl. Phys.,
vol. 11, pp. 220-229, l\farch, 1940; PETRIE, D. P. R., The Effect of Space Charge OIl

Potential and Electron Paths of Electron Beams, Elec. Commun., voL 20 (No.2).
pp. 100-111, 1941; PIERCE, J. R., Limiting Stable Current in the Presence of Ions,
Jour. Appl. Phys., vol. 15, pp. 721-726, October, 1944.

1 FIELD, L. 1\1., !(. R. SPANGENBERG, and R. HELM, Control of Electron-Beam
Dispersion at High Vacuum by Ions, Elec. Commun. vol. 24 (No.1), pp. 108-121,
1947.
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will be accelerated by almost the full potential of the system. The stray
electrons show as a fuzzy edge to the beam and fairly ,videspread stray
light. It is possible, ho,vever, to design electron guns so that stray sec
ondary electrons hardly affect the spot size.

Halation. ~~Halation" is a term 'Yell kno,vn in photography. It
refers to the "halolike" rings that sometimes appear around bright
points of light. The effect is due to light rays being reflected back and
forth bet,veen the surfaces of a film or, in the case of the cathode-ray
tube, back and forth bet,veen the faces of glass. When the electron beam
strikes the willemite surface on the inside of the end of the tube, a bright
spot is formed that radiates in all directions. Those rays \vhich are
emitted perpendicular to the glass and moderately close to the perpen
dicular ,viII pass through the glass and can be seen outside. Rays that
are emitted from the spot at a large angle \vith the perpendicular to the
glass will strike the air-glass surface at a lovv angle and be reflected back
into the glass, where they ,vill be reflected back and forth, ,vith a gradual
loss of energy due to scattering effects. For the usual glass (index of
refraction of about 1.5) only about half the light emitted from the spot
on the screen will pass through the glass without multiple reflection.
The effect on an outside observer is that there is a bright spot surrounded
by a ring of lo\ver intensity. Studies of the effect on the various param
eters show that halation is reduced if the fluorescent screen is in
moderately poor optical contact ,vith the glass, if it is moderately absorb
ing, and if the glass is moderately thick. l

15.6. High-efficiency Cathodes. When it is desired to obtain high
current from a cathode, then the design of the gun becomes complicated
by considerations of space charge and the efficiency of the structure,
i.e., the fraction of the cathode current that is utilized in the beam,
becomes of importance. If the attempt is made to operate the type of
gun already described at very high currents, difficulty is immediately
encountered in that the space-charge repulsion of the electrons causes
the beam,to spread so much that a large portion of the cathode current is
lost to the various gun electrodes.

The general problem of determining electron paths under conditions
of space-charge repulsion is very difficult to solve. 2 As yet no solutions
for space-charge flow in cases where the electron paths are curved are
known. This means that the design of high-current high-efficiency

1 LAW, R. R., Contrast in Kinescopes, Proc. I.R.E., vol. 27, pp. 511-524, August,
1939.

'l SPANGENBERG, K. R., Use of the Action Function to Obtain the General Differen
tial Equations of Space Charge Flow in More than One Dimension, Jour. Franklin
Inst., vol. 232, pp. 365-371, October, 1941.
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cathodes is very difficult. The most successful high-efficiency cathodes
are those designed upon a principle enunciated by J. R. Pierce. The
laws of space-charge flow are known for a few simple geometries such as
plane, cylindrical, and spherical. In each of these cases, the electrons
move in straight lines, and the behavior of the electrons can be described
in terms of a single parameter representing distance. Pierce has sug
gested that the conditions of uniform space-charge flow can be achieved
in a cathode if a segment of such flow is utilized and the cathode and
accelerating electrodes be shaped so as to maintain along the edge of the
beam the same potential variation which would exist if there were a
uniform extensive space-charge flow. Cathodes designed on this
principle are often referred to as "Pierce cathodes."!

Parallel Flow of a Rectangular Beam. The la\vs of space-charge flow
of electrons between parallel planes are kno,vn (see Sec. 8.2). The
potential variation along the direction of electron flo\v is as the four-thirds
power of the distance from the cathode. Hence it would be expected
that, if a beam in the form of a rectangular strip \vere cut out of such a
flow and if electrode shapes were such that they would create a potential
variation as x% along the edge of the beam, the beam \vould be subjected
to the same conditions which exist in the extensive space-charge flow
and hence would maintain its property of parallel flo\v. Specifically,
the cathode electrodes must create a potential field with the following
properties,

V(x,O) = Ax~

\vhere A is merely a numerical constant and

(15.56)

(15.57)
dV
- (x 0) = °dy ,

,,·here the edge of the beam is along the line y = o.
The above conditions may be achieved by the electrode configuration

of Fig. 15.24. The conditions expressed by the above two equations are
achieved along the bisector of, a 135-deg inside corner (three-fourths of
180 deg). This follows from the application of the transformation

W = Z~ (15.58)

to the lines of constant u and v in the W plane. Hence, if an inside
135-deg corner be split in two and each half be applied to one side of the
rectangular strip beam, the conditions for plane-parallel space-charge
flow are maintained.

1 PIERCE, J. R., Rectilinear Electron Flow in Beams, Jour. Appl. Phys., vol. 11,
pp. 548-554, August, 1940.
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The conditions outside of the beam are sho,vn in Fig. 15.25. The
gun structure in this case is a unipotential one. A good beam is formed,

Thermal
/nsu/at/on,
gap ......

EmilfinC/,
surface .... _-

1.2

VIIJ / /
/ VII / " 7
v~ rt J / /

/ /II / / ~

~~ Vllf 1/ 1/ I
~~ I J I

~q,~ ~ It<;j"!,-~I ~,/ I
~ 7~~ iL I I'J ~ «.r)

/V iV/.., ~ ~I ~:I
(age of

/'V/l(//6l5\ I
beam~

V'
~~

V'" .,

~ J '/"

-6~
V'

-0.4

-0.6 -0.8 -0.4 0 0.4 0.8
Distance from cathode I X

FIG. 15.25.-Potential field required to produce a
parallel-flow rectangular beam.

FIG. 15.24.-Pierce cathode structure for rec
tangular-beam parallel flow.

but it will diverge after passing through the anode because of the lens
action of the slot aperture. This type of gun has the advantage that it
draws current uniformly from the cathode. The laws of plane-parallel
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space-charge flo\v apply directly so that it is easy to design. The anode
can be shaped like any of the equipotentials in the plot of Fig. 15.25.
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Some difficulty would be encountered in properly restlajning the strip
beam at its ends. This case serves primarily as an example of the
application of the Pierce principle. It also is about the only case for
which the electrode shapes can be deterll/-ned exactly. The cathode
electrode is given by

The anode is given by
y = x tan 67.50

r~ cos (~) = const

(15.59)

(15.60)

In a practical case it is necessary to have a break in the zero-potential
electrode where it joins the emitting portion of the surface in order to
improve the thermal efficiency of the cathode. A small gap as shown
in Fig. 15.24 will not disturb the flow conditions much.

Parallel-flow Cylindrical Beam. If it is desired to build a unipotential
cathode gun producing a parallel-flo'v cylindrical beam, it is necessary
that the cathode and accelerating electrodes produce the following field
conditions along the edge of the beam,

and
V(ro,z) = Az~

dV
- (roz) = 0
dr '

(15.61)

(15.62)

where ro is the radius of the beam. This problem has thus far defied
analytical solution. Approximate electrode shapes may, however, be
found with an electrolytic tank set up to represent this problem. A
wedge-shaped piece of electrolyte is used by tilting a tray, placing an
insulating strip of material in the tank to represent the edge of the electron
beam, and then bending sheet electrodes until shapes are found such that
the potential along the insulating strip fo11o\vs a four-thirds-power law
with distance. The insulating strip simulates the electron beam because
it imposes the condition of Eq. (15.62). Since no current can flow into
the insulator, there will be no component of gradient normal to the strip.

The resulting fields and electrodes have the shape sho\vn in Fig. 15.26.
Close to the beam the zero-potential electrode ,vill be a section of a cone
,vith a half angle of 67.5 deg. This is expected from the results of the
case studied in the previous subsection. Close to the edge of the beam
the conditions are almost identical with the plane-rectangular-strip
case, and hence a 67.5-deg angle ,vith the zero-potential electrode is
indicated. At great distances from the beam the zero-potential electrode
,vill be a section of a cone with a half angle of 71 deg. A cone of this angle
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will give a four-thirds-power variation of potential along its axis. The
anode will be a surface of revolution curved in the direction of increasing
potential. Such a set of electrodes will produce a parallel cylindrical
beam. If the region beyond the anode is field-free, however, the beam
will diverge owing to the lens action of the aperture in the anode. For
this reason a better type of gun is sought.

Convergent Radial Flow of a Conical Beam. The divergent effect of
the aperture in the anode noted in
the t,vo cases studied above is
unavoidable. Even if the aper
ture is covered with a grid, the
individual holes in the grid will
each have an action sImilar to
that of the large aperture and
with the same focal length. The
only difference will be that the
grid will produce more scattering
of the electrons and hence will
produce a divergent beam with a
less sharply defined edge. Be
cause of the inescapable divergent
action of the aperture it is desir
able to produce a beam which is
initially quite strongly convergent

so that the divergent action of the aperture in the anode will leave the
beam still convergent.

A convergent beam may be had by utilizing a circular conical section
of the radial flow bet,veen concentric spheres ,vith the cathode outside
(see Sec. 8.4). The radial current flow in a cone of semiangle 8 cut out
of a sphere of radius r e is

o
1.00 o.qO 0.80 0.10 0.60 0.50 0.40 0.30

rlre

FIG. 15.27.-Curves of a and a?4 as a
function of rc/r. See Appendix VII for
values of a 2•

O.928(Vkv)% sin2
(;)

I = -------......;.......-
0: 2 amperes (15.63)

""There V kv is the beam voltage in kilovolts and a is the function of !-
Tc

given by Eq. (8.32). The factor sin2 (~) takes account of the fact

that the current flow takes place not over the entire sphere but merely
over a cone of semiangle (J cut out of the sphere. The voltage as a
function of radius is given by
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(15.64)

in which the significant relation is the dependence upon the four-thirds
power of ct. Curves of a and a~3 as a function of the ratio of cathode to

Werfer line ..--.4
----~~----

-'-'
---'

,Acce/erdtinq
electrode

.....-__o_s_cl-,·//OGcope

10.11 20volls60",

(15.65)

FIG. 15.28.-Electrolytic tank aJrangement for the
determination of unipotential gun-electrode shapes.

anode rac1ius are given in Fig. 15.27. Numerical values are given in
Appendix VII. Except for a proportionality constant, the curve of a~~

is a universal curve of voltage variation as a function of radius for
spherical flow. Equation (15.64) is therefore one of the conditions that
applies along the edge of the conical beam. The other condition is

dV = 0
dO
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where 8 is the polar angle of a spherical coordinate system. Equation
(15.65) will apply inside the beam and at its edge, but not outside.

Electrode shapes for a conical section of a spherical flow can be
determined by means of an electrolytic tank, as described before. A
specific arrangement suitable for this purpose is shown in Fig. 15.28.
A tilted tank is used to obtain a wedge-shaped portion of electrolyte.
The vacuum-tube voltmeters are conveniently made with adjustable
sensitivities. These sensitivities should be adjusted so that when the
desired potential distribution is achieved each voltmeter gives some

~--+---4--+----I1---f2

FIG. 15.29.-Unipotential gun-electrode shapes
for the production of a 5-deg convergent beam.

convenient deflection, such as half scale. This procedure makes the
determination of the electrode shapes relatively simple and rapid. Tb.e
electrodes are conveniently made of thin copper sheet so that they can
be bent into any shape. The cathode electrode should make an angle
of 67.5 deg with the beam edge simulated by the insulating strip. The
oscilloscope shown serves to check the power factor of the electrolyte
and the presence of contact potentials. It is connected to plot the
Lissajous pattern of current against voltage. The pattern should show a
straight line or at worst a long, thin ellipse, corresponding to a small
phase angle. The voltmeter probes should be spaced to give equal
increments of voltage rather than of distance.

Some resultant electrode shapes for different angles of beam con-
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FIG. 15.30.-Unipotential gun-electrode shapes for
the production of a 10-deg convergent beam.

t-----.--..........----,~~- - __- __-_-~_IO

~-+-----+---#--+-+--+----+---I6

I-+---+----+-~4

JI---t--+--+----+---I2

FIG. 15.31.-Unipotential gun-electrode shapes for the pro
duction of a 2O-deg convergent beam.
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vergence are sho,vn in Figs. 15.29 to 15.32. 1 These curves are universal
in that they ,,-ill hold for any magnitude of applied voltage and that the
anode electrode can be any of the equipotential curves sho\vn.

The anode aperture in a unipotential Pierce cathode will al\vays
give rise to a divergent focusing action. This means that the beam on

j----+--+--+----t--+--+--i---+---+---+-~.....~IO

H---+------t4

~+-----+--42

10 12
0

~

FIG. 15.32.-Unipotential gun-electrode shapes for the pro-
duction of a 30-deg convergent beam.

leaving the anode will al\vays be less convergent than on entering it.
The focal length of the anode aperture lens ,vill be given very closely by

f = 4V
E

(15.66)

from the aperture-lens formula of Eq. (13.56) on the assumption that the

1 These electrode shapes were determined by Robert Helm and were first published
by SPANGENBERG, FIELD, and HELM, op. cit. See also HELM, R., K. R. SPANGENBERG,
and L. M. FIELD, Cathode-Design Procedure for Elect.ron-Beam Tubes, Elec.
Commun., vol. 24 (No.1), pp. 101-107, 1947.
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(15.67)

gradient of potential beyond the anode aperture is zero. Upon evaluating
the focal length by means of Eq. (15.66), it is found that

f _ -3u
r; - a;;

dR

,vhere R =!-. A curve of 1 as a function of !- is given in Fig. 15.33.
Tc Tc Tc

The focal length of the aperture lens being kno,vn, it is possible to
determine the exit angle 'Y of the beam for any entrance angle 8. The
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FIG. 15.33.-Foc,al length of a unipotential convergent-beam gun as a func
tion of the ratio of anode to cathode radius.

(15.68)

basic dimensions of the electron gun are sho\vn in Fig. 15.34. For this
structure the usual lens formula applies,

111
r a b = -1

In this equation the lens has been assumed to be located at the inter
section of the anode sphere with the axis rather than in the plane of the
aperture. Equation (15.68) can be put into the form

b 1
(15.69)
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This equation shows that the distance from the anode to the beam focal
point (in the 8.bsence of space-charge spread) depends only upon the ratio
of cathode to anode radius, since focal length, by Eq. (15.67), depends
only upon this ratio. The distance from the anode to the beam focal
point is independent of the entrance angle 8 of the beam because the
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FIG. 15.34.-Diagram of a unipotential convergent-
beam gun.

ratio of entrance to exit angle for any ray of the beam will be a constant.
A curve of the distance from the anode to the beam focal point as a
function of the ratio of cathode to anode radius is given in Fig. 15.35.
The lens action is convergent only for ratios of cathode to anode radius
greater than 1.455. Smaller ratios of cathode to anode radius approach
the plane-electrode case, which is strongly divergent.
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The relation between the entrance and exit angles in Fig. 15.34 is
readily deduced from the geometry and has the form

sin (J b b rc (15.70)

in which the symbols have the significance given in Fig. 15.34. The
above equation shows that the ratio of the sines of the entrance and
exit angles depends only upon the ratio of cathode to anode radius,
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FIG. 15.35.-Location of the focal point of a unipotential convergent-beam gun in the
absence of space-charge repulsion.

since~ is a function of this ratio, also. The relation between the entrance
rc

angle (J, the exit angle 1', and the ratio of cathode to anode radius is given
in Fig. 15.36. This representation has the advantage over the many

others possible in that the curves of constant 8, 1', and ~ are straight lines.
fa

The region of divergent lens action lies below the 8 axis and so does not
appear on the curve sheet. This curve sheet has been converted into a
universal design chart by superimposing curves of constant beam per-
veance on the other curves. Beam perveance in this case is defined as
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G=~
(Vkv)%

which, from Eq. (15.63), has the value

G = 0.928 sin2
(;)

a 2

(15.71)

(15.72)
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FIG. 15.36.-Unipotential convergent-beam gun chart for use in designing guns like
that of Fig. 15.34.

A nomographic chart of the relation of Eq. (15.71) giving perveance
for any beam voltage and current is given in Fig. 15.37.

By means of Figs. 15.37 and 15.36 it is a simple matter to select
values of cathode to anode radius and entrance and exit angles for any
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desired voltage and current. Figure 15.36 gives the relation between

the four variables G, ~, (J, and 'Y. Any two may be taken as independent
Ta

variables. When their values are prescribed, the values of the other
two variables are determined. Where the anode aperture has no grid,
it is necessary only to make Sl.Ire that the aperture is not too big so that
it will not disturb the field in the cathode-anode region. Also shown
in Fig. 15.36 are contours of anode aperture diameter equal to 50 per cent
and 100 per cent of the cathode-anode distance. The value of the
gradient of potential at the center of the cathode is reduced about 5
per cent ,vhen the anode aperture diameter is 70 per cent of the cathode
anode spacing. Aperture diameters larger than this should not be used
without attempting to compensate for the reduced cathode~ gradient
by changing the electrode shapes. When a spherical grid is used to
cover the anode aperture, no such limitations are encountered.!

Guns designed from the chart of Fig. 15.36 have performed as theo
retically predicted. It is not unreasonable to expect that 90 or possibly
95 per cent of the cathode current will become useful beam current
and that current densities as high as half the maximum theoretical value
as limited by thermal-emission velocities will be attained.

For determination of the beam action after leaving the anode aperture,
reference is made to the universal beam-spread curve of Fig. 15.21. If
this curve is entered at the right point, the subsequent beam envelope
,viII be like that of the universal curve to the left of the point, it being
assumed that the beam leaving the anode aperture is convergent. For
convenience in entering the universal curve, its slope at any point is
given, along with the universal curve replotted in Fig. 15.38. This
slope is given by

M = tan 'Y (15.73)
[Yl .

and \vhen divided by K = (Vkv)~ gIves the proper scale value for

entering the slope curve. From the corresponding point on the envelope
curve it can then be determined ,vhere the minimum diameter of the
beam "Till occur and what the subsequent beam spread will be. Actual
beam-spreading action is usually only about two-thirds of the values
predicted here because of a partial neutralization of the negative space
charge by positive ions in the beam.

Example: Suppose it is desired to design a cathode that will put a beam of
40 rna at a voltage of 1,000 volts through a cylinder 6 cm in length and 1 cm in

1 For an alternative treatment of this subject see SAMUEL, A. L., Some Notes on
the Design of Electron Guns, Proc. I.R.E., vol. 33, pp. 233-240, April, 1945. This
article also contains design data for the line-focus case.
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diameter. Then the conditions of Fig. 15.23 apply, and tan 'Y will have the value
of 0.] 67', which corresponds to a value of 'Y of 9.5 deg. Opposite this value of
exit angle and the corresponding value of perveance on the design chart of Fig.
15.37, it is found that a cathode-beam angle of 22.5 deg and a ratio of cathode to
anode radius of 2.13 are required. The required electrode shapes may be found
from a slight interpolation of the shapes given in Figs. 15.31 and 15.32.
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FIG. I5.3S.-Slope of universal beam-spread envelope.
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16.7. ffitra-high-frequency Deflection Effects. There is a limit to
the frequency of wave forms, which can be observed on a cathode-ray
tube with electrostatic deflecting plates. The deflection equation [Eq.
(6.23)] is evaluated for a direct potential and is valid for alternating
potentials only if the beam electrons' transit time through the deflecting
plates is so small a fraction of the cycle that the deflecting plate voltage
does not change appreciably while any single electron is influenced by it.
In a representative tube having, say, a beam voltage of 1,000 volts and a
deflecting-plate length of 2 cm, the transit angle ,viII not become appre
ciable until the frequency is of the order of 50 mc, at which frequency
ordinary sweep circuits have failed and the problem of getting the
voltage on the deflecting plates is considerable. Ho,vever, there are an
increasing number of applications in which it is desired to observe very
high and ultra-high-frequency phenomena so that it is worth while to
make a brief study of transit-time effects to determine the limitations of
ordinary tubes and serve as a guide to the design of special tubes.
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Let the notation of Fig. 6.2 be used and let the static-deflection case
be reviewed for comparison. The crosswise acceleration of an electron
entering the field between the plates is

d
2
y eVd (15.74)

dt2 = 100
where y is transverse displacement, e and m are charge and mass of the
electron, respectively, V d is the deflecting potential, and a is the deflect
ing-plate spacing. A first integration of this equation gives

dy _ eVdt (15.75)
dt - rna

in which the constant of integration is zero since ~f = 0 when t = O.

The transverse velocity at the end of deflecting plates of length b is

dy eVJJ (15.76)
dt = mavo

where Vo is the velocity of the beam electrons. From this equation the
deflection y, of a spot on a screen a distance l from the end of the deflecting
plates is

(15.77)

(15.78)

dy

since y. = dt. The deflection sensitivity, or deflection per unit deflect
l Vo

ing voltage, is

A o = Ys =~
Vd mavo2

The dynamic-defiection case can be handled in much the same manner.!
For this case let the instantaneous voltage between deflection plates

1 Of the rather extensive periodical literature on this subject the following articles
are the most fundamental:

HOLLMANN, H. E., Die Braunsche Rohre bei sehr hohen Frequenzen, Hochfrequenz.
und Elektroakustik, vol. 40, pp. 97-103, September, 1932.

LIBBY, L. L., Cathode Rays for the Ultra-high Frequencies, Electronics, vol. 9,
pp. 15-17, September, 1936.

BOWIE, R. M., Cathode Ray Wave Form Distortion at Ultra-high Frequencies,
Electronics, vol. 11, pp. 18-19, 29, February, 1938.

HOLLMANN, H. E., Ultra-high Frequency Oscillography, Proc. l.R.E., voL 28,
pp. 213-219, May, 1940.

HARRIES! J. H. OWEN, Deflected Electron Beams, Wireless Eng., vol. 21, pp. 267
277, June, 1944.
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be given by Vd cos wt. Then the acceleration of an electron at any
instant t is

d 2y eVd cos UJt
dt2 = rna (15.79)

\vhere all the symbols have their previous significance. A first integration
gives

dy _ eV d (sin wi - sin wto) (15.80)
dt - maw

\vhere to is the time the electron enters the alternating field and the
particular value of the constant of integration given results from the

condition that ~t = 0 when t = to. For simplification in interpretation

let the time the electron spends in the alternating field be represented by

T = t - to
dy _ cVd [sin weT + to) - sin wto]
dt - maw

Integration of Eq. (15.80) gives

y = eVd2 [cos wto - cos wt - wet - to) sin wto]
maw

(15.81)

(15.82)

(15.83)

(15.84)

\vhere the particular value of the constant of integration results from the
condition that y = 0 when t = to. The above equation is better ,vritten
in terms of the time the electron is exposed to the alternating field as

y = eVd2 [cos wto - cos weT + to) - wT sin wtoJ
maw

l'his equation gives the path of the electron when used parametrically
\vith the expression

x'= voT (15.85)

for the time the electron is exposed to the alternating field. A set of
curves sho\ving the path of electrons between the deflecting plates over a
period of t,vo complete cycles is shown in Fig. 15.39. It is seen that the
path for any starting time is a straight line at some angle with the axis
,vith a superimposed transverse sinusoidal motion. The angle of the
straight-line component of the path depends upon the starting angle,
being zero when the electron enters at a peak of the instantaneous
alternating voltage and maximum when it enters at an instant of zero
alternating voltage. The amplitude of the alternating component of
transverse sinusoidal motion is the same for any starting time and is
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(15.86)

proportional to the deflecting gradient of potential and inversely propor
tional to the square of frequency. As an aid to visualization of the
electron behavior, it may be stated that this path is the same as that of a
ball rolled along a plank which rocks with a sinusoidal motion, the ball
having an initial velocity parallel to the long dimension of the plank.
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FIG. 15.39.-Path of an electron between deflecting
plates when the transit time is large compared to the
period of the deflecting voltage.

The electron ,vill nlove in a straight-line path in the field-free region
beyond the end of the deflecting plates with a slope determined by

dx
Eq. (15.82) and dt = vo. As before,

dy
y, _ dt
T - Va

so that the dynamic-deflection sensitivity, or deflection per volt, is

A(w) =~ [sin weT + to) - sin wto] (15.87)
mawvo

Upon invoking Eq. (15.78) and simplifying by trigonometric transforma
tion, the ratio of the dynamic to the static deflection sensitivity is

A (w) = 2~ sin wT cos w (to + '£) (15.88)
A o bw 2 2
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which by virtue of the fact that T = ~ is 'readily ,vritteri in: the sImpler
Vo

form
. wT

A(w) SIn 2 ( T)
-- = --- cos w to + -

A o wT 2
2

(15.89)
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FIG. 15.40.-Ratio of dynamic to static sensitivity of deflecting plates as a

function of transit angle.

From this equation several important properties of deflection at the ultra
high frequencies are evident. In the first place the deflection is sinusoidal
with time so that there is no distortion of ,vaves of a single frequency.1
In the second pla~e the maximum value of the deflection varies as the
ratio of the .sine of half the transit angle through the deflecting 'plates
to half the transit angle. A curve of deflection sensitivity as' a function
of transit angle wT is given in Fig.. 15.40. It is seen th~t the deflection is
ap'parently zero whenever the transit angle through the deflecting
plates is some integral multiple of 21r radians. This is consistent ,vith
the observation in Fig. 15.39 that the slope of the electron traject"ory is
zero every 21r radians: The above has assumed that the deflection in
passing through the deflecting plates is small compared with the subse
quent deflection over the relatively long distance to the ~creen, l. The
exact actual deflection will, of course, be the sum of the values g~ye~ by
Eqs. (15.84) and (15.&6). This means that the, deflection ,vill "n~t be
quite zero e'ven when the transit angle through t~e deflecting plates i~ a

1 BOWIE, Ope cit.
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multiple of 2r but will be a minimum given by the value from Eq. (15.84)
when T has the value 2n1r, where n is a positive integer.

It is of interest to record the values of deflecting-plate transit angles
for which the dynamic deflection sensitivity drops to some arbitrary
fractions of the static sensitivity. The dynamic deflection sensitivity
will be 0.9 of the static sensitivity when the transit angle through the
deflecting plates is 0.794 radian, or 45.5 deg. It will be 0.707 of the
static sensitivity when the transit angle is 2.78 radians~ or 159 deg. It
will be a minimum when the transit angle is 21r radians, or 360 deg.

When the same ultra-high-frequency voltage is applied to both
horizontal and vertical deflecting plates, the resultant Lissajous figure
will not be a straight line becaltse of the phase shift occurring between the
two sets of deflecting plates. For a pure sine wave the resultant figure
will be an ellipse. When the applied voltage contains harmonics, the
resultant figures will have odd shapes not encountered at low frequencies. 1

Harmonic analyses can -be made from the resultant figures. They can
also be made from the so-called "inversion spectrograms," which are
obtained by applying the complex ultra-high-frequency wave to the
vertical plates, allowing the beam voltage to vary sinusoidally over a
suitable range, and applying a fixed magnetic field parallel to the vertical
deflecting field. The transverse deflection of the beam \vill vary \vith the
beam voltage because of the effect of the magnetic field, and the different
harmonic components of the wave under observation ,vill experience
different vertical deflections at the different velocities, in accordance \vith
Eq. (15.89).

15.8. Photography of Cathode-ray Traces. In the observation of
wave-form phenomena it is frequently important to obtain a permanent
record. This is readily done by simply taking a picture of the screen
trace. The science of photographing cathode-ray traces has now reached
such a state of development that, except for special applications, it has
rendered other methods of recording wave forms virtually obsolete. 2- 6

1 HOLLMANN, H. E., Intra-high Frequency Oscillography, Proc. I.R.E., vol. 28,
pp. 213-219, May, 1940.

2 FELDT, R., Photographing Patterns on Cathode Ray Tubes, Electronics, vol. 17,
pp. 130-137, 262, 264, 266, February, 1944.

3 GRAY, C., Notes on Cathode Ray Photography, Radio Research Laboratory
Seminar Rept., Jan. 23, 1945.

"Cathode Ray Tubes, RCA Manual TS2, pp. 86-93, 1935.
5 "Photographic Papers for Recording Purposes," Eastman Kodak Company,

Rochester, N. Y., 1942.
6 H Photographic Materials Available for Use with Oscillograph, Cathode Ray

Tubes, and Similar Recording Instruments," Eastman Kodak Company, Rochester,
N.Y., 1941.
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In taking pictures of cathode-ray-tube traces the experimenter has
under control at least nine different factors all of which will contribute
to the contrast of the resulting picture. These are

1. Cathode-ray-tube beam power.
2. Type of fluorescent screen.
3. Writing speed of the beam trace.
4. Exposure time.
5. Magnification of the camera lens.
6. Lens speed, or stop.
7. Film sensitivity.
8. Developer.
9. Development time.

TABLE VIII
PHOTOGRAPHIC PROPERTIES OF COMMON FLUORESCENT SERIES

Type of screen *

PI P2 P5
medium- Iong- short-

persistence persistence persistence
green green blue

Visual brightness, ft-Iamberts ........... 7.5 1.55 0.9
Relative brightness (Weston 603 meter,

Viscor tilter) . . . . . . . . . . . . . . . . . . . . . . . . 8.3 1.7 1.0
Relative film speed ..................... 0.63 0.25 1.0
Test film ....................... , ...... Agfa SSS Agfa SSS Agfa Fluorapid

Ortho Ortho Blue
Photographic efficiency ................. 0.076 0.15 1.0
Ft-Iamberts for equal photographic effect 13.2 6.7 1.0

* See Appendix IV for specific characteristics.

In the manipulation of the above factors the objectives sought are a
dense negative trace with a high contrast. The effect of the separate
factors listed above will now be briefly discussed.

Beam Power. It has already been mentioned that the brightness of a
beam trace is approximately linear with beam voltage at a fixed current.
It is also approximately linear with beam power. Hence the greater the
beam po\ver for a given spot size, the greater the brightness of the spot
and the easier it is to get a satisfactory picture.

Screen Types. The three most commonly used screens today are the
Pl medium-persistence green, P2 long-persistence green, and P5 short
persistence blue. The principal characteristics of these screens are listed
in Table VIII.
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In the above table, visual brightness gives the relative response of
the eye. Relative brightness is a standard meter reading. For each
screen the type of film that gives the densest trace for a standard develop
ing procedure is used. Photographic efficiency is the ratio of relative
film speed to relative brightness. Data in the last row are obtained
from the reciprocal of photographic efficiency.

Writing Speed. The ,vriting speed is simply the speed of the beam
trace. Naturally, the greater the speed, the less the photographic
effect.

Time, Stop, and Magnification. These factors are interdependent.
Although it is possible to giv,e specific coefficients that will determine
exposure time for a given set of operating conditions, these ~onditions

are subject to so much variation that it is almost necessary in all cases
to obtain the correct exposure time by a trial set of pictures. When
the best exposure time has been so determined for one set of operating
conditions, times for other conditions are readily determined by simple
formulas.

In the photography of recurrent traces, the exposure time can be
made as long as desired, subject only to the limitation of fogging due
to stray light. The exposure time necessary ,vill be determined by the
beam power, the lens stop, and the image magnification according to
the formula

KF2(M + 1)2
t = (15.90)

w
,,,,,here t is exposure time (conveniently, sec)

K is exposure constant (determined by experiment)
F is lens stop (ratio of lens focal length to aperture diameter)

M is image magnification (ratio of object to image size)
w is beam-po\ver density (\vatts per cm 2 of fluorescent area as

determined from beam po\ver and trace area)
If the correct exposure time is experimentally determined for one set of
operating conditions, it is a simple matter to evaluate the coefficient
K and the above formula then gives the exposure time for any other set
of operating conditions.

In the photography of transient phenomena ,vhere only a single trace
of the pattern occurs the camera lens is left open and the beam-trace
brightness is determined by the ,vriting speed and the beam power.
The corresponding photographic image density is determined by the
lens stop and image magnification. The relation between writing speed
tI.nd the other faytors is given by

cw . , (15.91)
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Film
Agfa SSS Pan .
Agfa SSS Ortho. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Eastman Ortho X .
Eastman Superpan Press .
Eastman Super XX .
Defender Ortho X-F .
Defender X-F Pan .
Agfa Fluorapid Blue .
Eastman X-ray Blue .

\yhere C is pruportioIiality constant
VB is spot velocity (conveniently, km per sec)
W is beam power (conveniently, \vatts)
F is lens stop

M is image magnification
When a suitable exposure is obtained by test, it is a simple matter to
calculate the proportionality constant C. The above formula then
gives the relation bet\veen the fOUf parameters involved for any other
set of operating conditions to obtain the same film-trace density. At
ordinary potentials (2.5 kv), recordable \vriting speeds are of the order
of 5 to 50 km per sec. With standard tubes and high accelerating poten
tials (10 kv) ,vriting speeds as high as 1,000 km per sec have been recorded.

The maximum lens aperture that can be used is, of course, determined
by the lens speed. Lenses ,vith f ratings of 1/4.5 are usually available.

TABLE IX
PHOTOGRAPHIC-FILM SENSITIVITIES

Weston Speed Rating
(Daylight)

200
100
100
100
100

50
50

Lenses with speeds as hign as i/1.5 are available for Leica and Contax
cameras.

Examination of Eqs. (15.90) and (15.91) sho\vs that the film density
may be increased} other factors being equal, by reducing the magnifica
tion to get a sIrlalIer image. The gain that can be effected in this way
is not large, ho\vever, and the maximum gain possible over a magnifica
tion of 1 is a factor of 4 in writing speed or equivalent exposure time.

Film Sensitivity. A number of special'and ordinary films are available
for cathode-ray-trace photography. In Table IX is given a list of
available films in the approximate order of their sensitivity.

The Agfa SSS Ortho gives the best result of all films for the PI and
P2 screens. The Agfa Fluorapid Blue gives the best results of all films
for the P5 screen. It should be noted, however, that the Eastman Super
XX requires only about twice as much exposure as the best film in all
cases to give an equivalent image.

Film soeeds can be increased 50 to 100 per cent by hypersensitizing
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the film with ammonia vapor. The ,veIl-known expedients of hyper
sensitizing with mercury vapor or preexposing to get above the fog level
do not seem to do much good in the photography of cathode-ray traces,
where the work is often at minimal levels of exposure.

Developers and Development. Standard developers and standard
developing procedures with the usual precautions can be used. The
commercial developers DI9 (high contrast), D72, and Ansco 47 are satis
factory. Development can be carried beyond the recommended time to
increase contrast up to the point \vhere fogging becomes excessive or the
gelatin softens too much.



CHAPTER 16

ULTRA-HIGH-FREQUENCY EFFECTS IN
CONVENTIONAL TUBES

16.1. Introduction. It is well kno\vn that, as frequency is raised,
tubes are progressively less effective as amplifiers and oscillators. Ampli
fiers require greater driving po,ver, and the output drops off correspond
ingly. If the frequency is raised high enough, the gain of an amplifier
,vill drop to unity or less. At the same time this is happening, the input
impedance of the amplifier drops, as does also the maximum impedance
that can be realized in the plate circuit. Oscillator output drops even
more rapidly with frequency than does amplifier output. At the same
time the limitations on output change. At low frequency the output
for continuous operation is often limited by the plate dissipation. As
the high-frequency limit of oscillation is reached, the grid dissipation
commonly becomes the limiting factor while the plate hardly gets hot
at all.

All the above effects come about because of a combination of electronic
and circuital phenomena. Depending upon the design of the tube,
electronic considerations may limit the output before the circuit limita
tions do as the frequency is raised, or vice versa.

16.2. Causes of Decreased Output at mtra-high Frequencies.
Numerous factors contributing to a reduction of output at ultra-high
frequencies can be listed. The total number of contributing factors can
be divided into roughly three groups. These are

1. Circuit-reactance limitations.
2. Circuit- and tube-loss limitations.
3. Electron-transit-time limitations. '

At the ultra-high frequencies there exists a situation which is quite
different from that which exists at low frequencies. At low frequencies
the electrical circuits and the tube are quite distinct. As frequency
increases, this ceases to be true and it is found that part of the resonant
circuits exist inside of the tube. This comes about because electrode
leads have a small but finite inductance. As frequency rises into the
ultra-high class1fication, the reactance of this inductance becomes
appreciable. This means that the voltage across the external terminals

475
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will not appear across the electrodes. In addition, while the inter
electrode capacities may be small, at the ultra-high frequencies they may
be a large fraction of the capacity required to give resonance in an
external circuit. As such, they represent a limitation in terms of actual
operation. The combination of the electrode-lead inductance and the
interelectrode capacity may give rise to resonances in the ultra-high
frequency region.' Even if resonances do not occur, the combination of
the reactances within the tube may constitute a network that mismatches
the equivalent tube generator and the load. All in all, there are a number
of respects in which the circuit reactances combine to limit tube per
formance at the ultra-high frequencies. These detrimental effects can
be combated in two ways, (1) by making the tube smaller, which reduces
the inductances and capacities in direct proportion to the linear dimen
sion, ·and (2) by making the tube structure such that the electrode leads
calf-be incorporated into external concentric-line resonators.

,The po\\rer losses associated \vith a tube and circuit all tend to increase
with frequency. At ultra-high frequencies all currents flo\v in thin
surface layers because of skin effect. The associated resistance and
losses increase with the square root of frequency because the thickness
of the layer in \vhich the current flo\vs decreases in this manner as
frequency increases. Glass and other insulating supports have losses
associated \vith the molecular movements produced by the electric fields.
These "dielectric hysteresis losses," as they are called, ,vill usually vary
approximately as the first power of frequency. In addition, there will
be appreciable radiation from an exposed piece of wire such as an electrode
lead. The po\ver radiated from a short length of wire carrying current
increases as the square of the frequency. All the above factors con
tribute- to a general reduction in tube efficiency as frequency is increased.
Resistance losses may be made lo'v by increasing the area of the surfaces
carrying current. Dielectric losses may be reduced by proper positioning
of glass ,vith respect to points of lo'v electric field. Radiation losses
can be reduced by enclosing the tube and circuit or by using a concentric
line construction so that the tube and circuit fields are entirely confined.

Electron-transit-time effects can contribute to reduced tube output
in many ,vays. If the transit times of the electron are appreciable
fractions of the ultra-high-frequency cycle, then plate current will lag
negative grid voltage and there will be a reduced output in an oscillator
because plate current and voltage are out of phase. Associated \vith
increased transit time there is a dispersal, or debunching, of electrons,
\vhich has the result that plate-current pulses are not so sharp as the
pulses liberated from the cathode. In addition, there will be an energy
interchange between the electric fields and the electrons in flight so that
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as frequency increases the grid-input impedance will have a resistance
component which decreases with frequency even though no electrons
strike the grid. Furthermore, all the tube constants such as the amplifi
cation factor will become complex instead of real numbers as a result of a
shift in phase and what is generally a reduction in magnitude. There
is not much that can be done about electron-transit-time effects except
to raise the voltages and reduce the dimensions, both of which processes
have definite limitations. In addition, certain tube types are less
adversely affected by electron-transit-time effects than others. The
tetrode, for instance, suffers less from the adverse effects of electron
transit time than does the triode.

In the subsequent sections there will be given a brief analytical
treatment of all the above effects. No complete analysis that embraces
all aspects of ultra-h~gh-frequency tube operation is available. Rather,
the process of estimating the situation is that of looking through different
windows, corresponding to different avenues of approach, and then
trying to piece the complete picture together from the partial revelations
obtained.

16.3. Onset of Tube-reactance Limitations. The most important
reactance encountered in a vacuum tube is that associated with the lead
inductance. It is possible to speak of the inductance of a piece of straight
,vire or of an unclosed circuit in general. It must be borne in mind,
however, that the inductance of the unclosed circuit is considered as part
of some closed circuit the total inductance of which is equal to the sum
of the self-inductances of all its parts plus the sum of the mutual induct
ances of each one of the component parts relative to every other part.
In cases where the mutual inductances bet,veen various parts of the same
closed circuit are small the total inductance is simply the sum of the self
inductances of the component parts. Taken in this sense, the induct
ance of a straight piece of wire at very high frequencies is

(
4l d )L = O.00508l 2.303 loglo d - 1 + "2l microhenrys (16.1)

\vhere l is the length of the ,vire in inches and d is the ,vire diameter in
inches. The last term in the parentheses is negligible if l is more than
1ODd. A family of curves giving the dependence of inductance upon wire
length and diameter is shown in Fig. 16.1. The inductBlnce is seen to
increase as the wire diameter is made smaller or as the wire length is
increased. In tubes, therefore, leads should be as large as possible in
diameter and as short as possible in length. As an example of how large
lead reactances can be, consider the case of a lead that is 100 mils in
diameter and 1 in. in length, as frequently occurs in small transmitting
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FIG. 16.1.-Inductance of a round straight wire.

common cathode lead inductance. This will have the effect of introduc
ing feedback into the stage involving the tube and may cause the grid
input impedance to be affected adversely. If all the tube lead induct
ances and interelectrode capacities are considered, some rather complex
relations are encountered. 1•2 In general, the effect of the internal tube

1 STRUTT, M. J. 0., and A. VAN DER ZIEL, The Causes for the Increase of the Admit
tances of Modern High-frequency Amplifier Tubes on Short Waves, Proc. I.R.E.,
vol. 26, pp. 1011-1032, August, 1938. Contains good bibliography.

2 SARBACHER, R. I_, and W. Iw EDSON, "Hyper and Ultra-high Frequency Engi-
neering," pp. 431-436, Wiley, New York, 1943.

tubes. This lead has an inductance of approximately 0.015 microhenr~r,.

as may be seen from Fig. 16.1. At 500 mc this represents a reactance
of 47 ohms, which is fairly high.

Cathode-inductance-feedback Limitations. Since the tube lead react
ances are internal to the tube, there will be coupling between the input
and output circuits due to grid and plate currents flowing through the

10
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+

(16.5)

(16.4)

reactances is to decrease the impedances presented at the tube input
terminals. This may be seen by considering the onset of reactance
effects in a triode at ultra-high frequencies.

Consider the triode circuit of Fig. 16.2, in which there are considered
only the effect of the cathode lead inductance and the cathode-grid
capacity. 1 Then the signal voltage V 8 differs from the voltage that
appears between the grid and the
cathode by the voltage drop in the
cathode lead inductance. Thus

VB = V g + jwLclp (16.2)

But the plate current will be approxi- t
mately proportional to the negative of ~

the product of the grid input voltage
and the mutual conductance of the ----e~Ip
tube since at ultra-high frequencies
the plate-load resistance will usually FIG. 16.2.-The equivalent circuit of
be small. a triode amplifier at ultra-high

frequencies.
I p = GmVg (16.3)

The input current to the tube will produce a voltage drop across the grid
cathode capacity that is equal to the tube input voltage

V =~
g jwCe-g

,vhere 11 is the input-circuit current. Making this substitution into
Eq. (16.2) along with Eq. (16.3),

V = 11(1 + jwLcGm)
8 jwCcg

in \\Thich the second term in the numerator is numerically small compared
,vith unity. Accordingly, the input admittance of the tube is approxi
mately

(16.6)

since (1 + a)-l is approximately equal to 1 - a when a is small com
pared with unity. The first term of the input admittance will be recog
nized as the normal capacitive susceptance of the tube. The second
term is a real positive term representing a conductive component of input
admittance and having the value

Gin = w2LcCcgGm (16.7)
1 FREEMAN, R. L., Input Conductance Neutralization, Electronics, vol. 17, pp. 24

25, October, 1939.
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This input conductance corresponds to a resistance in parallel with
the input capacity ,vhose value decreases inversely as thL~ square of the
frequency. This resistance consumes power, which increases as the
square of the frequency for a given driving voltage. There is no real
loss of power involved here. The driving power consumed in this
fashion is simply transmitted to the plate circuit. The equivalent input
resistance encountered here can be fairly low. For a tube with a cathode
lead inductance of 10-8 henry and a mutual conductance of 9,000
micromhos operating at a frequency of 30 me the equivalent input
resistance is of the order of 25,000 ohms. In addition to the input
conductance due to cathode-inductance feedback there is a similar compo
nent of conductance due to electron-transit-time effects, as will be seen.
The transit-time conductance varies in the same fashion with frequency,
i.e., as the square of frequency. The equivalent resistances that are
due to cathode-inductance feedback and electron transit time are in
parallel, and any measurement will involve the effect of both. In
triodes the equivalent resistance due to transit-time effects may be
smaller than that due to cathode-inductance feedback. In multi
electrode tubes the transit-time resistance will usually be much larger
than the feedback resistance. The components of the input conductance
can be separated by making measurements \vith and \vithout a bit of
external inductance inserted in series ,vith the cathode lead.

Interelectrode-capacity Limitations. In additiorJ. to the lead induct
ance, the interelectrode capacitances play an important role in the
operation of tubes in the ultra-high-frequency region. Interelectrode
capacitances due to active parts of the tube structure are incapable of
reduction beyond a certain point. Ho,vever, in many tubes the inter
electrode capacity results largely from capacity bet,veen the leads in
parts of the tube where electrons do not flo"\v. Thus the receiving-tube
practice of bringing all the tube leads out through a single glass stem at
the bottom of the tube is very bad from the standpoint of the inter
electrode capacity.

Arrangements that bring out the leads separately as much as possible
are preferred from the standpoint of lo\v interelectrode capacity.
Examples of such arrangements are to be found in the acorn tube, the
doorknob tube, and certain low-power radiation-cooled tubes (see Fig.
16.3). In the acorn tube the leads are brought out radially in such
a way that the capacity between them is greatly reduced. The leads of
the doorknob tube likewise are brought out rather well spaced. In the
radiation-cooled tubes the leads are brought out ,videly separated. In
addition, in some forms there are double leads, which can be paralleled
fa reduce the inductance. When this is done, the interelectrode capacity
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is almost entirely that found in the active portion of the tube wb.ere the
electron flo\v is concentrated. Further reduction here is possioie only
by scaling down the size of the tube, ,vhich in turn limits the power the
tube can develop because the heat-dissipation capacities are reduced.

If the resonant circuits of the tubes are made of lumped rea·~tance

elements, then the lead inductance and interelectrode capacity determine
the highest frequency at which the tube can be operated. This hi_~hest

frequency is the frequency at which the interelectrode capacity resonates
,vith the shortest external connection between the tube electrodes. For
the tubes shown in Fig. 16.3 this frequency will be of the order of 2,000
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FIG. 16.3.-Common ultra-high-frequency tube types.
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me for the acorn tube, 1,000 me for the doorknob tube, and 500 mc for the
radiation-cooled tube. These frequencies may be exceeded if a trans
mission-line type of resonant circuit is used, for then the connecting link
between electrodes may effectively be pushed inside the tube.

The interelectrode capacity is an important factor in determining
what plate-load resistance can be realized. This in turn determines the
gain and power output that can be made available. The equivalent
shunt resistance of a parallel resonant circuit can be written in a number
of ways, among which there are

(16.8)

(16.9)

1
Rah = wo2RC

Q
R'h = -C

Wo

where R is the equivalent series resistance, C is the total capacity deter~
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mining the resonance, and Wo is the angular resonant frequency. For
operation at a given frequency it is seen that in order to increase the shunt
resistance it is necessary to decrease the capacity. This can be done up to
a point by reducing the capacity and increasing the inductance to main
tain the same freqt:ency of resonance. Eventually, this process is limited
by the fact that t.he capacity external to the tube has been reduced to
zero and the shunt resistance is determined by the tube interelectrode
capacity. The larger the interelectrode capacity, the smaller the shunt
resistance that can be realized. Accordingly, the power output tends
to drop off as the load resistance or as the square of the frequency as
frequency increases.

For amplifier operation the gain-band-width product is of considerable
importance. This product is one that depends upon the ratio of the
tube mutual conductance to the circuit capacity, various numerical
coefficients applying for different circuits. l Consider the case of a tube
with a simple single tuned circuit as a coupling and frequency-deter
mining element between it and the next stage. The gain of such a stage
is approximately equal to the product of the tube mutual conductance
and the circuit shlJ.nt resistance.

Q
A = Gm we (16.10)

,vhere A is the stage voltage gain. The corresponding band vvidth
depends upon the circuit Q and the operating frequency according to

~f = f!!
Q

Accordingly, the gain-ba.nd-width product is

A lif = 1-Gm

2r C

(16.11)

(16.12)

The gain-band-width product can be increased by reducing the circuit
capacity up to the point where that capacity is the interelectrode capacity
of the tubes involved. Accordingly, it is again desirable to have tubes
with well-separated leads to reduce the interelectrode capacity.

16.4. The Nature of Currents Induced by Electron Motion at Ultra
high Frequencies. The Plane Diode w~·thout Space Charge. At low
frequencies, the current flowing to any electrode in a vacuum tube is
considered as resulting from the arrival of electrons at the electrode in
accordance with the equation

i = nev (16.13)

1 WHEELER, H..A., Wide-band Amplifiers for Television, Proc. I.R.E., vol. 27,
pp. 429-438, July, 1939.
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where n is the number of electrons per unit length of beam, - e is electron
charge, and v is the electron velocity. This concept is satisfactory as long
as the time required for an electron to move from one electrode to another
is so short that it can be considered as being virtually instantaneous. If,
however, the time required is appreciable when measured in time units of
the period of the alternating frequency involved, then this concept is no
longer adequate. The question arises as to
whether there is any current in the electrode q,l

circuit while the electron is en route. It
turns out that, there is such a current; and
since the electron transit time may be an
appreciable fraction of the period involved
it needs to be considered. When the elec
tron transit time is appreciable, it is no
longer true that the electrode current is
determined by the rate of arrival of electrons
at the electrode. The current may be

+
greater or less. Q)

The correct concept of electrode current --g + + A)

is that it is determined by rate of change of ':'::+~-"---";;rF---'"""i+] (b)
~+ +0-the charge on the electrode induced by the

electron in flight. This induced current is
the real current, and its magnitude is readily
determined. Consider the situation shown
in Figs. 16.4a, b, and c. Here there is sho,vn
an electron moving from the cathode to the
plate of a plane-electrode diode. From the +

electron there emanate -e lines of electric ~+ t~
~+~----~...... +........-flux, \vhich termi~ate on a like amount of ~ +~ (c)

+0.
positive charge on the cathode and plate. ~+ +

When the electron is close to the cathode
as in Fig. 16.4a, then most of the lines from
the electr~n terminate on the cathode, with FIG. 16.4(a,b,c).-The electric

field of a single electron in
the result that the positive charge so induced

Hight between parallel planes.
on the cathode is larger than the positive
charge induced on the plate. When the electron is midway between
cathode and the plate as in Fig. 16.4b, then half the lines terminate on
the cathode and half terminate on the plate, ,vith the result that the
induced charges on cathode and plate are equal. When the electron is
close to the plate as sho\vn in Fig. 16.4c, then more lines terminate on
the plate than on the cathode.

The exact magnitude of the induced charges described above may be
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calculated from the equality of the work done in transferring the charge
from cathode to plate to the energy gained by the electron in its move
ment. Let ql be the charge induced on the cathode and q2 the charge
induced in the plate. As the electron moves across from cathode to
plate, the battery effectively transfers a charge q2 from cathode to plate.
This means that the battery does ,york of the amount Vq2. At the same
time the electron has moved a distance x under the ~.nfluence of a field

-v ~.
of strength d so that work of the amount d has been done on It.

Accordingly,

Vex
,Vq2 =-

d (16.14)

from which

(16.15)

Since the total charge induced on
both cathode aDd plate must equal
+e, it must be true that

ql = e (1 - a) (16.16)

oX =0 afcd/hode
x=d afplate

+e

o d
(e) ~ (p)

FIG. 16.5.-Charges induced on the elec
trodes of a plane diode by a single electrode
in flight.

This means that the induced
charge on the plate grows linearly
\vith electron position from a value
of zero to +3 as the electron
moves across the diode from cath

ode to plate. At the same time the induced cathode charge decreases
from +e to zero. These relations are sho,vn in Fig. 16.5.

The current associated with the induced charges resulting from the
motion of an electron is given simply by the time rate of charge. Thus

. dq2 e dx ev
~=-=--=-

dt d dt d
(16.17)

This is the current flo\ving to the plate. The above is one of the most
important fundamental relations in the field of high-frequency-tube
behavior. The magnitude of the circuit current associated with the
electron flight is shown in Fig. 16.6. For the parallel-plane diode con
sidered here, the field \viII be linear, and the velocity of the electron if
emitted with zero velocity will increase linearly with time. This gives
rise to a trian~ular-shaped p1llse of current. Furthermore, the induced
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T=2d/vp

No space charge

e _.
it tp - tmax.

T

current depends only on the electron velocity and is independent of
electron position to the extent that the position is independent of the
velocity. It is seen that current starts to flow the moment the electron
enters the interelectrode space and continues until it reaches the plate.
It is not true that current flo,vs only ,vhen the electron reaches the plate.
The area under the current pulse is +e from Eq. (16.17).

The total current that flo,vs to any electrode is found by adding up
the triangular pulses of current
associated with each e 1e c t ron.
This summation ,vill generally
result in a current curve that lags ~!

the emitted-electron current by ~ ~
'"tS1..

an angle proportional to the ~ ~

product of the angular frequency
and the transit time. Currents

t
may even be induced in electrodes ---...
to which no electrons flow if the FIG. 16.6.-Induced current resulting

from an electron in transit in a parallel-
number or velocity of the electrons I d· d ·th t hpane 10 e WI ou space c arge.
approaching the electrode is dif-
ferent from the number or velocity of the electrons receding from it. This
is the case with the control grid in ordinary triodes and multielectrode
tubes when operating Class A.l,2

The General Case. The relations given above are a special case of
a more general relation in that they are restricted to the plane-electrode
diode in the absence of space charge. The general relation that applies
for any field configuration is

(16.18)

where i is the induced current flowing to any electrode, e is the magnitude

of the electron charge, and d~" is the gradient of potential in the direction

of the electron velocity that would exist at the electron's instantaneous
position if the given electrode were raised to unit positive potential and

1 NORTH, D.O., Analysis of the Effects of Space Charge on Grid Impedance, Proc.
I.R.E., vol. 24, pp. 108-136, January, 1936. One of the earliest papers to make use

of the relation i = ~.

2 THOMPSON, B. J., Review of Ultra-high Frequency Vacuum Tube Problems,
RCA Rev., vol. 2, pp. 146-155, October? 1938,
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all other electrodes were grounded. I-a It ,vill be noticed that the relation
of Eq. (16.18) reduces to the relation of Eq. (16.17) for the plane-electrode
case. From the general relation of Eq. (16.18) it is seen that the induced
current is maximum when the electron is moving along a path for which
the gradient of potential resulting, ,vhen the electrode in question is
raised to unit positive potential and all other electrodes are grounded,
is itself maximum. If the electron were to follo\v an equipotential line
under the conditions stated above, the induced current would be zero.

Induced Currents in the Space-charge-limited Diode. The shape of
the induced-current pulse associated with a single electron transit in a
plane diode is slightly differe~t when the diode is space-charge-limited
from \vhat it is when it is not. This comes about because the potential
variation with distance is a four-thirds-power law in the p~esence of
space charge, while it is linear in its absence. As a result, the electron
velocity follows a two-thirds-power law of variation with distance for the
space-charge-limited case, whereas it follows a one-half-power law in
the absence of space charge. Accordingly, the velocity of an electron
varies with the square of the time in the space-charge-limited' case,
,vhereas it varies linearly with time in the absence of space charge. In
addition, the transit time in the presence of space charge has been
shown in Sec. 8.10 to be 50 per cent greater than in its absence. As a
result, the potential, velocity, and induced current in the space-charge
limited case will have the form sho"\vn in Fig. 16.7. For comparison,
the corresponding relations that hold in the complete absence of space
charge are shown dotted. The current pulse \vith space charge is sharper,
\vhich means that its fundamental component is smaller and is retarded
more than in the space-charge-free case. The difference bet,veen the
behavior ,vith and ,vithout complete space-charge saturation is, ho,vever,
small enough so that for most qualitative evaluations the triangular

1 SHOCKLEY, W., Currents Induced by a Moving Charge, Jour. Appl. Phys., vol. 9,
pp. 635-636, October, 1938.

2 RAMO, SIMON, Currents Induced by Electron Motion, Proc. I.R.E., vol. 27,
pp. 584-585, September, 1939.

3JEN, C. K., On the Induced Current and Energy Balance in Electronics, Proc.
I.R.E., vol. 29, pp. 345-349, June, 1941.

(JEN, C. K., On the Energy Equation in Electronics at Ultra-high Frequencies,
Proc. I.R.E., vol. 2J, pp. 464-466, August, 1941.

5 This relation results from the fact that the charge induced on one of a system of
grounded conductors by an electron is eV n, where V n is the potential to which the
location point of the electron is raised when unit potential is applied to the electrode in
question and all other electrodes are grounded. The induced current is then simply
the time r~te of change of charge. See SHOCKLEY and RAMo1 Ope cit,
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current pulse is sufficiently accurate. The area under the current pulse
in this case is again +e.

Currents Induced in the Electrodes of a Triode. The relations discussed
above may be applied to triodes quite successfully to give an indication
of the magnitudes and phases of the currents induced in the different
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FIG. 16.7.-Induced current resulting from a single electron
in transit in a plane diode whose emission is space-charge
limited.

electrodes. Between the electrodes the potential fields will resemble
those of a diode in that potential will vary linearly ,vith distance except
in the immediate vicinity of the grid ,vires. The gradients of potential
will be determined by the ele trode voltages and the tube dimensions.
The currents induced in any electrode can be calculated from the general
relation of Eq. (16.18). To find the current induced in the cathode it
is necessary to know the gradient of pot.ential which exists at the elec-
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tron's location when the cathode is raised to unit potential and the other
electrodes are at zero potential. The potential contours in a triode for
this condition are shown in Fig. 16.8a. The effects of space charge have
been neglected in setting up these profiles. When the gradient of
potential is known, the induced current is simply the product of the
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FIG. 16.8.-Potential contours in a triode
used in determining the currents induced in
the electrodes by the transit of a single
electron.

gradient, the electron charge, and the actual velocity. Since the gradient
of potential is negative in both the cathode-grid and in the grid-plate
region, the induced cathode currents will always be negative. ~'urther

more, the induced current will be greater in magnitude by approximately
the amplification factor of the tube when the electron is in the cathode
grid region than when it is in the grid-plate region.

To determine the currents induced in the grid wires, it is necessary
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to know the potential distribution that results when the grid is at unit
positive potential and the cathode and plate are at zero potential.
The resulting potential profiles are shown in Fig. 16.8b. The induced
grid current will be positive when the electron is in the cathode-grid
region but negative when the electron is in the grid-plate region. The
magnitudes of the currents will be approximately in the inverse ratio of
the cathode-grid distance and the grid-plate distance for a given electron
velocity since the magnitudes of the potential gradient are in this inverse
ratio.

To determine the induced plate current it is necessary to consider
the potential configuration that results when the plate is at unit positive

TABLE X
CURRENTS INDUCED IN THE ELECTRODES OF A PLANE-ELECTRODE

TRIODE BY THE PASSAGE OF A SINGLE ELECTRON

Cathode current Grid current Plate current
Ie I g I p

Electron in
cat~ode-grid -ev(l + J.I.) +evJ.l. evregIon ......

dgp + (1 + J.I.)dcg dgp + (1 + J.I.)dcg dgp + (1 + J.&)dcq

-ev .-.... evJ.l ev
~d:; = (1 + J.l)dcg ~ p.tlc(J

Electron in
gri~-plate -evdgp -evp.dcg ev(dop + p.dcg )regIon ......

dgp[dop + (1 + JL)d.:ol dop[d gp + dcg(l + ,.,,)] dgp[dop + (1 + J.l)dcg]

I""V -ev
!""J

-evJ.l.
~

evp'
== p.dcg = (1 + p)dgp = (1 + p)dgp

potential and the grid and cathode are at zero potential. The resulting
potential profiles are sketched in Fig. 16.8c. Then, by Eq. (16.18), the
induced current to any electrode is simply the product of the electron
charge, the electron velocity, and the corresponding gradient of potential.
The resulting electrode currents are listed, in 'Table X. It will be noted

that the induced electrode current is alwa.ys ;jf the form ~. For any

position of the electron it will also always be true that the sum of the
cathode, grid, and plate current is zero,

Expressions similar to those for the plane-electrode triode can also
be worked out for the cylindrical-electrode triode. These expressions
will be more involved than those for the plane-electrode triode and will
involve the radial position of the el'3ctron. This comes about because
the gradient of potential is ilot constant in the interelectrode spaces.
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For the cylindrical diode, for instance, the induced cathode and plate
currents are

and

Ie = - ev In (r p
)

r rc

I ~ ev In ('0!)
P r rc

(16.19)

(16.20)

16.5. Onset of Transit-time Effects in Triodes. As the frequency of
operation of a vacuum tube is raised, there is finally reached a frequency
at which electron-transit-time effects make themselves felt. These are
evident first with the appearance of a conductive component of the grid
input admittance; i.e., a definite amount of power is required to drive the
grid even though it does not intercept any electrons. In addition, the
mutual conductance and amplification factor become complex and smaller
in magnitude, having a negative phase angle that increases in magnitude
,vith frequency. Of these various effects the appearance of a conductive
component of grid input admittance is most important. This component
is one that at first grows as the square of the frequency. The existence
of this component and its dependence upon frequency and other factors
can be demonstrated by examining the induced grid currents along the
lines indicated in the previous section.

Consider first the grid current induced by the transit of a single
electron from cathode to plate. Ordinarily the grid will be negative,
but above its cutoff value. The electron, however, passes readily through
the space bet,veen grid wires ,vhere the potential is positive. In the
cathode-grid region the gradient of potential is nearly constant at a small
positive value determined by the cathode-grid distance and the mean
potential of the grid plane. In the grid-plate region the potential
gradient is again positive, but at a much higher value. Potential con
tours for a typical condition are shown in Fig. 16.9a. The associated
electron velocities ,vill as a first approximation be considered linear with
time in both the cathode-grid and the grid-plate region because the
potential gradients in these regions are nearly constant. The electron
velocity is as shown in Fig. 16.9b. It is seen to increase linearly with
time at a relatively slow rate in the cathode-grid region and at a rela
tively faster rate in the grid-plate region.

The corresponding current induced in the grid electrode will be as
shown in Fig. 16.9c. The induced current has the form of the product
of the electron velocity as in Fig. 16.9b by the potential as shown in Fig.
16.8b. The sign of the current changes as the electron passes the grid
plane, for here the electron changes its relative direction with respect to
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the grid. The induced-current pulse as a result consists of a positive
triangular pulse followed by a negative trapezoidal pulse. The area~

of the positive and negative pulses will nearly equal plus and minus e

respectively, yielding a net zero direct component as expected from physi
cal considerations.
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FIG. 16.9.-Factors determining induced grid current in a plane
electrode triode.

If it is assumed that there i~ one electron liberated per cycle at the
same time after the maximum value of grid voltage, then the pulse of
Fig. 16.9c will occur once each cycle and will have a fundamental compo
nent of current of the frequency of the exciting voltage. The funda
mental component of current of the induced-current pulse will ha,re the
position shown in Fig. 16.9c. This fundamental component of current
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will change from positive to negative at about the same time as the
induced-current pulse itself changes from positive to negative. As a
result, the fundamental component of grid current will lead the grid
voltage by 90 deg minus some small angle 8. The total grid current
will be made up of the sum of all the induced currents resulting from the
total electron flow. Since the electron current will be nearly sinusoidal
and in phase with the grid voltage, the resultant fundamental component
of grid current will have the same location as that shown for the single
electron of Fig. 16.9c. This is because most electrons will flow at the
peak of the grid voltage, and as a result any summation of pulses will
favor those associated with the peak of the grid voltage.

The magnitude of the re8'Ulting fundamental component of grid cur
rent will be proportional to the product of the mutual conductance, the
frequency, the electron transit time, and the grid voltage

(16.21)

This occurs because the magnitude of the induced current depends upon
the change in the number of electrons in the stream, which in turn depends
upon the product of mutua~ conductance and voltage. The fundamental
component of induced grid current depends upon the frequency, for the
length of the current pulses induced by the individual electrons relative
to the period of the exciting voltage is directly proportional to this factor,
as will also be the area of the pulse. The fundamental component of the
induced grid current will also depend upon the transit time of the electrons,
for this will determine the area of the pulses of current induced by the
passage of each electron.

The grid input admittance ,vill be defined as the ratio of the grid
current to the grid voltage

(16.22)

This admittance will have a conductance component and a susceptance
component. If the grid current led the grid voltage by 90 deg, the input
admittance would be purely imaginary, corresponding to the susceptance
of the cathode-grid capacity, jwCcu • Actually, this will be the larger
component of the input admittance. However, the admittance will
have a conductance component of the form

(16.23)

where 0 is the angle of Fig. 16.9c by which the fundamental component
of the induced grid current fails to lead the grid voltage by 90 deg. For
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(16.26)

small angles, sin f) can be replaced by 8. The angle 0 itself depends upon
the product of the frequency and transit time of the electron,

sin () = () = k 2fT (16.24)

This is evident from Fig. 16.9c, it being remembered that the angle of
a full period is 2r radians and that if the fundamental period is changed
the angle (J \vill be changed even though the electron transit time is not
changed. As a result of Eqs. (16.23) and (16.24), the input conductance
is given approximately by

Go = k aGm f2T2 (16.25)

to a high degree of approximation. 1 Equation (16.25) shows that the grid
input conductance increases as the square of the frequency for a given set of
operating conditions. This is to say that the equivalent input regl,stance
considered to be in parallel \vith the input capacity decreases as the square
of the frequency. Some experimentally determined values are given in
Fig. 16.10. The input resistance encountered here is such that the driving
power required for a given degree of excitation increases as the square of
the frequency. This rapidly becomes a limiting factor of considerable
seriousness.

Although space-charge effects have been neglected in the above
development, their presence will merely change the numerical constant.
If the induced-current pulse of Fig. 16.9c had been drawn to include the
effect of space charge, the positive part of the pulse would have had
the form of the solid curve of Fig. 16.7c instead of the triangular form
C-~'"\n. The shape of the negative portion of the pulse would not have
been much changed. The constant of Eq. (16.25) can be evaluated to
include the effect of space charge. 2 The specific form of the grid con
ductance is

G ~ 411"2 G f2T 2 [9 + 44 Top + 45 (Top)2
o - 180 mJ co Teo T cg

( 17 + 35 Top) 20 (Top)2
-2 Top , Teo + Teo

Teo 1+ V
p (1 + ~)2

Vo Vo

where TCD is cathode-grid transit time, Tgp is grid-plate transit time, Vp

is electron velocity at the plate, and Vg is mean electron velocity in the

J See FERRIS, W. R., Input Resistance of Vacuum Tubes as Ultra-high Frequency
Amplifiers, Proc. I.R.E., vol. 24, pp. 82-105, January, 1936, for an alternative deriva
tion of Eq. (16.25).

2 NORTH, Opt cit.
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grid plane. The numerical value of the constant given by the first term
only of the expression in brackets is approximately 2; that is, ka in Eq.
(16.25) is approximately 2 when T is the cathode-grid transit time.

100,000 .....-------,...-...............,.....,..--r--1--r---p-.....,....--y------r-.....,..-~_r_T'"...,...,

I\.

100\0 100 1000
Frequency- meqacycles

FIG. 16.10.-Input resistance of triodes as a function of frequency.

A number of factors conspire to prevent Eqs. (16.7) and (16.25) from
being fulfilled exactly. The actual situation with respect to input con
ductance is extremely complicated. 1 As a result the above equations

\ "Input Admittance of Receiving Tubes," Tube Department, Radio CorporatioTt
of America~ Harrison, New Jersey, November, 1946.
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indicate only first-order effects. Departures from the simple theory
indicated above are due to the following:

1. The input capacity of a tube is nonlinear with transconductance.
This is a low-frequency effect due to space charge. It con
tributes to a nonlinearity between input conductance and tube
transconductance.

2. Partial resonance between lead inductance and interelectrode
capacity may change apparent input capacity.

3. There may be a negative input-conductance component due to
screen lead inductance in pentacles.

4. There are cold-tube input-conductance components dlle to lead
resistance and dielectric losses that obscure lead-inductance and
electron-transit-time effects. The lead resistance yields an input
conductance component that increases as the five-halves power
of frequency as a result of skin effect and the series combination of
resistance and inductance. Dielectric losses yield a component of
conductance that increases linearly with frequency.

16.6. Transit-time Effects in the Space-charge-limited Diode. In
the discussions thus far, relatively little attention has been paid to the
effects of space charge. The effect of space charge may be expected to
be considerable, particularly in the vicinity of the cathode, \vhere the
space-charge density is very high. Before going into this subject it will
be well to emphasize the distinction between the various components of
current encountered.

The general form of current involves a combination of conduction
current and displacement current.

aE
J = pv + £0

iJt
(16.27)

The first term here is the conduction current and is proportional to
the nUffi'Qer of electrons arriving per second at any reference plane. The
second component of current is the displacement current. This is the
current that flows as a result of changes in the electric-field strength.
In vacuum-tube problems the resultant current will ordinarily be a
combination of conduction and displacement current.. At low frequencies
the current will be nearly all conduction current, but at sufficiently high
frequencies the displacement current will be considerable. This occurs
because of the finite transit time required by the electrons to pass from
one point to another. Thus, if a group of electrons is liberated at a
cathode of a diode, it will be a while before they arrive at the plate.
This does not mean that th.e plate current is zero until the electrons
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(16.28)

arrive. True, the COllduction current will be zero until the electrons
arrive, but in the meantime there will be current in the form of dis
placement current (the induced current of the previous sections). The
total current in the general case is the sum of the conduction current and
the displacement current and is the same at any point in the circuit.
Thus in the diode the current at the cathode is virtually all conduction
current because the field there is zero. At the plate, in the presence of an
alternating voltage, the total current will be the sum of the conduction
current at the plate and the displacement current associated with the
changing electric field resulting from electrons en route to the plate.

To examine the relations in the plane-electrode diode with space
charge it is necessary to know'the equation of motion of the electron in
addition to the general definition of current flow. The equation'of motion
is simply

-eE = e
dV = 100
dx

where e is the magnitude of the electron charge, ~~ is the gradient of

potential, m is the mass of the electron, and a is its acceleration. In
addition, Poisson's equation ,viII be involved to take account of the effect
of space charge upon the potential distribution. For the plane-electrode
case with the various quantities varying in the x direction only,

d· E aE
IV to = to - = PdX (16.29)

,vhere p is the space-charge density and to is the dielectric constant of
free space. Combining Eqs. (16.27) and (16.29) gives

J = to (dE dx + iJE) = to dE (16.30)ax dt at dt

Referring back to Eq. (16.28), it is now apparent that

mda
J = -to --

e dt
(16.31)

The previous five equations are the fundamental ones upon which
all electron-transit-time studies involving space charge are based. Equa
tion (16.27) is essentially Max\vell's definition of current in its general
form. Here it is necessary only to remember that current in general may
be either displacement or conduction or a combination of both. Equations
(16.28) and (16.29) are relatively well known and deserve no particular
comment. Equations (16.30) and (16.31) are the new relat.ions of
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(16.34)

significance. These give current as a function of time only, directly
proportional to the time rate of change of electric field or of acceleration.
Since electric field is a function of both time and distance, the total
derivative with respect to time has involved partial derivatives with
respect to each. Fortunately, the combination of partial derivatives
given in Eq. (16.30) is exactly the total derivative of the electric field.
It is the last of the above equations that is really new and significant.
From this it is seen that if the acceleration or for that matter any of its
derivatives be known then the current can be determined. From this
equation all the dynamic properties of space-charge flow can be
determined.

Let us test the po,ver of Eq. (16.31) by obtaining some basic relations.
Let it be assumed that the current density is made up of a constant
component plus an alternating component of the form.

J = J 0 + J lePt (16.32)

,vhere J 0 is a direct component of current density and J 1 is the magnitude
of an alternating component, p being equal to jw, and it is understood
that v{e are dealing ,vith only the real part of the exponential factor
ePt • This is a well-kno\vn procedure in net\vork theory, and it is used
here because it simplifies the writing of the associated equations.

The differential equation corresponding to Eq. (16.31) becomes

da -e- = - (Jo + J1EPt) (16.33)
dt m£o

Let this now be integrated to obtain the acceleration, velocity, and
distance in a parallel-plane diode under the assumption that the initial
velocity and acceleration of the electrons are zero. With these restric
tions, a first integration of Eq. (16.33) gives

-e [ J 1 ]a = - Jo(t - ta) + - (e Pt - ePta)
mto p _

\vhere ta IS the time ,vhen the electron leaves the cathode.
integration gives

- e [J 0 ( J1 ( ) J 1 ]V = - - t - ta )2 + ~ Ept
- ePta - -p (t - la)ePta

~o 2 p2

A third integration gives

-e ['Jo J 1 (x = - - (t - ta)3 + - ePt - ePta)
'm£o 6 p3

- ~: (t - ta)fPt
• - :; (t - ta)2f Pt.J

A second

(16.35)

(16.36)
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These equations give acceleration, velocity, and distance as a function of
the time, the starting time, and the current-density components. Let the
validity of these equations be tested by examining the direct components.
If the above equations are restricted to the case in which the alternating
component of current density J 1 is zero and if t - ta be considered the
transit time to, then the above equations reduce to

-eJoto (16.37)ao = ---
mEo

-eJolo2
(16.38)vo =

21n£o
-eJoto3

(16.39)Xo =
6mEo

Of these, the last equation will be recognized as giving the proper varia
tion of distance with time. To bring the above equations into a more
familiar form it is desirable to obtain an expression of the voltage differ
ence corresponding to the distance xo. This is readily obtained from the
definition

{xo
V o = - 10 Eo dx

which by virtue of the equation of motion (16.28) is the same as

mj-to

V o = - aovo dt
e 0

This yields

(16.40)

(15.41)

(16.42)
m vo2

Vo = e2

to our small surprise. If now the expression for Vo from (Eq. 16.38)
be substituted in this and the value of to as determined from Eq. (16.39)
be applied, there results

(16.43)

which is Child's la,v as previously given by Eq. (8.7). Apparently
Eqs. (16.33) to (16.35) can be trusted to give some reliable answers if
properly interpreted.

In the same ,yay as the direct current was found as a function of the
direct voltage, the alternating component of current can be found as a
function of the alternating component of voltage. In this case the
electron transit time is expected to be involved, and it is. When the
voltage and current are kno,vn, their ratio gives the equivalent imped
ance, a factor of great importance in tube application problems. The
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(16.44)

(16.46)

(16.45)

derivation of the impedance of a diode whose emission is space-charge
limited has been given many times and is much too lengthy to be included
in the text. I-a The specific formula for the diode impedance is

Z 2 12
R

o
= ~ + {J4 (2 - 2E-~ - {3 - (3E-~)

where {3 = ie, (J being the transit angle from cathode to plate, that is,
8 = 2rfT, where T is the transit time. Ro is the low-frequency dynamic
plate resistance of the diode as determined by the slope of the voJtage
current characteristic. This expression separates readily into real and
imaginary parts corresponding to series resistance and reactance
components.

.!i = 12 [2(1 - cos 0) - 0 sin 0]Ro (}4

X 2 12 .
R

o
= - 7J - (j4. [8(1 + cos fJ) - 2 SIn 8]

Curves of ;0 and io are given in Fig. 16.11 as a function of the transit

angle 8. These components are part of the series representation of
impedance and indicate that the diode impedance is equivalent to a
resistance in series with a capacitive reactance, X being al,vays negative.
Also shown as a dashed curve in Fig. 16.11 is the high-frequency asymptote
of the reactance curve. This has the form of the reactance curve of a pure
capacity. The resistance component drops from a maximum value for
zero transit angle to a zero value for a transit angle of 2?r. After that, it
assumes alternately negative and positive values but never exceeds a fe\v
per cent of the maximum value in magnitude. It is interesting to note
that the resistance changes from positive to negative at transit angles of
2r, 4r, 61r, etc., whereas the change from negative to positive resistance
occurs for transit angles of 3r, 57r, 7r, etc. l'his means that the region in
,vhich the diode resistance is negative is smaller than the region in
,vhich the diode resistance is positive. The negative resistance pre
dicted by the form of Fig. 16.11 for transjt angles between 2'1&' and 3r is
quite real, and special diodes have been made to oscillate by virtue of

1 BENHAM, W. E., A Contribution to Tube and Amplifier Theory, Proc. I.R.E.,
vol. 26, pp. 1093-1170, September, 1938. This article summarizes work in earlier
British publications.

2 LLEWELLYN, F. B., "Electron Inertia Effects," Cambridge, London, 1941 (dis
tributed in the United States by Macmillan). This tract summarizes the work
covered in Llewellyn's numerous papers prior to 1941.

3 MULLER, J., Eletronenschwingungen im Hochvakuum, Hochfrequenz. und
Elektroakustic, vol. 41~ pp. 156-1671MaY1 1933.
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FIG. 16.11.-Components of the equivalent series
impedance of a plane diode whose emission is space
charge-limited. (After Llewellyn.)

this negative resistance. 1 The finite velocity of emission of the electrons
tends to reduce the magnitude of the negative resistance predicted b:r
Eq. (16.45).

The nature of the reactive component of diode impedance is best
understood by examining the imaginary component of the reciproca.~

1.0

0.9

0.8

0.1

0.6
0.5

of impedance, i.e., the admittance. A plot of the real (conductance)
and imaginary (susceptance) components of admittance of a plane
electrode diode whose emission is space-charge-limited is sho\vn in Fig.
16.12. From this it is seen that the susceptance of the diode is closely
represented by that of a capacity in shunt with a resistance for small
transit angles. At lo\v frequencies or small transit angles, the capacitive

· · . · t I b 38 Th t' l' . hsusceptance ratIO 18 given apprOXlma e y y 10· e propor lona Ity "1"lt

1 LLEWELL¥N, F. B., and A. E. BOWEN, The Production of Ultra-high Frequency
Oscillations by Means of Diodes, Bell Sys. Tech. Jour,. vol. 18, pp. 280-291, April,
H)3\),
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transit angle and frequency means that the susceptance can be repre
sented by a fixed capacity. The size of this capacity happens to be ~~

of the cold capacity of the tube. This amounts to saying that the
electron charge acts like a dielectric with a dielectric constant of ~~.

For higher values of frequency and transit angle the susceptance departs
from the low-frequency value and finally becomes asymptotic to the
value corresponding to the cold capacity.
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FIG. 16.12.-Components of the equivalent shunt
admittance of a plane diode whose emission is
space-charge-limited. (After Llewellyn.)

It is possible to \vork out equivalent circuits for the diode admittance
over a large range of transit angles. For lo\v frequencies the parallel
combination of a resistance equal to the plate resistance in parallel \vith a
capacity equal to ~~ of the cold capac,ity works very welL For fre
quencies giving rise to transit angles greater than 90 deg it is best to
refer to the curves of Figs. 16.11 and 16.12.

16.7. Small-signal Transit-time Effects in the Space-charge-limited
Triode. Much of the information obtained in the previous section can
be applied to the case of a triode operating with small signal voltages
and with its emission space-charge-limited. Here it is expected that
there will be something like a diode action between the cathode and grid.
This will influence the input impedance of the tube. Further, it is
expected that the tube capacities will play an important role. In
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addition, it is to be expected that the mutual conductance of the tube
will be changed by transit-time effects. Various equivalent circuits

E have been proposed for triodes operating under
E; ~2~ the above conditions, one of the most successful

Go_.{~A1-22 ~2 being that shown in Fig. 16.13.1 This is aT sec-
'P tion of admittances with an internal generator in

~L the plate lead to represent the effect of the volt
age applied in the grid circuit. The junction of

C the admittances occurs, not on any of the elec-
FIG. 16.13.-Equiva- trodes, but in the grid plane bet\veen the grid
lent circuit of a triode wires. The admittance Y 11 is the admittance
operatin~ at ultra-high between.... the cathode and the grid plane and is the
frequencIes. th . b F· 16 12 f - Isame as at gIven y 19. . or a p ane-
electrode diode. The admittance Y 22 is simply the admittance of the
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FIG. 16.. 14.---8mall-signal transadmittance of a triode as a
function of cathode-grid transit angle. (After Llewellyn.)

plate-grid-plane capacity. The admittance Y g is the capacity from the
grid wires to the grid plan~ and is mu times as big as the plate-grid-plane

1 LLEWELLYN, F. B., and L. C. PETERSON, Vacuum Tube Networks, Proc. I.R.E.,
vol. 32, pp. 144-166, ~arch, 1944..
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capacity. The transadmittance Y 12 replaces the Gm used at low frequen
cies. The transadmittance can be evaluated by an extension of the
arguments used to obtain the diode admittance. On the assumption
that the grid-plate transit time is small compared with the cathode-grid
transit time the transadmittance is given by the curves of Fig. 16.14. 1

The magnitude of the transadmittance is seen to fluctuate with transit
angle, but not excessively. The magnitude never differs from the low
frequency value by more than 25 per cent. This· is apparently due to
something like the bunching action that occurs in klystrons in the pres
ence of space charge ,vhere there is a periodic variation of the effective
bunching parameter. The phase of the transadmittance, however, is
continuously retarded with transit angle. The first minimum of the mag-

11$
c S

FIG. 16.15.-Equivalent circuit of a tetrode at ultra-high
frequencies.

1;2~
19 y; 1 122

(;0-0----tIl~--A.....l____( 2)-2 u__..,;;:..---u-----OOP

nitude occurs for a transit time of approximately one cycle in the cathode
grid region.

With all the elements of Fig. 16.13 given it is a relatively simple
matter to compute the performance of the tube under any conditions.
Thus the predictions of Sec. 16.5 on the input impedance of a triode may
be verified by inspection. The input impedance of the circuit of Fig.
16.13 is -essentially that of the grid-plane capacity in series with the
cathode-grid-plane diode impedance. At low frequencies this acts like
a capacity in series with a resistance. This is readily sho\vn to be the
same as the impedance of a capacity paralleled by a resistance whose
magnitude varies inversely as the square of the frequency.

Multielectrode tubes can be treated by an extension of the ideas
applied above to the triode. Here it is merely necessary to add another
L section for each additional grid to the circuit of Fig. 16.13. Thus the
equivalent circuit of a tetrode is as given in Fig.. 16.15.1 Here the first

1 Ibid.
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branch point A 1 is located in the control-grid plane between wires. The
second branch point A 2 represents the screen-grid plane between wires.
The admittances Y g, Y 22, and Y 33 are the admittances of~ the simple
capacities between adjacent electrodes. Y. is the admittance of the
screen-grid-screen-grid-plane capacity, which is larger than the screen
grid-pl'1te capacity by the screen-grid mu. Y Is is the transadmittance of
the first-grid relative to the second-grid current. Y 12 is the transadmit
tance of the plate current relative to the grid potential.

16.8. Similitude and Scaling in Ultra-high-frequency Tubes. It is
frequently of interest to consider the effect of changing the size of tubes
or of operating given tubes at a different voltage or frequ~ncy. A study
of such changes is well worth while, for it lays a basis for design and also
aids greatly in the understanding of the operation of tubes at ultra-high
frequencies.

It is recognized that there is a relation between voltage, frequency,
and the distance that an electron must travel in a given length of time.
A basic relation between these factors can be obtained from the equation
of motion of an electron subjected to an electric field.

-eE = ma

Dimensionally, this is of the form

e d 2 d 2j2
m= Vt 2 = V

(16.28)

(16.47)

S· e. · 1 . f II h d
2p. I ·Ince - IS a numerlca constant, It 0 ows t at -V IS a so a numencal

·m
d 2f2 .

constant. Essentially, this makes the combination~ V a dimensionless

parameter that applies to the problems of motion. Thus, as long as

the factor dl is constant, no matter what the value of the individual

factors it will always be true that an electron will require the same frac
tion of a cycle to travel corresponding distances. This same conclusion
is arrived at by considering transit angle as being equal to 21rfT, where T
is the transit time. Since the transit time is proportional to the ratio
of distance to velocity or the square root of voltage, transit angle is

proportional to the factor t~, which is simply the square root of the

dimensionless factor given above. Hence to get tubes that will have the
same impedance at any given frequency, if tube a is twice as big as tube
b it must operate at four times the voltage of tube b. Likewise, to keep
transit time constant, it is necessary to build tubes smaller in inverse
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proportion to frequency for operation at a given voltage or operate at
voltages that are higher in proportion to the square of frequency for a
given size of tube.

Other factors besides the transit angle are involved in high-frequency
operation. If the size of tubes is changed, then power-dissipation
capacities are changed. So like,vise are the actual inductances and
capacities of the tube. All these factors may be studied by setting up
some scaling factors with respect to the basic equations that determine
ultra-high-frequency operation. These equations are two, the equation
of motion of an electron and Poisson's equation. Let there be considered
t,vo tubes whose dimensions are in the ratio of D operating at wave
lengths in the ratio of W. Thus the defining relations for D and Ware

D = X2 (16.48)
Xl

and

W = X2 (16.49)
Xl

If now an electron moves bet,veen corresponding points of two similar
tubes in the same fraction of a cycle,

dt2 = W dt l

The equation of motion for an electron in the second tube is

d 2x2
m dt

2
2 = -eEz2

(16.50)

(16.51)

The corresponding equation of motion in terms of an electron in the first
tube is

(16.52)

(16.53)

For these two equations to yield similar paths with the same dependence
upon transit angle at the respective frequencies it is necessary that

E 2 D
E 1 = W 2

Referring now to Poisson's equation in the form of Eq. (16.31),

dE2

J 2 dt2 D
J 1 = dEl = W 3

dt1

(16.54)
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In like manner the ratios of all the critical quantities may be obtained
in terms of the factors D and W. The resulting relations are sum
marized in Table XI below.

TABLE XI
SCALING FACTORS FOR ULTRA-HIGH-FREQUENCY TUBES*

Complete Voltage Wave-length
Quantity Ratio General scaling scaling scaling

W =D W = 1 D = 1

Inductance .................
L2 D lV" D .1L1 lVo

Capacity ...................
C 2 D tv D 1C. WO

Field ......................
E2 D 1

])
1

E 1 lV2 W Ul"2

Voltage ....................
V2 D2

1 D2 1
VI W2 W2

Current density .............
J 2 D 1

D
1

J 1 W3 W 2 wa
Current ....................

12 D3
D3

1
It W3 1 lV3

Power ..................... P2 D5
D5 1

PI WI) 1 W5

Power density ..............
h2 D3 1 D3 1
~ WS W2 Wo

Conductance ...............
G2 D

D
1

(h IV 1 W

*D =~, W =~.
Xl }'1

It is interesting to note that this same table applies for magnetron
tubes, it being necessary only to add a row for the ratio of magnetic-flux
densities. The ratios in the column entitled HGeneral" apply for similar
tubes operating at different frequencies but ,vith electrons moving
between corresponding points in the tubes in the same fraction of a
cycle. The ratios in the column entitled "Complete scaling" apply for
similar tubes \vith dimensions proportional to \vave length, the usual
case. If a tube is simply changed in size and the voltage adjusted accord
ingly but operation is had on the same frequency, then the values in the
"Voltage scaling" column apply. If dimensions are not changed but
wave length and voltage are changed to get the same electronic action,
then the values in the "Wave-length scaling" column apply.

In the case of complete scaling, increased power output is actually
obtained up to the point where one of the requirements indicated by
the table is violated. This will usually be either the current-density
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requirement, which increases as the square of the frequency, or the power
dissipation per unit area requirement, which increases as the square of
the frequency.

In the case of voltage scaling an excellent gain in performance charac
teristics is achieved. Tubes scaled on this basis will usually be limited
either by voltage breakdown or power dissipation. Note that the power
output goes up as the fifth power of the size. The required voltage
goes up as the square of the size. Inductance and capacity go up
linearly ,vith size but will usually be the same percentage of the associated
external values.

Wave-length scaling amounts to operating a given tube at a variable
frequency but changing the voltage to compensate for transit-time effects.
This requires that the voltage be increased as the square of the frequency.
This requires emission-current density that increases as the cube of the
frequency and power dissipation per unit area that increases as the fifth
power of the frequency. Ordinarily, one cannot go very far in this
direction.

16.9. High-frequency Limit of Triode Oscillation. The operation of
power oscillator tubes at ultra-high frequencies is considerably more
complicated than that of receiving tubes. The increase in complexity
results from the fact that the alternating voltages are usually large and
therefore current will flow for only part of a cycle. Electrons flowing at
different times during the cycle will have widely different behavior as
far as transit times are concerned. The general treatment of large signal
effects ,vill be left for the next section, and this section will be devoted
to some observations that can be made in limiting cases.

It is well kno\vn that transmitting tubes ","hether operating as oscil
lators or as amplifiers suffer from a loss of output as the frequency is
raised. Figure 16.16 gives some curves sho,ving the power output
of a number of different oscillator tubes as a function of frequency. All
these curves have the same general shape. At low frequencies the output
is constant. As frequency is raised, the po\ver drops off, slowly at first,
and then very rapidly. Usually the power output ,vill have dropped to
zero within a factor of 10 of the frequend'y at \vhich a decrease in output
is first detectable. Of considerable importance is the observation that
there is a po\ver-frequency limit for tubes of the same type. 1 This is
evident in Fig. 16.16.

Although the curves for different tubes overlap, there is an envelope
that can be drawn to the family of curves as a whole. The basic trend

1 WAGENER, W. G., The Developmental Problems and Operating Characteristics
of Two New Ultra-high Frequency Tl"iodes, Proc. I.R.E., vol. 26, pp. 401-414, ApriI~

1938.
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higher frequencies their output is inherently reduced. This is in accord
\vith the observations made in connection with the scaling values of
Table XI. The envelope for the water-cooled tubes is approximately a

500

1000

2000

is that tubes designed to produce high power are not able to go to as high
frequency as tubes designed for a lower power output. A better state
ment of this effect is that as tubes are designed to operate at higher and

10,000
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straight line with a slope of -4. This is the proper limit for tubes whose
output is limited by a given po",'"er dissipation per unit area. From
the Complete scaling column in Table XI it is seen that the po,ver density
varies as the square of the frequency. Since the actual allowable dis
sipation is fixed by the cooling system, the power must be decreased
inversely as the square of the frequency to keep the dissipation per unit
area constant. In addition, the area varies inversely as the square of the
frequency, and as a result the power output obtainable ,vith a ,vatercooled
tube of optimum design operating at a given fraction of its high-fre
quency limit is expected to vary as the inverse fourth power of frequency.

The air-cooled tubes have a high-frequency limit that varies approxi
mately as the inverse square of frequency. This is not greatly different

\

110

31----+---+----+----'ri---+----+-~---I

1
100 300 500 1000 1700 3000 5000

FrequenCY-I me9~cycJes
FIG. 16.17.-Power output of continuous-wave oscillators as a
function of frequency.
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from the relation that is expected from complete scaling ,vhen the
cathode emission is the limiting factor.

Recent developments in tubes have pushed the high-frequency
envelope appreciably to the right. In Fig. 16.17 is sho,vn the po\ver
output as afunction of frequency of various types of continuous-,,~ave

tubes as of early 1946. 1 Undoubtedly, further advances ,vill push these
limits still farther to the right, but the big gains in this direction "Till
come from the development of ne\v types of operation rather than from a
refinement of conventional tubes.

Not too much is kno\vn about the operation of tubes over the com
plete range of frequencies from a lo,v-frequency range of constant output
t.o a high-frequency limit of extinction. At low frequencies ,vhere the

1 BYRNE, JOHN, Power Limits of Continuous Wave Tubes, Electronics, vol. 19,
p. 91) January, 1946.
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transit time of the electrons is negligible the performance is well under
stood in terms of Class C amplifier theory. As frequency is raised, some
phase shifts are encountered as a result of the finite transit time of the
electrons and the performance can still be estimated. This takes one
out to frequencies ,vhere the output has dropped off to about 80 per cent
of the low-frequency value. As frequency is increased still further,
there are pronounced phase-shift and transit-time effects associated \vith
large alternating voltages and the resulting operation is at best poorly
understood. This covers the frequencies from about 80 per cent to about
5 per cent of the lo\v-frequency output. When the output has dropped
to about 5 per cent of the lo,v-frequency output, the alternating voltages
\vill be quite small and the small-signal theory of Lle\,.-'elIyn, Benham, and
Mueller will apply.

Frequency at Which Efficiency Begins to FallOff. It is of interest
to identify some reference points on the curves of Fig. 16.16. One
such reference point is the frequency at which the output has dropped to
some given percentage of the low-frequency value, say 90 per cent. This
can be done fairly satisfactorily by the application of some simplifying
assumptions.! Let it be assumed that the oscillator is operating Class C
and that the plate-current pulse is a rectangular one which flows for a

quarter of a cycle. Thus let ip = i 1 for - i < 8 < i and i p = 0 for

other angles of the cycle where 8 = wt. Let the corresponding plate
voltage be

(16.55)

The plate power loss for these assumed conditions is as shown in Fig.
16.18.

(16.56)

(16.57)

Let it now be assumed that electron-transit-time effects set in as a
fesult of an increase in frequency and that the only effect is to cause
the plate-current pulse to lag the alternating plate voltage by the angle
wT, ,vhere T is the cathode-plate transit time. The plate loss under
these conditions corresponding to the dotted curVes of Fig. 16.18 will be

1 GAVIN, M. R., Triode Oscillators for Ultra-short Wave Lengths, Wireless Eng.,
vol. 16, pp. 287-296, June, 1939.
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FIG. 16.18.-Effect of transit time upon the
plate loss of a Class C oscillator.

or for small transit angles

W - i1V pO _ i1Vp1 + .~ 2T2
p2 - -- ~ 10 ~l ~ j() W

4 1rv2 2r v 2

The efficiencies for the two cases cited above are

W o - W p1
111 = W o

and
W o - W p2

1]2 = ---~Wo
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(16.58)

(16.59)

(16.60)

(16.61)

(16.62)
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(16.63)

,vhere W 0 is the input po,,~er and W pI and W p2 are the plate losses for
the t,vo cases. Accordingly, the difference in efficiency is

itV plw
2
T2 -0 V pI 2T2

1]1 - '12 = = -- -- W
27r y2 W o 7r V po

which indicates that the decrease in efficiency is proportional to the square
of the frequency, to the square of the transit time, and to the ratio of
peak alternating to direct plate voltage. A further assumption that is
reasonable is that the ratio of peak alternating to direct plate voltage is
0.9. This corresponds closely to the operating condition for maximum
efficiency over a ,vide range. of conditions of voltage, load, and tube
selection. With this assumption Eq. (16.63) reduces simply to

(16.64)

(16.65)V /IlWU = Vpmin = ~~

pG
I
I
IIP.!_~_-__-_-__-_-__----_-.....~/to

Let no\v some voltages be assumed so that the transit time T can
be determined. A representative
operating condition is thatc

......
c
Q)

-+
o

a..
This means that the transit time will
be determined for a potential profile
like that shown in Fig. 16.19. Here

FIG. 16.19.-Potential profile deter- it is assumed that the current flow in
mining low-frequency transit time in
a Class C oscillator the cathode-grid region is space-

charge-limited while that in the grid-
plate region is not. Actually, the presence of space charge will depress
the voltage in the grid-plate region slightly as shown by the dotted
curve, but the error made in assuming that there is no space charge
present in this region will not be great. The cathode-plate transit time
for this condition is

(16.66)secT ~ 3dcg + dgp

cp - 5.93 X 107~ioO
where dCfJ and dQ~ are cathode-grid and grid-plate distances in centimeters,
respectively, and V po is the direct plate voltage in volts.

If now it is desired to determine the wave length at which the
efficiency has dropped 10 per ce!lt from the low-frequency value, then
'12 - 711 is set equal to 0.1, as a result of which

~2 = 47rcTcp (16.67)
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where c = 3 X 1010 cm per sec is the velocity of light. When no\v the
value of T cp from Eq. (16.66) is substituted, it is found that

'\ "'" 20,200(3dco + dop) (16.68)
1'2 == VV pO em

This is the relation that has been sought. It gives the ,vave length at
which the efficiency of a Class C oscillator ,viII have dropped 10 per cent
from its lo,v-frequency value. The assumptions made ,vere that the
plate current was a rectangular pulse of a quarter-cycle duration ,vhich
was shifted in phase but not changed in shape by electron-transit-time
effects and that the grid and plate voltage at the peak of the alternating
grid voltage \vere each one-tenth of the direct plate voltage. While
these assumptions are some\vhat rough, the ans,ver depends upon the
difference between the two quantities arrived at by making the same
assumptions and so the errors involved tend to cancel. The largest error
probably lies in the assumption that the shape of the plate current does
not change. The formula is probably accurate only \vithin 10 per cent
but is still useful in estimating ultra-high-frequency behavior. Inspection
of Eq. (16.68) sho,vs that the lo,ver ,vave-Iength limit of tubes may be
extended by reducing the interelectrode spacings, ,vith the cathode-grid
distance more critical than the grid-plate distance, or by increasing the
plate voltage.

Frequency at Which Oscillation Ceases. Another reference point
on the curves of Fig. 16.16 is the frequency at ,vhich the tube ceases to
oscillate. This is determined by circuit as ,veIl as electron-transit-time
considerations, but ,vith proper design of tubes it is al,vays the electron
transit-time effects that finally dominate in reducing the-output. It may
therefore be expected that whatever mechanism reduces the tube output
is some function of the total transit time from cathode to plate. If this
can be specified in terms of operating conditions at the limiting frequency,
then the extinction frequency can be related to the cathode-plate transit
time by experimental observations.!

Since most oscillators derive their grid bias from a resistor in the
grid circuit, it is expected that as frequencY' is raised and the oscillations
become weaker until finally they cease, the grid-bias voltage ,vill be
reduced until at the extinction frequency it has become zero. Under this
condition the potential profiles along ,vhich the electrons must move will
be as shown in Fig. 16.20. The electrons ,vill prefer to move bet,veen
the grid wires, taking the path that has the most positive potential.
For the case under discussion it ,vill be assumed that the current flow ill
the cathode-grid region is space-charge-limited \vhile that in the grid-

I Ibid.
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plate region is not. This, as we shall see later by a comparison of transit
time formulas, is a reasonable approximation to the true condition. As

a result of these assumptions the potential
P will vary as the four-thirds power of the

distance from the cathode in the cathode
grid region and linearly in the grid-plate
region.

At the extinction frequency, with the
grid electrode at zero voltage, the average

potential of the grid plane will be V P, where
jJ

iTp is the plate potential and Jl is the ampli
fication factor of the tube. With this infor

FIG. 16.20.-Potential profile mation the transit times can now be
determining the high-frequency calculated. The transit time in the cath
limit of triode oscillation. ode-grid region will be

T - 3dco

CD - 5.93 X 107 ~:'P
sec (16.69)

(16.70)

since the transit time in the absence of space charge is the distance divided
by the average velocity and with full space charge is 50 per cent greater.
The transit time for the grid-plate region is

T = 2dgp y~
UP 5.93 X 107 yVp(VJJ + 1)

since the transit time is the distance divided by the average velocity.
Adding the results of Eqs. (16.69) and (16.70), there is obtained

T = 1 rp: (3d + 2dgp
)

cp 5.93 X 107 \}Vp cg yp. + 1
(16.71)

If the oscillator ceases to oscillate when this transit time is some
fraction k of a cycle, then the limiting ,vave length of oscillation is

(16.72)

(16.73)cm

,vhere c = 3 X 1010 em per sec is the velocity of light. In terms of
the specific value of T cp this becomes

Ao = 506 r; (3dcu + 2dgp
)

k vY; V; + 1
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(16.74)

This is the relation for the limiting wave length of oscillation that has
been sought. It gives the limiting wave length in terms of the plate
voltage of the tube in volts, the interelectrode distances in centimeters,
the amplification factor, and the fraction of period required for an
electron to travel from cathode to plate, k. Gavin found that the limiting
total electron transit time ,vas approximately half a cycle, k = 0.5, for a
series of tubes of the radiation-cooled type with single grid and plate
leads brought out the top of the tube. For tubes of the lighthouse type,
to be described, the limiting fraction of the cycle required by an electron
to travel from cathode to plate is grcat8r, of the order of ~~.

It is possible to evaluate the transit time in the grid-plate region
more accurately than ,vas done in Eq. (16.70). The ratio of the grid
plate to the cathode-grid transit time as obtained from the assumption
that there is full space limitation of emission in the cathode-grid region
and no space charge in the grid-plate region is

2 dop
3~

1 + rv;,'iVa
where Va is the effective potential of the grid plane, V p is the plate
potential, dop is grid-plate distance, d co is cathode-grid distance, Top
is grid-plate transit time, and T eu is cathode-grid transit time. This

expression is accurate within a few per cent for values of TToP less than ~.
co

For cases in which the effective grid potential is relatively large compared
with the plate potential a more accurate expression that considers space
charge effects in the grid-plate as well as in the cathode-grid region is
needed. Such an expression has the form 1

(16.75)

This is a cubic equation, which is a little inconvenient to solve, but the
relation between the different variables is represented by the nomographic
chart of Fig. 16.21. It will be recognized that Eq. (16.75) reduces

approximately to Eq. (16.74) when the ratio TTuP is small enough so that
co

the third term on the right-hand side of Eq. (16.75) may be neglected.

1 LLEWELLYN, op. cit., p. 36.
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16.10. Large-signal Effects. The analysis of the previous sections
has been mostly restricted to small signal voltages, ,vith the attendant
assumption that none of the electrons were ever turned back. In actual
tubes these assumptions "rill often not apply because of the large signal
voltages developed. When large signal voltages are developed, a new
set of considerations apply and it is of some interest to examine these
briefly. Unfortunately, the analysis of large-signal effects is so com
plicated that only relatively simple cases can be solved. 1

Transit-time Effects in Diodes. The simplest case of large-signal
effects that can be handled yielding some generally useful information
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FIG. 16.21.-Nomographic chart relating triode transit times in the presence of
space charge to electrode dimensions and voltages as given by Eq. (16.75).

is that of the unbiased diode. Even here, it is not possible to take into
account the effect of space charge because of attendant complications
of the analysis. Accordingly, let it be assumed that the emission is
temperature-limited. This means that the same number of electrons
per second will be liberated ,vhenever the potential gradient at the
cathode is positive. This assumed condition is often realized in pulsed
oscillators, ,vhere the voltages are so extremely high. Of principal inter
est is the behavior of the electrons ,vith regard to such matters as their
transit time, conditions for traveling a certain distance before turning
around, and so on. The voltage will be assumed to be of the form

V(t) = V sin wt (16.76)

1 WANG, C. C., Large Signal High Frequency Electronics of Thermionic Vacuum
Tubes, Proc. I.R.E., vol. 29, pp. 200-214, Aoril. 1941.
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The corresponding differential equation of motion is

V . d2x
e-Sln wt = m-

8 dt 2

517

(16.77)

(16.78)

(16.79]

(16.80)

where s is the distance between cathode and plate of the diode. The
starting conditions are that the initial velocity and acceleration of the
electron are zero. As a result, _a first integration of Eq. (16.77) gives

eV
v = -- (cos Wtt - cos wi)

mws

where v is the velocity of the electron and t1 is the starting time. .A.
second integration gives

~ = ~ ~ 2 (8 COS 81 - COS 81 81 + sin 81 - sin 8)
8 mw 8

,vhere 8 = wt is a transit angle. This equation gives the fractional
distance from cathode to plate in terms of the elapsed transit angle and
the starting angle. Note that as a coefficient of the right side of the
equation there appears the dimensionless parameter of Eq. (16.47).
It is convenient to express the distance s in centimeters and the frequency
in megacycles, in which case Eq. (16.79) takes the form

x 0.232V ( 0 8 + · 8 · 0)- = f~ (} cos 1 - 1 cos Ol Sin 1 - sIn
S me Scm

'rhe behavior of electrons in an unbiased diode is best studied by
plotting their position as a function of time from Eq. (16.79). Such a
plot is given in Fig. 16.22. 1 It looks different from the more commonly
presented figure that results \vhen the voltage is a square wave, but it is
the true representation for the unbiased diode without space charge with
an applied sine \vave of voltage. This figure contains a great store of
useful information from ,vhich many interesting properties of the electron
trajectorie$ may be observed.. Curves are shown for electrons emitted
every 30 deg of the plate-voltage cycle. The most important observation
is that electrons ,viII flo\v only ,vhen the plate voltage is positive or
bet\veen 0 and 180 deg for the sine wave of voltage assumed. In the
second place, all electron curves consist of a straight line with a super
imposed sinusoidal component. The slope of the straight-line portion
of the curve is proportional to the rate of change of voltage with time
at the instant of emission. This makes the slope maximum at the

1 Curves such as those of Fig. 16.22 are readily plotted by graphical means. See
KOMPFNER 1 RUDOLF, Transit-time Phenomena in Electronic Tubes, Wirele3' Eng.,
vol. 191 pp. 2-7, 1942.



518 VAC DUM TUBES

beginning of the sine-wave cycle, zero at the positive peak of voltage,
and negative for the rest of the positive half cycle. Any electrons
emitted during the first half of the positive cycle will eventually reach
the plate, no matter how far distant. Electrons emitted during the
second half of the positive half cycle of voltage may return to the cathode
if they do not strike the plate electrode first. This means that the plate,
no matter how situated, will always receive at least half the emitted
electrons.

The cu.rves of Fig. 16.22 are universal because of the fact that the
distance and the time are expressed in units of frequency, cathode-plate

311"
Z

Ot---F"'~'-='~~~~-"'=:';"~~--r-~~--r--:=Iiii!:::~~=::::::""-~-~-~

o 60 120 180 240 300 360

i+~~6.time ~

~-vC===~ ~~S
FIG. 16.22.-Distance-time behavior of electrons in an unbiased diode without space
charge.

distance, and voltage. Increasing the frequency increases the time
parameter in direct proportion and the distance parameter in proportion
to the square of the separation. Increasing the voltage decreases the
distance parameter inversely as the voltage.

The point at "\vhich any curve of Fig. 16.22 reverses direction is given
by

(16.81)

The locus of the reversal points is shown by a dashed line in Fig. 16.22
up to the curve for the 90 deg electron, beyond ,vhich no electrons will
return to the cathode. The starting time of a grazing electron for any
plate distance, voltage, and frequency may be calculated from the above
relation.
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The current associated with the electron movements of Fig. 16.22

may be computed by summing the quantity e1J for all electrons in transit
s

over a cycle of voltage. This is rather difficult to do analytically because
different conditions hold for different parts of the cycle. Suppose, for
instance, that frequency, voltage, and electrode separation are such
that the electron liberated at the peak of the voltage ,vave (8 = 90 deg)
just grazes the plate. Then in evaluating the current the first electron
requires 150 deg of transit angle to arrive at the plate. During this time
the current increases rapidly. As soon as the first electron strikes the
plate, the current drops, quite rapidly at first, and then more slo,vly
because the contribution to the total induced current made by the
electrons striking the plate is much greater than that of the ne,v electrons
liberated at the cathode. The induced current then drops because the
velocity of the electrons drops progressively from the beginning of the
cycle. After the voltage reverses, some of the electrons reverse direction
and return to the cathode so that some electrons are inducing positive
current while the returning electrons are inducing negative current.
Eventually, the current will become negative but will reach a finite
magnitude and then decrease. Although analytical treatment of the
current is difficult, the shape of the induced-current pulses is rea.dily
obtained by graphical methods.! Some of the resultant shapes of the
induced-current pulses are shown in Fig. 16.23. Curves are labeled with
values of the distance parameter of Fig. 16.22, with x set equal to s,

• fmc 2Scm
2

that IS, values of O.232V· It must be remembered that the diode emis-

sion is temperature-limited, which means that for small transit angles
the current pulse is expected to be square.

The curves of Fig. 16.23 show the degeneration of the square pulse
of current, which exists for short transit times, into a nearly triangular
pulse with a negative tail as the transit angle increases. For very short
values of the determining parameter the current pulse is very nearly
square except for a sharp spike at the front of the pulse, ,vhich rises to
twice the height of the rest of the pulse. This occurs because the initial
induced current is made up of the contributions of a large number of
high-velocity electrons, which are bunched at the front of the electron
stream. When these are retired from action on striking the plate, the
current drops very rapidly because the successive electrons come along
at a lower velocity and are not so strongly bunched. This bunching

1 KOMPFNER, RUDOLF, Current Induced in an External Circuit by Electrons Mov
ing between Two Plane Electrodes, Wireless Eng., vol. 19, pp. 52-55, February, 1942.
Figure 16.23 is from this paper.
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action is evident from the curves of Fig. 16.22, where it is seen that the
electrons liberated at 0 and 30 deg are separated by a time interval, over
most of their path, which is less than half that between any two successive
curves corresponding to electrons liberated at adjacent 30 deg intervals.
As the transit angle increases, the peak is reduced somewhat and the
subsequent current falls off more gradually. At the same time a negative
pulse of current forms, due to electrons falling back on the cathode as
the plate voltage becomes negative.

Transmit-time Effects in Triodes. Although the above remarks have
been restricted to the diode, they are readily extrapolated to cover the
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FIG. 16.23.-Induced-current pulses in an unbiased diode without space charge.

behavior of a triode. For a triode operating Class B the electron behav
ior may be expected to be very similar to that of the diode under the
conditions just discussed. As a result, the distance-time picture for
the cathode-grid region will be very similar to that of the corresponding
portion of Fig. 16.22. On passing through the grid plane the electrons
will encounter a positive gradient of potential that is quite large and
varying sinusoidally with time. The plate voltage ,vill adjust itself in
an amplifier so that it will be minimum when the fundamental component
of plate current is a maximum. This means that the plate voltage lags
the negative grid voltage and the first electrons passing through the grid
plane will encounter a voltage gradient which is higher than the minimum.
As a result, the first electrons passing through the grid will be accelerated
more than the electrons immediately follo,ving. The resultant distance-
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time diagram ,viII take the form sho\vn in Fig. 16.24. Here it is seen
that the plate-current pulse has been stretched out considerably by
\vhat is essentially a debunching action in the grid-plate space. The
length of the plate pulse is determined by the interval between the
times when the first electron enters the grid-plate space till the last
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FIG. 16.24.-Distance-time diagram oi elec
trons in a triode.

electron leaves it. The corresponding plate-current pulse is shown in
Fig. 16.25. For comparison, there are shown in this figure the plate
current and plate voltage that would exist at low frequencies for a given
grid driving voltage. The plate-current pulse is seen to be displaced
and distorted. The displacement takes the form of a phase lag, due both
to the grid-plate transit time and to the debunching action of the field,
,vhich causes the electrons to be progressively retarded throughout the
current pulse. The distortion is due primarily to the debunching action.
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The phase shifts which occur in the plate current because of transit
time effects are sufficiently pronounced so that there is a considerable
difference between the operation of amplifiers and oscillators. In an
amplifier the plate voltage will adjust itself to the phase lag of the plate
current In an oscillator the plate is coupled to the grid so that the two
electrode voltages are ordinarily 180 deg out of phase. As a result, the
output of an oscillator falls off more rapidly with frequency than does
that of an amplifier. This is because in the amplifier the output is
decreased only as the reduction in the fundamental component of plate

___ _ current arising from pulse distortion
but is independent of the phase of
the plate current. In the oscillator
the output is reduced because in
addition to the reduction of the fun
damental component of plate cur
rent the phase of the current
relative to a plate voltage of fixed
phase causes a further lowering of
the output power. As a result, the
general experience is that amplifiers
will give output ,vhen the transit
angle is increased 50 per c en t
beyond that at which oscillators
cease to operate. l

Transit-time Effects in Tetrodes.
Tetrodes have inherently better
operating characteristics than tri

FIG. 16.25.-Distortion of the plate-cur- odes as far as transit-time effects are
rent pulse in a Class C triode amplifier concerned. This is because the con
caused by transit-time effects. trol grid is followed by a positive
screen grid maintained at a fairly high potential. As a result, the elec
trons are accelerated fairly uniformly as they pass the control grid and
the attendant debunching action is much less than is the case ,vith the
triode. In addition, the over-all transit time from control grid to plate
of the screen-grid tube may actually be less than is the case for the triode
because the electron is moving in regions of higher potential most of the
time. In the screen-plate region of the tetrode the electrons will encoun
ter a retarding potential gradient that ,vill exert some debunching action
but that ,vill not be as strong as is the case ,vith the grid-plate region
of the triode. A typical set of distance-time curves of a tetrode is sho\vn
in Fig. 16.26. These curves exhibit all the properties mentioned above.

1 WAGENER, Ope cit.
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To be a satisfactory tube, a tetrode should be built on the principle
of the beam-power tubes, i.e., \vith aligned control and screen grids.
This alignment, along \vith proper interelectrode dimensions, serves two
purposes. (1) It reduces the direct current to the screen. (2) It pro
duces a strong enough potential minimum by virtue of space-charge
effects to suppress secondary emission from the plate. The beam tetrode
has a number of advantages for ultra-high-frequency operation in
addition to the favorable transit-time characteristics mentioned above.
In the first place it is possible to attach separate resonant circuits to
the cathode and control grid on the one hand and to the screen grid and
plate on the other hand. By means of concentric lines or cavity. reso
nators it is possible to separate almost completely the fields of \vhat are
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FIG. 16.26.-Distance-time behavior of elec
trons in a tetrode.

then the input and. output resonators. The only interaction that exists
is through the medium of the cathode-plate capacity, which is inherently
small.

Beam t~trodes built so that they may be connected to concentric-line
resonators have been very successful as ultra-high-frequency oscillators.
Such tubes, known as "resnatrons,"l have"been built to give continuous
power outputs of 60 kw at frequencies of 500 mc. 2,3 In the form of

1 The resnatron, also known as the "Sloan-Marshall tube," was developed at the
University of California. It underwent further development both at the Westing
house Laboratories and at the Radio Research Laboratory during the Second World
War.

2 SALISBURY, W. W., The Resnatron, Electronics, vol. 19, pp. 92-97, 1946.
3 Dow, W. G., G. HOK, and H. W. WALSH, "Very High-Frequency Techniques"

(report of the Radio Research Laboratory), Chaps. XVIII, XIX, McGraw-Hill, New
York, 1947.
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a very large tube operating continuously at voltages of 10 to 15 kv the
resnatron takes advantage of the inherent benefits of voltage scaling.
The large size makes possible water-cooled screen grids, thus removing
what might otherwise be a limiting factor in the tube design. In addi
tion, the high voltage reduces secondary emission since at high enough
voltages the ratio of secondary- to primary-electron currents goes do,vn
again. Evidence of this is found in the fact that scaled-down tubes

FIG. 16.27.-Lighthouse tube--external
view. Type 2C39-plate at top,

designed to give about 1 k,v of continuous po,ver have shown efficiencies
of only about 20 per cent, whereas the large tubes have given efficiencies
of the order of 50 to 60 per cent.

16.11. Disk-seal Tubes. There have recently been developed a
Dumber of tubes known as "disk-seal" or "lighthouse tubes."1,2 Essen-

1 Disc Seal Tubes, Gen. Elec. Rev., vol. 48, pp. 50-51, January, 1945.
2 McARTHUR, E. D., Disc Seal Tubes, Electronics, vol. 18, pp. 98-102, February,

1945.
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tially, the lighthouse tube is a tube with so many leads brought out
f~om a single electrode that the leads become a disk. The external form
of the tube is shown in Fig. 16.27. In small power tubes the plate is
hrought out through a cap at the top of the tube. The grid is brought
out through a disk at the center of the active tube structure, and the
cathode is brought out through a cylinder at the base of the tube. The
electrodes are separated by cylindrical sections of glass, which are butt
sealed to the metal disks with which they are in contact. The internal
electrodes are of a plane-parallel design. The grid is of parallel wires
supported over the hole in a disk in which currents flow radially to the
outside circuit. The cathode and plate are the ends of small-diameter
cylinders, which are supported by the glass tubing. A cuta\vay view

FIG. 16.28.-Lighthouse tube-cutaway
view. Type 2C40.

of a low-power lighthouse tube is shown in Fig. 16.28. In high-power
lighthouse tubes having plate dissipations between 20 and 100 watts,
the position of the plate and cathode is reversed, with the result that the
plate is at the large end of the tube. This permits radiating fins to be
attached to. the plate for air cooling.

By virtue of the electrode arrangeme~.t of lighthouse tubes, lead
inductance is cut to a minimum. Therefore, operation is possible to
much higher frequencies than with tubes having single or even double
,vire leads. Lighthouse oscillators have been made that will operate to
3,000 mc (1946).

A further advantage of the electrode arrangement is that it makes
the tube suitable for use in a double concentric-line structure such as is
shown in Fig. 16.29. The line type of resonator makes it possible to
operate at higher frequencies than the natural resonant frequency of
the shorted tube. This is possible with resonator operation on a three-
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Grid line,

quarter wave-length mode, for which it is possible to go to such high
frequencies that the voltage node is pushed inside the tube. In addi
tion, it is possible to gang the cathode and plate resonators for broad-band
operation. This has been done successfully over a 3 to 1 band of fre
quencies. If minor trimming adjustments are permitted, it is possible
to produce an oscillator that. will operate at 300 to 3,000 mc. Not
shown in Fig. 16.29 are the input and output coupling devices and the
intercavity coupling. These, however, are usually loops or probes of
conventional form and can readily be imagined.

In addition to the somewhat conventional resonator arrangement

Sharl/rul
P~lJ'1s,\

p/d,te oranode line .. CafIJ.ode line
FIG. 16.29.-Double concentric-line oscillator: utilizing a
lighthouse tube.

of Fig. 16.29, various special methods of coupling the cathode and plate
lines for oscillator operation may be used. 1-

4

Lighthouse-tube amplifiers have found some use in the ultra-high
frequency band. Here the operation is that of a grounded-grid amplifier,
with the attendant advantages of low input impedance, high output
impedance, low interaction between input and output circuit, and the
relatively low noise associated with a triode. 5,6 At frequencies below
1,200 mc an amplifier-converter combination using lighthouse tubes is
superior in its noise figure to a crystal mixer. There will undoubtedly
be advances in tube design, which will extend appreciably the present
limits of such tubes.

1 General Electric Company, Electronic Tube Eng. Bull. ET-BI, June, 1945.
2 GUREWITSCH, A. M., Cavity Oscillator Circuits, Electronics, vol. 19, pp. 135-137,

February, 1946.
3 GUARRERA, J. J., Tunable Microwave Cavity Resonators, Electronic Ind., vol.

5, pp. 80-82, March, 1946.
4 GUREWITSCH, A. M., and J. R. WHINNERY, Microwave Oscillators using Disk

Seal Tubes, Proc. I.R.E., vol. 35, pp. 462-473, May, 1947.
5 DISHAL, MILTON, Gain and Noise of Grounded Grid Amplifier at Ultra-high

Frequencies, Proc. I.R.E., vol. 32, pp. 276-284, May, 1944.
6 JONES, M. C., Grounded-grid Radio Frequency Voltage Amplifr~rs,Proc. I.R.E.,

)vol. 32. pp. 423-429, July, 1944.



CHAPTER 17

VELOCITY-MODULATED TUBES, OR KLYSTRONS

17.1. The Bunching Principle. We have seen in the last chapter that
there are some severe limitations on conventional tubes which conspire
to make their operation relatively poor at ultra-high frequencies. The
principal limitations arise from electron-transit time, lumped electrical
reactances, and low-Q resonant circuits. With negative-grid tubes each
of these factors has been pushed considerably beyond conventional
form, and yet the performance characteristics of these tubes leave much
to be desired at the ultra-high frequencies. It was not strange, therefore,
that various investigators sought means of efficiently generating and
amplifying power at ultra-high frequencies by a totally new attack
on the utilization of electronic principles. This new attack, which
resulted in the modern klystron, involved a combination of the elec
tronic-bunching principle and the cavity resonator. Both were neces
sary for the production of a successful tube. The bunching principle
overcame the transit-time difficulties, and the use of cavity resonators
largely eliminated lumped reactances and produced high-Q resonant
circuits.

In negative-grid tubes the transit-time difficulties encountered arise
largely because the electrons in the cathode-grid space start at zero
velocity, hence inherently move slowly, and thus take a large fraction
of a cycle to get from cathode to grid as the frequencies get up into the
ultra-high region. Since the method of producing variations in plate
current is inextricably associated with the large cathode-grid transit
angle, the negative-grid tube always operates poorly if the frequency is
raised high enough. Means are therefore sought for producing varia
tions in current that are not limited by transit time. Such means were
independently conceived by the Heil brothers and the Varian brothers. 1,2

Both these pairs of men proposed devices utilizing an electron beam

1 HElL, A. A., and O. HElL, Eine neue Methode zur Erzeugung kurzer ungedampf
ter elektromagnetishen Wellen von grosser Intensitat (A New Method of Generating
Short Undamped Electromagnetic Waves of High Intensity), Zeit. fur Phys., vol. 95,
pp. 752-773, July, 1935.

2 VARIAN, R. H., and S. F. VARIAN, A High Frequency Oscillator and Amplifier,
.Tour. Appl. Phys., vol. 10, pp. 321-327, May, 1939.

527
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similar to that in a cathode-ray tube and then obtaining current pulses
by periodically varying the beam-electron velocity a small amount
about its average value. When the velocity of the beam electrons is
varied, those which have been speeded up will subsequently overtake
those which have been slowed down. The result is that a short distance
beyond the point ,vhere the electron velocity is varied there MIl appear
bunches of current from which power can be extracted. This in its
essence is the bunching principle. The formation of electron bunches
is illustrated in Fig. 17.1. In this figure there is shown the behavior
of a series of electrons, represented by dots, released at uniform intervals

EMITTER--·-·-.~-~-.-.-~-.-.--.-.-.-.--. . . . . . . . . . . . .

BUNCHER----------------------------
. . .

. :. ;

CATCHER --!"-!-~---;-- - -;----- _..:. ---!--
I •

I •.. ..
~ • i

TIME-
FIG. 17.1.-Elementary representation of bunching
action.

through a cycle of alternating voltage, which is applied between two
closely spaced grids of an input resonator known as the buncher. The
voltage between the grids of the buncher serves to modify the velocity
of the electrons as they arrive from the cathode. Some electrons are
speeded up a little, and some are slowed down a little. The bunching
action resulting from the regrouping of the electrons of different velocity
is evident from the figure. Thus, the application of the bunching
principle utilizes transit-time effects, whereas in negative-grid tubes
transit-time effects are detrimental.

To utilize the current bunches that are formed along the beam of
electrons it is necessary to extract energy from this current stream.
This is done by passing the bunched beam through the grids of an
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output resonator or catcher. As the electrons pass through the grids,
charges are induced on the grids that change in magnitude and sign as
each electron passes through. In effect, this causes the induced charge to
flow through the resonator to produce a current flow that delivers power
to the resonator by passing through its equivalent resistance. Tubes
utilizing the velocity-modulation principle are generally referred to as
klystrons after the Greek verb "klyzein," expressing the breaking of
waves on a beach.

The physical form of the klystron has been described briefly in Sec.
2.7. Further information with specific reference to klystron amplifiers
is given in Sec. 17.5. The klystron differs from negative-grid tube
amplifiers and oscillators in two respects. First, the current pulses are
produced by a velocity variation rather than by an intensity variation.
Second, energy is extracted from the current pulses by the charges induced
on passing the beam through a short region of varying field instead of a
long one. Furt!lermore, the extraction of energy does not require the
electrons to strike the electrodes attached to the resonator. It is not
always recognized that energy is extracted from electrons in a negative
grid tube by forcing the electron to move against an alternating compo
nent of electric field, but this is the case. Electrons in a negative-grid
tube will arrive at the plate with velocities which are on the average less
than those which they would have had if no alternating component of
electric field were present. The residual energy represents a loss and
appears as heat liberated at the plate electrode. The difference between
the direct power input to the tube and the heat liberated at the plate
appears as useful output. In the klystron the electrons that have passed
through the catcher grids emerge with less energy on the average than
they would have had if the beam had been unbunched. The difference
in energy goes into useful r-f power. The residual energy appears as
heat on a collector electrode.

17.2. Cavity Resonators. The desirability of extracting energy from
electrons by passing them through a short region of alternating electric
field, which as we shall see leads to greater efficiency vi conversion of
energy, requires the use of cavity resonators. The outstanding charac
teristic of these devices is that current flow and associated alternating
components of field are entirely internal to the resonator. 1•2 A con
centric-line resonator in which the inner conductor is shorted to the outer
at one end and which is coupled by a small capacity gap to the outer

1 HANSEN, W. W., A Type of Electrical Resonator, Jour. Appl. Phys., vol. 9,
pp. 654-663, October, 1938.

2 HANSEN, W. W., and R. D. RICHTMYER, On Resonators Suitable for Klystron
Oscillatorst Jour. Appl. Phys., vol. 10, pp. 189-199, March, 1939.
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conductor at the other is one form of cavity resonator. Such resonators
have already been referred to in the discussion of grounded-grid amplifiers
and oscillators utilizing lighthouse tubes. Such a shorted concentric-line
resonator will resonate when the capacitive reactance of the gap equals
the inductive reactance of the line and hence if the gap is small will
oscillate at lengths somewhat less than ~i, ~4, %, etc., of a wave length.
In such a resonator the electric and magnetic fields will be totally confined
to the interior of the resonator. In addition, if the wall thickness is
large compared with the skin depth,l as it usually is, the currents asso
ciated with the fields will flow in a thin layer on the interior conducting
surfaces of the resonator-no currents will flow on the outside of the
resonator. The electric and 'magnetic fields in such a resonator will be
established 90 deg out of time phase. As a result, when the magnetic
field is a maximum, the electric field is zero, and vice versa. The total
energy stored in magnetic and electric fields at any point on the cycle is
very nearly constant over a period of a cycle or two. The total stored
energy of a freely oscillating resonator decreases exponentially over long

periods of time and drops by a factor of 2.718 in a time of ~ cycles.

Electric- and magnetic-field components and associated voltages and
current likewise decrease exponentially with time in a freely oscillating
resonator. All the currents, voltages, and field components will decrease

1 "Skin effect" is a term applied to the tendency of ultra-high-frequency currents
to flow in a layer on the surface of a conductor. This comes about because of the
tendency of the current to flow in such a way that it is encircled by the fewest number
of magnetic-flux lines. Thus with circular conductors the current tends to flow on the
surface, and hollow tubes are just as good conductors at sufficiently high frequencies
as are solid conductors. Since the penetration of current at 6.5 me is only 0.001 in.
in copper and is less at higher frequencies, most skin-effect problems for ultra-high
frequencies can be solved by assuming that the surfaces are plane, i.e., that the radius
of curvature of the surface is much greater than the skin depth. For plane-surface
conductors the relations are relatively simple (see WHEELER, H. A., Formulas for the
Skin Effect, Proc. I .R.E., vol. 30, pp. 412-424, September, 1942). The current density
drops off exponentially into the conductor, and the effective skin depth is defined as

that depth at which the current density is 2.;18 of the surface current density. The

formula for skin depth is d = (1rfpq) -~ meters, where p, is the permeability in mks units
and fr is the conductivity of the material. For copper this reduces to 2.57 X 10-3f-~~

in. The corresponding surface resistivity is R = (1r'fp,p) ~2 ohms per unit square, where
p is the volume resistivity in ohm-meters and other units are mks. For copper this
reduces to R = 2.61 X 10-4f m)2 ohms. The direction of current flow is always
parallel to the surface and directly proportional to the strength of the tangential
component of magnetic-Bux density at the surface.
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by a factor of 2.718 in a time of g cycles. Another characteristic of a
1T

concentric-line cavity resonator is that the magnetic-flux lines always
encircle current, ,,~hether this be in the form of conduction or displace
ment current (displacement current is equal to the time rate of change
of electric field nlultiplied by the dielectric constant).

So far, all the remarks on closed resonators have been confined to
concentric-line resonators. Many other closed or cavity resonators are
possible. It is possible to get electromagnetic-field resonances that
exhibit all the above-mentioned characteristics in simple cavities such as
cubes or cylinders or spheres. These have limited usefulness for elec
tronic purposes, for it is not possible to shoot an electron through such
pure cavities in a sufficiently small fraction of a cycle to secure an efficient
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FIG. 17.2.-Reentrant cavity resonators.

energy exchange bet,veen the field and the electron. This is because the
dimensions of pure cavities are relatively large compared ,vith a \vave
length. The diagonal of a cubical resonator, for instance, is equal to
the ,vave length of oscillation for operation on its lowest resonant fre
quency. For this reason, the pure cavity resonators find their principal
applicatioI! in such devices as wavemeters and filter elements rather than
in vacuum tubes. For tube applications, cavity resonators that are
reentrant, i.e., have internal projections f{om the ,valls, are of most use
because this form produces a very intense electric field, concentrated in a
small region, through ,vhich it is convenient to shoot electrons. Some
typical resonators of this kind are shown in Fig. 17.2. The resonators
a, b, and c, shown in this figure have the same resonant frequency.
Extreme forms such as a and c may be considered equivalent to coaxial
and radial lines, respectively, with capacity loading! and may be studied

1 RAMO, S., and J. R. WHINNERY, "Fields and Waves in Modern Radio," pp. 404
411, Wiley, New York, 1944.
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(17.1)

by conventional transmission-line formulas. Intermediate forms such
as are shown in Fig. 17.2b can be analyzed only by more powerful
methods. 1,2 The electric field is almost entirely confined to the resonator
gap. The shape and location of the electric- and magnetic-flux lines
are shown in Fig. 17.2d.

Every cavity resonator has an infinite number of resonant frequencies.
Of these the lowest frequency of resonance is usually that of most interest.
In terms of response to a sinusoidal excitation, resonance occurs when
equal amounts of energy are stored in the electric and magnetic fields on
successive quarter cycles. At the frequencies for which this occurs the
impedance, or ratio of equivalent voltage to equivalent current, ",,,ill be a
maximum at any point in the resonator. In terms of th~ transient
response to a shock excitation, currents and voltages will occur as a
combination of exponentially damped sine waves, provided only that
the losses are not excessive. The resonant frequencies are the frequencies
of the individual damped-sine-wave components. In terms of field
theory there will be certain solutions of the wave equation that fit the
resonator shape at distinct frequencies. These frequencies are the
resonant frequencies. For certain simple cavities the shapes of these
fields are readily found, but in general they are difficult to find.

The longest resonant wave length of a resonator such as that shown
in Fig. 17.2a may be determined quite closely by solving for the frequency
for ,vhich the capacitive reactance of the gap equals the inductive react
ance of the shorted transmission line formed by the rest of the resonator.
The formula for the resonant wave length is approximately

~ = 2-trrl~ l In ~
2d T1

for dimensions as in Fig. 17.2a. This formula gives the resonant wave
length to within about 5 per cent for resonators of the shape shown in
Fig. 17.2a but will give values that range from 60 to 80 per cent of the true
value for resonators of the shape shown in Fig. 17.2b.3 I t will be observed
from Eq. (17.1) that the resonant wave length is proportional to the
linear dimension of the resonator. This proves to be a general property
so that the resonant wave lengths of geometrically similar cavity reso-

1 HANSEN, W. W., On the Resonant Frequency of Closed Concentric Lines, Jour.
Appl. Phys., vol. 10, pp. 38-45, January, 1939.

2 HAHN, W. C., A New Method for the Calculation of Cavity Resonators, Jour.
Appl. Phys., vol. 12, pp. 62-28, January, 1941.

3 Curves giving the resonant wave length of resonators having the approximate
shape of that in Fig. 17.2b are given in "Microwave Transmission Design Data,"
pp. 200-204, Sperry Gyroscope Company, Brooklyn t 1944.
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nators of different sizes are directly proportional to the size of the reso
nator. Resonators of the general shape shown in Fig. 17.2c may be
treated by radial-transmission-line theory. I __

In cavity resonators it is difficult to identify· the' lump~d
reactance elements that are apparently involved. This occurs because
the fields are distributed more than they are grouped; i.e., there are not
specific regions within the cavity within which the electric field exists
alone and there is no magnetic field, and vice versa. As a ,result, it. is
more convenient to express the resonator characteristics in terms of its
Q, shunt resistance, and resonant "\vave length'instead of its inductance~

capacity, and resistance. Some more general definitions of circ~i~

parameters are therefore required. The Q of a cavity resonator~~ o~

reciprocal sharpness of resonance, is most conveniently defin_ed in, terms
of the transient response to shock excitation. As previously mentioned,

the fields within a resonator decay by a factor of 2.718 in a time of g
1r

cycles. Thus the time variation of any component of field is given by

-~ (2-rrt)E(t) = EIE QTo sin To (17.3)

(17.4)

where To is the period of oscillation frequency. This is seen to correspond
to the equation for the voltage decay in a high-Q series resonant circuit
that has the form

V(t) = VIE-:1 sin (~t)

Upon substitution of ;;~o for Q, Eq. (17.4) may be obtained from Eq.

(17.3) with the further recognition that the equivalent voltage of a
cavity resonator is commonly taken as the line integral ,of the electric
field along the line of maximum field strength. The· stored electrical
energy associated with a transient decay in a resonator will vary as the
square of Eq. (17.3) since the energy stored in the electric field is obtained
by integrating the square of the electric 'field throughout the volume
of the resonator.

_ 2rt (2-rrt)
Se(t) = SelE QTo sin2 r; (17.5)

This is seen to have twice the frequency and to decay exponentially
at twice the rate of the field. Likewise, the energy stored in the magnetic
field will be similar in form but shifted 180 deg in phase.

1 See RAMO and WHINNERY, loe. cit.
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2rt (2 t)
8...(t) = 8m1E- QT. COS2 ~ (17.6)

The total stored energy is the sum of the energy stored in the electric
and magnetic fields and is given by

2rt

B(t) = Be(t) + 8m(t) = etE - QTo (17.7)

'rom which it is seen that the total energy stored in the fields decays

by a factor of 2.718 in a time of ~ cycles. The decay in this case is a

simple exponential one. If the rate of change of stored energy with time
be obtained by differentiatiiJ.g Eq. (17.7) with respect to time and
solving for Q, there results J

(17.8)

(17.9)

which may be written in words as

2r X energy stored
Q = energy loss per cycle

This last is probably the most fundamental definition of Q that can be
written and serves as a basis for the calculation of the Q of cavity reso
nators.! The energy stored in the field is most readily calculated from
the peak value of the energy stored in the magnetic field. Likewise,
the loss per cycle can be calculated from the ohmic losses associated with
current flow, which is directly proportional to the tangential component
of magnetic field at the inner surface of the resonator. The unloaded
Q's of cavity resonators will be quite high, for the current flow associated
with the fields is distributed over a large surface. The Q's of pure
cavities (about 25,000 at 3,000 mc) are about ten times as high as those
of reentrant cavities as shown in Fig. 17.2. The Q's of reentrant cavities,
in turn, are at least ten times as high as those of resonant circuits con
sisting of lumped inductances and capacities. The Q's of loaded cavities,
i.e., cavities supplying power to an external load, may be calculated
from Eq. (17.9) if the energy loss per cycle be considered as the sum of
the energies delivered to the walls of the resonator and to the external
load. In most applications the energy per cycle supplied to the external
load will be many times that to the cavity itself, and as a result, the Q of
a loaded cavity is much lower than that of the cavity ,vhen not loaded.

1 HANSEN, W. W., A Type of Electrical Resonator, Jour. Appl. Phys., vol. 9, pp.
654-663, October, 1938.
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Another circuit parameter that is convenient in describing cavity
resonator characteristics is the equivalent shunt, or parallel, resistance.
It is possible to talk about equivalent shunt resistance in terms of an
equivalent voltage and the po\ver supplied to the cavity walls and load
by the fields. This is done in preference to the usual procedure of defining
resistance as a ratio of voltage to current, for it is relatively more difficult
to define an equivalent current than to determine the power consumed.
The equivalent voltage is logically taken as the product of the negative
electric field in the reentrant-cavity gap and the gap spacing. It should
be pointed out that this is not a true voltage but merely an equivalent
voltage, for the energy interchange between an electron crossing the gap
and the field would be the same as for the low-frequency or direct
voltage case only if the electron were able to cross the gap in zero time.
Since the frequencies involved in microwave generators are extremely
high and the velocity of an electron is ordinarily only a fraction of the
velocity of light, the electron will generally take an appreciable part
of a cycle to cross the gap and the energy change of the electron will be
somewhat less than the corresponding direct-voltage value. Nevertheless,
the concept of an equivalent voltage defined by

v = -Ed (17.10)

where E is electric intensity in the gap and d is the gap spacing, is an
extremely useful one. The shunt resistance of a reentrant cavity
resonator is given by

V 2
R Sh = ----------::-

2 X power consumed
V 2

R sh = 2P

(17.11)

(1~.12)

from the usual power relation, where P is the power consumed by the
resonator walls and load and the factor 2 results from the use of peak
rather than rms-voltage values. Equation (17.12) is a fundamental
definition of shunt resistance that is consistent with lumped-reactance
circuit formulas. The shunt resistance may also be calculated from the
fields for a cavity resonator. As \vith th~ Q, the shunt resistance of a
loaded cavity is lower than that of the unloaded cavity because of the
fact that the po\ver loss includes the po\ver delivered to the external
circuit as well as that consumed in the cavity walls. The shunt resistance
of pure cavities at frequencies of 3,000 mc is of the order of megohms.
The shunt resistance of unloaded reentrant cavity resonators is of the
order of hundreds of thousands of ohms at the same frequency. The
shunt resistance of a loaded reentrant cavity resonator is likely to be cf
the order of tens of thousands of ohms, depending upon the degree of
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loading. These values are much higher than can be achieved' with
lumped reactance circuits at this frequency.

Whet! the resonant frequency, Q, and shunt resistance of a cavity are
known, its behavior in the vicinity of resonance is completely determined.
The imp~dance of a resonant cavity in the vicinity of resonance is given
4llproximately by

(17.13)

where R ah is the shunt resistance at resonance and 0 is the fractional
deviation from resonance.! It is sometimes of interest to determine the
eqJJivalent series resistance, iRductance, and capacity from the resonant
frequency, Q, and shunt resistance, though too much significance should
not _be attached to these equivalents. By analogy with the low-frequency
relations in a closed series R,L,C 'circuit, the equivalent series elements are

Equivalent series resistance

Equivalent inductance

Equivalent capacity

R

L = R Bh

woQ

Qc=--
wORsh

(17.14)

(17.15)

(17.16)

where Wo is the equivalent resonant angular frequency. Because of the
fact that the circuit elements are not lumped, equivalent values calculated
by all the methods possible will not agree. For pure cavities it is found

1 This is arrived at by assuming that the circuit is equivalent to the parallel com
bination of a resistance equal to the shunt resistance, a lossless inductance, and a loss
less capacity whose resonant frequency is the same as that of the cavity. The

impedance of this parallel combination is 1 .1 1 ,which may be written as

-R + JWC + -:-Lsh JW

1 +iR.h(wC - w~)

~~ce 08' ::;= Tie and Q = R.hwC, the impedance can be written as R.h[ ( 2]·
v 1 +iQ 1- :0)

If now ~ 'be replaced by 1 + 0, the denominator expanded into a series, and only the
Wo

prst-power term of 0 r~t~jp.~d, th.~Il Eg. (17, 13) re~ults.
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that the equivalent capacities as given by various arbitrary definitions
differ between themselves b~r 50 per cent from a mean value which is
about 50 per cent of the low-frequency value. 1 In reentrant cavities the
difference bet\veen the different values possible will be less, say 10 per
cent deviation from a mean value that is approximately 80 per cent of the
lo,v-frequency value.

This has been something of a digression on the subject of cavity
resonators, but it has been desirable because of the necessity of using
klystron circuits in which the electric field appears only between two
closely spaced surfaces. Since only cavity resonators exhibit this
property in anything approaching its ideal form, an understanding of the
principal properties of such resonators is necessary before undertaking a
complete discussion of klystron principles.

17.3. Mechanism of Energy Interchange between Electrons and
Cavity Resonators. In klystron amplifiers and oscillators, resonators of
the reentrant type are most extensively used. In such resonators, the
gap surfaces are made as grids instead of solid conducting material, and
electrons are shot through the spaces in the grids, with the result that
the electrons will interact with the electric field which exists bet,veen the
grids. The grid structures are shown in Fig. 17.2. The grids may consist
of a fine mesh of wire that will give about 80 per cent electron transmis
sion. Those electrons which hit grid wires will be retired from operation
and give up their kinetic energy in the form of heat. In high-power tubes,
\vhere the heating from intercepted electrons may be appreciable, grids
are sometimes made of copper strips arranged like the spokes of a wheel
but \vith the center of the wheel cut out so that the strips are supported
only from the outside of the grid aperture. For minimum interception
of electrons such strips should present their thin edge to the oncoming
electrons.

When an electron enters the space between grids, the lines of flux
associated with the electron charge ,vill terminate almost entirely on the
grid conductors. As an electron moves from the first to the second grid,
at first m~st of its flux lines will terminate on the first grid, where they
will induce a positive charge. This situation is sho\vn in Fig. 17.34'.
As the electron advances to\vard the second grid, relatively less charge
will be induced on the first grid and relatively more induced charge will
appear on the second grid, as shown in Fig. 17.3b. In effect, the passage
of an electron between the t,vo grids causes a positive charge equal in
magnitude to the electron charge to move from the first to the second
grid. This transfer of charge must occur through the resonator circuit.

1 RAMO and WHINNERY, op. cit.
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(17.17)

In the previous chapter it ,vas shown that the charge induced on one vf
two parallel plates between which an electron is passing is

ex
q2 = d

In the case of the electron passing through the grids of a cavity resonator
this is the charge induced on the second grid when the distance between

fa)

(6)

FIG. 17.3.-Charges induced by an electron
moving between resonator grids.

grids is d and the distance from the first grid to the electron is x, as shown
in Fig. 17.3. The charge induced on the first grid is

(17.18)

Since the induced charge results from electric-flux lines of the electron
terminating on the grids, it must be true that

(17.19)

which it obviously does, as may be seen from the previous two equations.
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q
I

•
FIG. 17.4.-Charge induced by an
electron moving between resonator
grids as a function of time.

(17.20)
ev
di(t)

Since the electron will move between the grids with a nearly constant
lelocity, the charge induced on the second grid will increase uniformly
with time, as shown in Fig. 17.4. It was also shown in the previous
chapter that the current associated with the transfer of induced charge
from one plate to the other has the
value

This same value is obtained if the cur

rent is defined as az2 and the value of

this derivative is obtained from Eq.
(17.17). The current given in Eq.
(17.20) represents a current flowing
from the first to the second grid since
the associated charge transferred is positive. Curves of i(t) as a fune...
tion of time are given in Fig. 17.5, in which the time required for the
electron to move between grids is represented by T g • As far as current
production goes, the result is the same as though an electron initially at
zero velocity suddenly acquired a velocity v and traveled to the second

i(t) ------ .... -r
e~/d

0: Tgl
J

,
I
I
J
~4

I
I
I
I
I

r:rt) e~2lcl
I

1
I
I
I

~
0: Tgz

I

t---~~

Tgj= 2.7'g2 ~ (Jz =201 i

FIG. 17.5.-Induced current resulting from pas
sage of an electron between resonator grids.

grid, where it was stopped. The current form of Fig. 17.5 is also seen
to be that determined by the slope of the charge function of Fig. 17.4.
The shape of the induced-current pulse is independent of the intergrid
transit time and the voltage between grids, provided that this is not
excessively high. Thus a slow electron will induce a rectangular pulse of
current that is relatively small in ma~itude but long in duration. A
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fast electron will induce a rectangular pulse of current that is large in
magnitude but short in duration. The area under the induced-current
pulse is numerically equal to the charge of the electron and hence must
-be the same for electr-ons of any speed.

Since the electron stream has a current density that is periodic ,vith
time in a period T 1 , there will be a fundamental component of resonator
current associated with it. If one electron arrives at the same point in
every cycle, it will produce rectangular pulses such as those of Fig. 17.5,
,vhich are periodic in a time T 1 corresponding to the r-f cycle. The
fu~damentalcomponent of t~is current is given by Fourier series analysis
as

· (1rTo)
2e

S1n K
I Tl = -T T (17.21)

1 1r 0

'K
where IT! is the fundamental component of current flowing through the
.resonator and the other symbols have their previous significance. Let

(17.22)

(17.23A

A

Og
2

he the ratio of the fundamental component of current for a finite transit
angle 8y to that for a zero transit angle for the case of a pulse created by
the passage of a single electron each cycle between the grids, ,,,,,here 00

is the intergrid transit angle of the electron in radians, 21r radians cor
responding to the period T 1 of the radio frequency considered. The
factor A is the function encountered in Eq. (15.89) and plotted in Fig.
15.40 for the ratio of d-c to r-f deflection sensitivity of electrostatic
deflection plates in a cathode-ray tube and "rill not be replotted here.
It has a maximum value of unity for zero transit angle and first falls to
~ero for a transit angle of 27r radians.

The power delivered to the resonator by the periodic transit of a
sIngle electron when the resonator is tuned to resonance at the frequency
~corresponding to the period T 1 is

p = Ir1V 1

2
watts (17.24)
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when the voltage gradient is in a direction opposite to that of the electron
flow, i.e., when the voltage exerts a force on the electron in the direction
opposite to its motion, and for which condition the fundamental compo
nent of induced resonator current and the resonator voltage are 180 deg
out of phase. In Eq. (17.24) the values of current and voltage are peak
rather than rms. The above value of power has the value

p = eV l A
T1

When the grid transit angle is negligible, the factor A is unity and the

1· d t h . eV 1 It· h h fA'po\ver supp Ie 0 t e resonator IS K' IS seen t at t e actor IS

therefore one which measures the efficiency of energy transfer; as such,
it will be extensively used in subsequent analysis. It is frequently
referred to as the beam coupling coefficient. It should be noted that the
value of A given in Eq. (17.22) is only a first-order approximation which
has assumed that the velocity of the electron has not changed in moving
between the grids. Actually, the velocity of the electron will change
as energy is extracted from it.! A more rigorous analysis leads to the
same first-order results as those given above. 2

In an actual tube a fairly continuous stream of electrons passes
through the resonator grids. Each electron of this stream induces a
rectangular pulse of current that flows through the resonator. The reso
nator current will therefore have the same form as the beam current as a
function of time except that the magnitude of any component will be
reduced by the factor A computed for the corresponding frequency.

17.4. First-order Bunching Theory. The general picture of the
bunching principle has been given in the first section of this chapter.
It no\v remains to_ give a quantitative analysis of the effects associated

1 Actually, the velocity of an electron \vhile crossing the resonator gap will be a
constant plus a sinusoidal variation in accordance with

[
Tl VI (. .)J

v = Vo 1 + 47J"T (}V 0 SIn wte - SIn wt

where tx is the time at which the electron enters the gap, the gap voltage being.
assumed to be VI cos wt, T 1 is the period of the r-f gap voltage, and T () is the gap transit
time of an unmodulated electron. Maximum energy will be extracted from the

electron when it enters the gap at a time ~. before the negative peak of the gap voltage.

Under these conditions the induced current will have the form shown by the dotted
curves of Fig. 17.5.

2 BLACK, L. J., and L. P. MORTON, Current and Power in Velocity Modulated
Tubes, Proc. I.R.E., vol. 32, pp. 477-482, August, 1944.
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with this principle. The bunching principle was studied by the Heil
brothers, but their work was confined to numerical and graphical com
putations on certain special kinds of operation. I The first satisfactory
analysis of bunching was made by Webster, whose work has formed the
basis for virtually all the subsequent work in this field. 2,3 Webster's
attack on the subject has been considerably enlarged by Hansen, Hahn,
and Feenberg in this country, by Benham, Hartree, Petrie, Strachey, and
Wallis in England, and by Hollman, Briiche, and Recknagel in Germany.

The general picture of the bunching action of a set of resonator grids
is well illustrated by a distance-time diagram (attributed to L. M.
Appelgate). Let the problem under consideration be formulated
as follows: A beam of parallel electrons which have been accelerated
through a potential of V o volts is passed through the grids of a~ resonator
across which there appears a voltage VI sin wt. Let the resulting electric
field be parallel to the electron motion. Those electrons \vhich pass
through the resonator gap at the time the alternating voltage has its
maximum value will emerge with an energy corresponding to Vo + V 1

volts if the grid transit angle is sufficiently small. More exactly, they
will emerge with an energy corresponding to V o + A V l if the grid transit
angle is appreciable. This occurs because the beam coupling coefficient
A given by Eq. (17.22) applies whether energy is transferred from the
electron to the resonator, or vice versa. Electrons passing through the
grids when the r-f voltage opposes the electron motion will emerge vlith
an energy corresponding to V o - A VI volts. In general, they ,vill
emerge with an energy corresponding to V 0 + A VI sin wta, ,vhere ta is the
time at which the electron passes the midplane of the resonator gap

Since the velocity of an electron is proportional to the square root
of the voltage through \vhich it has been accelerated, the velQcity ,vith
which an electron emerges from the first, or bunching, resonator of a
two-resonator klystron ,vill be

11 + AV1 .Va = Vo ~ V 0 SIn wt (17.26)

In all subsequent work the numerical subscripts will be associated ,vith
the corresponding frequency components; thus Vo is the d-c component
of velocity, and VI is the fundamental r-f component of voltage. The
letter subscript a will refer to the first-resonator gap transit, and the

1 HElL and HElL, op. cit.
2 ",TEBSTER, D. L., Cathode-ray Eunching, Jour. Appl. Phys., vol. 7, pp. 501-508,

July, 1939.
3 WEBSTEn, D. L., Theory of Klystron Oscillations, Jour. Appl. Phys., vol. 10,

pp. 864-872, December, 1939.
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letter subscript b will refer to the second-resonator gap transit. Let

the symbol a be used to designate the excitation-voltage ratio ~~, which will

ordinarily be less than unity. The product Aa is known as the depth
of modulation, since it is the ratio of the peak amplitude of velocity
modulation in volts to the beam voltage. Then if a is small, say less

t
A~

Aa= va =Q234

AaTo
K=-

2

K=/.84 ---r-,~"7';

2T

.,...,...,...~--Opfimum

Time~

(17.27)

than 0.2, the radical of Eq. (17.26) is represented \vithin a few per cent by
the first t,vo terms of its binomial-series expansion,

Va "oJ Vo (1 + ~a sin wt)
From this equation it is seen that for a small excitation-voltage ratio
the velocities of the electrons emerging from a bunching resonator have
a value which is a constant plus a factor which is sinusoidal with time.
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It is instructive to make a chart that shows hOlY this variation in l1rst
resonator velocity affects the subsequent grouping of electrons. Such
a chart is sho\vn in Fig. 17.6. In this chart, distance is plotted vertically,
the time is plotted horizontally. The distance-time representation of
any electron moving in the field-free region outside of the bunching
resonator grids ,vill be a straight line whose slope is proportional to its
velocity. The horizontal axis of this chart corresponds to zero distance
from the first-resonator grid, and electrons are assumed to leave this
grid at the uniform rate of 40 electrons per cycle. Shown along the
horizontal axis is a sine wave corresponding to the r-f voltage between
the resonator grids. Electrons that pass through the grids when this
voltage is zero will be represented by lines that have a slope corresponding
to the original velocity of the electrons, ,vhich has been undisturbed by
passage through the resonator at this point of the cycle. All other
electrons will have either greater or smaller slopes (velocities) than the
undisturbed electrons. Those electrons "vhich pass through the resonator
when the r-f voltage is negative, i.e., has its gradient in the direction
opposite to the electron velocity, will be slo,ved do\vn and ,vill have
slopes smaller than those of the undisturbed electrons. Correspondingly,
those electrons which pass through the resonator when the r-f voltage is
positive, i.e., has its gradient in the direction of the electron velocity,
will be speeded up and will be represented by lines whose slopes are greater
than those of the undisturbed electrons. In the resulting set of lines
the density of lines along any horizontal line corresponds to the magnitude
of the current as a function of time. The bunching action that results
is quite evident from the diagram. A bunch forms about the electron that
passes through the resonator at the instant the r-f voltage is changing from
retarding to accelerating. As the electrons move along the beam in what.
is commonly called the drift space, there is first formed a bunch that is
very narrow and has a high current associated with it. Farther down
the beam, the bunch becomes "vider and has the highest current asso
ciated with its edges. The corresponding picture of current as a function
of time for any position on the beam is sho,vn in Fig. 17.7. The particu-.
lar shapes that the bunches of electrons give to the beam current will be
demonstrated analytically.

The time it takes any electron to move a certain distance along the
beam depends upon the point on the cycle at which it passed through
the resonator gap and also upon the magnitude of the gap voltage. For
travel a distance l from the first resonator gap,

(17.28)
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,vhere ta is the time at which the electron leaves the first resonator, tb
is the time at which the electron has moved a distance 1along the beam,
and Va is the velocity with which the electron leaves the first resonator.
Substituting the value of Va from Eq. (17.27),

tb = ta + ( )
Vo 1 + ~a sin wta

If the depth of modulation factor a is small compared with unity, the

fractional term is closely represented by the first two terms of its series
expansion.

tb ~ ta + to (1 - ~a sin wta)

where the transit time of an undisturbed electron, to, has been written

for i. This expression will be accurate within 5 per cent if Aa is less
Vo

than 0.2. In subsequent analysis it is convenient to deal ,vith transit
angles instead of transit times. Transit angle is simply the transit
time multiplied by the angular frequency,

T = wt (17.31)

where T is the symbol that ,vill be used for transit angle. Other times
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as well as the transit time are also conveniently represented by the cor
responding angle found by multiplying the time by the angular frequency.
Accordingly, Eq. (17.30) may be rewritten

AaTo •
Tb = T a + TO - -2- SIn T a (17.32)

The factor A;TO occurs so frequently in subsequent work that it will be
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k =1.0------
Jc =QS - ----
k =0 ---- --- --

TO =consfanf
A«. ZOO • I

k =-2--vt¥rlao,e

I

l
C5 I> I

"1: I

L :
< I

I
I

!
~o

·I••I
I
I
I
I
I
I
I
I
I

-1r -7f/2 0 +Tr/2 +11'
(Departure time)

FIG. 17.8.-Electron arrival time as a function of
departure time in a bunched beam.

designated by the symbol k and called the bunching parameter. With
this notation,

k = AaTo (17.33)
2

and
Tb = T a + TO - k sin Ta (17.34)

This equation gives the arrival angle Tb with respect to travel of a distance
l in terms of the departure angle T a and the bunching parameter k.
It is instructive to plot some curves of arrival time in terms of departure
time. This is done in Fig. 17.8, in which there are shown curves of Tb

as a function of T a and k for values of the latter of 0, 0.5, 1.0, and 1.5.
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The bunching parameter k has its value determined by half the product
of the beam cc>upling coefficient A, the excitation-voltage ratio a, and
the d-c transit angle 70. To discuss the curves of Fig. 17.8, let it be
considered that the value of k is varied by increasing the bunching vol
tage VI. For a value of the bunching parameter of zero, i.e., no bunch
ing, the arrival angle (time) is a straight-line function of the departure
angle (time). As the bunching voltage is raised from zero, the arrival
angle as a function of departure angle will be a straight-line function
\vith a superimposed sinusoidal variation whose phase is such that elec
trons leaving the resonator gap slightly before the reference departure
time of zero will have a greater transit time than for no-bunching voltage.
Likevvise, electrons leaving after the reference departure time of zero will
have a smaller transit time than for no-bunching voltage. Those condi
tions are evident for the value of k equal to~. For a value of k equal
to unity the properties observed above still hold but are accentuated
to the point where the slope of the curve of arrival angle as a function
of departure angle has a zero value at the reference departure angle of
zero. It will be seen later that this has a special significance. Up to a
value of k equal to unity the arrival angle is a single-valued function of
departure angle, and vice versa. The point for which k equals unity is
marked on the distance-time diagram of Fig. 17.6. At this value of the
bunching parameter there is evident a strong bunching action. At this
value of k the electrons that left just before and after the electron leaving
at time zero arrive together.

As the bunching parameter is increased still further, the curve of
Fig. 17.8 exhibits a negative slope at the departure time zero, and at this
point the departure time is a triple-valued function of arrival time.
Furthermore, it will be noted that the electrons near the center of the
bunch in the distance-time diagram have crossed, and over an appreciable
region it will be true that electrons leaving after a time zero arrive before
electrons which have left earlier, and vice versa. For still larger values
of k this property continues to hold. It should be noted that although
the departure time is a triple-valued function of the arrival time, the
arrival time is always a single-valued function of the departure time.
This is to say that, if the arrival time near the center of the bunch for
k greater than unity is specified, there will be three different electrons
which have left at different times in the vicinity of zero arriving simul
taneously at this time. On the other hand, each departure time has a
single value of arriv~l time associated \vith it.

To find the current associated with the electron bunches it must first
be observed that the principle of conservation of charge applies to any
corresponding departure- and arrival-time intervals. The electron
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stream can always be broken up into increments such that aU electrons
which depart from the bunching resonator between two particular
electrons m and n will arrive at a distance l between the times at which
these two electrons arrive. Mathematically, this is written

or
J dqb I = j dqa J

I I b dtb I = I I a dta I

(17.35)

(17.36)

(17.38)

(17.37)

Only the magnitudes of the charge increments are of interest, for it is
these which will determine the current. Even though electrons may
arrive in a reverse order froJD. that in ,vhich they left the bunching
resonator, their effect in producing output-resonator current is the same
since they are traveling through the output resonator in the s~me direc
tion. From Eq. (17.36) the current at a distance l along the beam is
related to the current at a distance zero by

f b = fa \ ~~: I

I b = 10 Idla I
dtb

since fa equals 10, the direct current through the bunching resonator.
From Eq. (17.34), I b, the current a distance l along the beam, as a

function of tb may be obtained by making use of the fact that ~~: equals

d'Ta h" h .. . 1 t 1
d
-, W Ie In turn IS equa 0 d-·

Tb Tb

dr a

This has the value

(17.39)

Curves of I b as a function of T a have no great significance. Curves of
I b as a function of 'Tb as determined by invoking Eq. (17.34) are shown in
Fig. 17.9 (top) for values of k of 0,0.5, 1.0, and 1.50. For k equal to zero
the current is constant. This corresponds to an undisturbed beam. For
k equal to ~~ a current pulse is seen to begin to form. For k equal to
unity the current exhibits an infinite peak corresponding to the simul
taneous arrival of several electrons. For k equal to 1~ the curve is
double peaked. Infinite current peaks will appear at points correspond
ing to arrival times for which the slope of arrival time as a function
of departure time shown in Fig. 17.8 is zero. As k is still further
increased, the double peaks will spread farther apart and the magnitude
of the current midway bet,veen them will decrease, as shown in Fig. 17.7..
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The area under any of the curves shown in Fig. 17.9 is the same, regard
less of the value of k, since the current distribution resulting from the
bunching action always involves the same number of electrons per cycle.
The distance s shown in Fig. 17.7 corresponds to a value of k of unity
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FIG. J7.9.-a (top) Current as a function of time along a bunched beam,
for different degrees of bunching. b (bottom) Induced resonator current
as a function of tiIne for different intergriJ transit angles. (After Black
and Morton.)

for which a single infinite peak of current first appears~ It has a value,
which may be obtained from Eq. (17.33), of

8 = 2voV o (17.40)
AV1w

The curves shown in Fig. 17.9a are curves of beam current as a
!unction of arrival time. The ctlrrent indtlced in a ct\tcher resonator
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by the passage of the beam will not have exactly the same form because
of the finite time required for electrons to pass between the resonator
grids. This finite time will have the effect of integrating the current at
different points on the beam between the resonator grids. The integrat
ing effect may be simulated by making a mask with a vertical slit of
width corresponding to the intergrid transit angle and sliding this along
the curves of Fig. 17.9a. Actual resonator currents will be proportional
to the area under the beam-current curve revealed through the slit in
the scanning mask. Curves of actual induced resonator current obtained
by this method are shown in Fig. 17.9b. Here it is seen that the infinite
peaks do not appear in the actual resonator current and that as the inter
grid transit angle is increased'"the resonator-current pulse becomes less
sharp. I Examination of the fundamental components of current cor
responding to each of the curves of Fig. 17.9b will reveal that they are
in the ratio of the corresponding A factors as given by Eq. (17.23) to
the fundamental components of the corresponding curves of Fig. 17.9a.

Several of the parameters \vhich have been used in the preceding
analysis are used frequently enough so that it is convenient to have charts
giving their magnitude. One of these factors is the d-c transit angle
corresponding to a distance I. This has the value

wi 1,OOO?rl
TO = Vo = VV

o
A (17.41)

A chart of this factor as a function of the variables upon which it depends
is given in Fig. 17.10. Another factor of importance is the bunching
parameter k given by Eq. (17.33). A chart of this factor as a function
of the variables upon which it depends is given in Fig. 17.11.

The curves of beam current sho\vn in Fig. 17.9 give the bunched
beam current as a function of time. To find out how this current may
be used it is necessary to determine its various components, of ,vhich the
fundamental component is the most important. The fundamental
component of the periodic beam current for any degree of bunching may
be determined from the Fourier series coefficient formula

1 f1rI bi = - I b cos Tb drb
1(' -1r

(17.42)

where I bi is the fundamental component of I b whose value is given by
Eq. (17.39). Since the curves of I b are symmetrical about the bunch
center, the resultant terms in its frequency composition will be cosine
terms if the current is arbitrarily centered at the bunch center by neglect-

1 BLACK, L. J., and P. L. IVloRToN, Current and Power in Velocity-modulation
Tubes, Proc. I.R.E., vol. 32, pp. 477-482, August, 1944.
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ing the d-c transit-angle term. This amounts to neglecting the phase
factor, but this can be put in by inspection later. The fundamental
component indicated by Eq. (17.42) is not possible of determination in
the form given, for I b is given as a function of 'r a, whereas the integral is
in terms of Tb. To follow the elegant method proposed by Webster, the
integral of Eq. (17.42) can be placed entirely in terms of T a by using the
relations of Eqs. (17.34) and (17.38). This method eliminates all
the apparent difficulties associated with electron crossovers, for Tb is
a single-valued function of T a• When this is done,

fbi = ! fr h COS (Ta - k sin T a ) [10 dTo
r -r b

which reduces to

I b1 = 10 fr cos (Ta - k sin T a ) dTa (17.44)
1r -r

in which it is seen that the TO term of Tb has been dropped. When the
integrand is expanded, the integral assumes the form

f bl = ~o f~.. [cos T a cos (k sin T a ) + sin T a sin (k sin T a)] dTa (17.45)

This is a somewhat formidable integral involving cosines and sines of a
sine function. Such terms are encountered in frequency-modulation
studies where the frequency of a wave varies periodically with time.
In the frequency-modulation problem it is found that terms such as the
above correspond to a carrier and a doubly infinite set of side bands whose
magnitude is expressed in terms of Bessel functions. The same situation
applies here. Each term of the integrand contains an infinite number of
terms according to the relations

cos (k sin x) = Jo(k) + 2[J2(k) cos 2x + J 4(k) cos 4x +
and

.] (17.46)

sin (k sin x) = 2[J l(k) sin x + J-a(k) sin 3x + · · .]* (17.47)

If the above series are substituted into the integrand of Eq. (17.45),
the integral is readily evaluated term by term, all but the sin2 T a term
yielding zero. The result is

(17.48)

which is the most important equation in the first-order bunching theory.

* These relations are developed in WOODS, F. S., Ie Advanced Calculus," p. 281,
Ginn, Boston, 1932.
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If a curve of fbI as a function of k be plotted, the form shown in Fig.
17.12 results.! The ratio of the fundamental component of beam
current to the d-c beam current is simply a curve of the first-order Bessel
function multiplied by 2. This curve starts out as a straight line for
small values of k of the form

(17.49)(for small k)I bi ~ k
10 -

The maximum value of the current ratio occurs for a value of k equal to
1.84 and is equal to 1.16. The curve falls to zero for a value of k equal
to 3.83. The significance of the maximum value is that the fundamental

1.5

IIbI!
I;; 0 r---.-----'-r----r-~~-_r_-~-~'__-....__----

"0.5

-LO
FIG. 17.12.-Fundamental cOlnponent of current in a bunched
beam as a function of bunching parameter. Ibl = 21oJ l(k).

component of current ,vill have its maximum value for k equal to 1.84,
which is marked on the distance-time diagram of Fig. 17.6. In this
figure, k varies directly as distance. The maximum value of fundamental
current is obtained not when the bunched beam has its first infinite peak
but rather ,vhen the double peaks have appeared and spread apart

1 The Bessel functions resemble damped sine waves except that they are not
exactly periodic and that the damping is geometric instead of exponential. The
order of the Bessel function indicate~ by the subscript tells what the small-value

nature of the function is. For small values of x, J n(x) = n~;n' which is to say that,

the first-order Bessel function starts like a straight line, the second-order function
dtarts like a parabola, etc. The functions soon reverse curvature and have a zero
value, after which they approximate damped sine waves and the distinction between
the orders appears merely as a phase factor. For a compilation of the principal
properties of Bessel functions~ see Al\\,~ndi..x VI.
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appreciably. The maximum value of the fundamental component of
current occurs for a value of the bunching parameter for which the area
under the product of the beam current as a function of time multiplied
by a cosine wave is a maximum.

The phase of the fundamental component of current relative to the
peak of the bunching voltage may be determined by inspection from the
distance-time diagram of Fig. 17.6. Here it is seen that the bunch
center, or peak of the fundamental component of current, forms about an
electron which leaves the bunching resonator a quarter of a cycle prior

1.0

1211
-0.6o 2 3 4 5 6 7 8 q 10

X

FIG. 17.13.-Curves of the higher order Bessel functions.

to the peak of the bunching voltage. Accordingly, the fundamental
component of current lags the bunching voltage by TO minus 1r/2 radians.
The fundamental component of beam current can therefore be written as

(17.50)

(17.51)

in which the exponential factor is one that has unit magnitude and a

phase factor of - (TO - ~}
If the harmonics of the beam current were evaluated by the method

used to determine the fundamental, it would be found that

lim = 2IoJ,,(nk)E-in (To-i)
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(17.52)

Curves of the higher-order Bessel functions are shown in Fig. 17.13.
Curves of In(nk) as a function of k are shown in Fig. 17.14. The peaks
of the various harmonics are smaller as the magnitude of the harmonic
increases and occur for values of the bunching parameter closer to unity
but not less than unity. The locus of the peaks of J n(nk) is shown
dotted in Fig. 17.14. The magnitude of the harmonics as given by Eq.
(17.51) drops off very slowly as the order of the harmonic increases,
indicating that the klystron should make a good frequency multiplier.
This is expected from the shape of the bunched beam current as a function
of time, for a current pulse with infinite peaks is rich in harmonics.
Maximum values of In(nk), along with the corresponding values of k
that produce this maximum tor different orders of n, are shown in Fig.

17.15. Maximum ratios of harmonic component to d-c component of
current fit the empirical function

IbnMax y;; "-' 1.16n-o.269

\vithin a few per cent out to the tenth harmonic. Values of the bunching
parameter for which harmonic currents are maximum are given very
closely by!

k "-' 1 + O.808n-% (17.53)

In actual frequency-multiplier tubes the output drops off much more
rapidly than is indicated by the relation of Eq. (17.51). This is because
of various deficiencies in the first-order bunching theory that have not
yet been considered.

17.5. The Klystron Amplifier. Historically, the bunching principle
was first applied to produce an oscillator tube. Some amplifier tubes

! HANBEN, W. W., and J. R. WOODYARD, A. New Principle in Directional Antenna
Desiln, Proc. I.R.E.. vol. 26, p. 338, March, 1938.
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were then built, using the velocity-modulation principle; and later a
special kind of klystron oscillator, known as the "reflex-klystron oscil
lator," was extensively used. In this exposition these three kinds of
tubes will be discussed in the order, klystron amplifier, reflex-klystron
oscillator, and two-resonator klystron oscillator. This order is used
because it makes the explanation of the operation of these tubes much
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FIG. 17;15.-Maximum values of In(nk) as a function of the order n and
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easier. The amplifier is readily described in terms of principles already
discussed. The reflex-klystron oscillator is the simplest kind of klystron
oscillator to discuss. The methods of analysis used in describing the
reflex-klystron oscillator are readily applied to the two-resonator klystron
'Jscillator.

Structure of the Klystron Amplifier. The structure of a klystron
amplifier is shown schematically in Fig. 17.16. This type of tube has
p.vacuated reentrant cavity resonators, which are tuned by squeezing
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the ca.vities mechanically so that the resonator gap spacings and hence
the as.3ociated capacities are changed. The tuning range made available
by this means is small, being of the order of 10 per cent of the mid
frequency. The tube contains a cathode gun, which may be of the form
of the unipotential cathode structures described in the chapter on

SYMBOL

FIG. 17.16.-Structure of the two-resonator klystron am
plifier.

Catcher {lap

Cathode-ray Tubes or which may involve a control or focusing electrode.
The input and output resonators are usually identical and are placed
back to back so that there is a relatively short drift space between the
resonator gaps. The length of this gap is moderately critical. If it

is too short, there will not be
enough time for the electrons to
bunch sufficiently. If it is made
too long, the bunches are found to
deteriorate instead of improve.
Power is transferred in and out of
the resonators by means of coaxial
lines, which terminate in small loops

klystron that provide inductive coupling to
the magnetic field of the resonator.
Electrons that have passed through

both resonators impinge on a collector electrode, which returns them to
the cathode.

Another form of the klystron amplifier tube is shown in Fig. 17.17.
In this form of the tube the resonant cavities are attached externally to
the evacuated tube and are tuned by plugs inserted into the cavity.

,

8un~her
t7Pp

FIG. 17.17.-External-cavity
amplifier.
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This form is easier to build but is not as stable as the first type
described.

Operation of the Klystron Amplifier. The operation of the klystron
amplifier is very simple. Radio-frequency power is fed into the input
resonator through the coaxial-line connection, where it produces fields
that bunch the electron beam. The bunched electron beam sets up alter
nating fields in the output resonator. Power is extracted from the
output resonator through the coaxial line to a load. The amplifier may
be operated at virtually any beam voltage or current. It is necessary
only that the input and output resonators be tuned exactly to the
frequency of the excitation power.

Output Power of the Klystron Amplifier. If the electron beam passing
through the grids of the output resonator has a fundamental component
of value fbi, then the output power will be the same as though a current
of value Albi were passed through the resonator, where A is the beam
coupling coefficient defined by Eq. (17.23) and it is assumed that the A
factor is the same for both buncher and catcher. This follows because
the current resulting from the stream of electrons is the simple summation
of the currents corresponding to the individual electrons. Accordingly,

Pbl = (A;bl)2 R.h (17.54)

where P bI is the power delivered to the resonator and Rah is the equivalent
shunt resistance of the resonator. In terms of the equivalent output
resonator gap voltage

(17.55)

in which VbI is the fundamental component of the second-resonator gap
voltage. In both -the above equations it must be remembered that lbi

is the fundamental component of beam current, whereas Alb! is the cor
responding effective component of resonator current.

Efficiency of the Klystron Amplifier. The efficiency of the klystron
amplifier is defined as the ratio of the output power to the input power,

Effi . Pout ( 7 56)clency = Pin 1 .

· Alb!Vbl
EfficIency = 2I

o
V

o
(17.57)

not including the power required to bunch the beam. The maximum
theoretical efficiency is obtained when each of the factors in Eq. (17.57)
assumes its maximum value. The factor A has a maximum value of
unity when the gap transit angle is zero. The maximum value of I hI
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is 1.16ft). The maximum value of Vb1 is expected to be about Vo; for
if this value is exceeded, electrons ""ill be thrown back toward the
cathode by the output-resonator voltage and the effective output
":"esonator resistance will drop very sharply because of the associated
increased losses. Upon substituting these maximum values into Eq.
(17.57) it is found that the maximum theoretical efficiency is 58 per cent.
Practical efficiencies are much lo,ver than this because of various second
order bunching effects to be described and are of the order of 20 per cent.

Equivalent Circuit of the Klystron Amplifier. The equivalent circuit
of the klystron amplifier is shown in Fig. 17.18. The circuit is the same
as that of an ideal pentocle r-f,amplifier with a delay circuit between the
pentocle and the output circuit. The hypothetical pentod~ involved

Hypo/helical vacuunflube wilh no (Delay introduced by fransilline
coupling between inputandaufpufcircuits of'elecfrons in drift space

FIG. 17.18.-Equivalent circuit of the klystron amplifier.

has a virtually infinite plate resistance, for there is no electronic or
electromagnetic interaction bet,veen the input and output circuits.

The delay circuit is one that produces a phase shift of - (TO - ;}
corresponding to the phase shift bet\veen the output current and the input
voltage.

Mutual Conductance of the Klystron Amplifier. An equivalent mutual
conductance of the klystron amplifier may be defined as the ratio of
the induced output current to input voltage Val. From Eq. (17.50~

this may be written as

(17.58)

(17 .b\J;

which is readily rearranged by the application of Eq. (17.33) to give

IG I -GA2 Jl(k)
m - 0 TO-.~-

where Go ( = ~:) is a factor that may be cal1ed the d-c beam con

ductance. The above assumes that the beam coupling coefficient A
is the same for input and output resonators. The mutual conductance



for small signals (17.60)

VELOCITY -MODULATED TUBES, OR KLYSTRONS 561

is not a constant but rather is a factor that decreases as the magnitude

of the excitation voltage increases in accordance with the curve of J l~k).

A curve of mutual conductance as a function of the factor k is given in

oO~---..I.---'------"---21..----4---&--"""""'~"""'4
k= Aa.ro

2
FIG. 17.19.-Transconductance of a klystron amplifier
as a function of the bunching parameter.

Fig. 17.19. Since, for the zero value of 1C, J lik) is ~~, the small-signal

value of mutual conductance is the maximum and has the value

f Gm f A 2roa;;- = -2-

The value of mutual conductance for maximum current (k = 1.84) is

I~; I = O.316A 2TO for maximum output (17.61)



562 VACUUM TUBES

The mutual conductance as used above has a phase angle associated with

it that is - (TO - ~) accordingly, we may speak of the transadmittance

of the amplifier tube as the product of the mutual conductance and the
phase factor

Ym_ A2 J 1(k) -i(ro-i)
- - TO--€
Go k

y m A2 J l(k) ( · + . )Go = TO -k- SIn TO J cos TO

(17.62)

(17.63)

where Y m, the transadmittance, is the ratio of the output ~current to
the input voltage in phase and magnitude.

Power Required to Bunch the Beam. In the input resonator of a
klystron amplifier the bunching action speeds up electrons over half the
cycle and slo'vs them down over the other half. When the intergrid
transit angle is small, the average energy of electrons leaving the
bunching resonator over a cycle will be nearly equal to the energy with
which they enter. However, as the intergrid transit angle increases,
the average energy of electrons leaving the resonator will be greater than
the entering energy and as a result the bunching resonator must supply
power to bunch the beam. Therefore, there is an equivalent resistance
that can be attributed to the power required to bunch the beam.

The calculation of the power needed to produce bunching action
requires extensive manipulation of second-order effects and will only be
indicated here. l It is a simple matter to calculate the velocity of any
electron passing through the bunching resonator as a function of the
point on the cycle at which it enters the resonator and the subsequent
time interval. Likewise, the distance-time behavior can be calculated.
The resulting expressions give velocity and distance as a function of time.
However, it is desired to know the velocity of an electron as it leaves the
resonator, ,vhich requires that the above expressions be inverted so
that exit velocity is given as a function of d-c transit angle. An equation
for this relation can be obtained in terms of a series in powers of the d-c
transit angle. When this is obtained, the average exit energy can be
calculated from the square of the velocity. The difference between the
average exit energy and the entrance energy is a measure of the bunching
power required. The ratio of the po,ver required to produce bunching
to the d-c po,ver required to produce the beam has the form

1 See FEENBERG, E., Notes on Velocity Modulation, Sperry Gyroscope Laboratories
Rept., 5521-1043, Chap. I, pp. 41-44.
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(17.64)

(17.65)

PI = Va{! sin (~) [Sin (~) _ (80)]

Po 2Vo2 2 Og 0
0

cos 2
2 "2

PI = Va12 F(O )
Po 2V02 (J

for values of ~:I less than ~, where Po equals loVo and the definition

0.'20

I I I I I I
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FIG. 17.20.-Theoretical equivalent bunching resistance of a beam as a
function of the intergrid transit angle. (After Feenberg.)

0.24

0.04

0.08

F(6g) 0.12

(17.66)

of F(8g ) is apparent. The ratio of equivalent beam resistance to bunch
ing resistance may be defined as

R o _ Vo2 2PI
R g - Po V al2

Accordingly,

(17.67)~: = F(Og)

A curve of ~; as a function of Og is given in Fig. 17.20. The justification

for de-fining an equivalent bunching resistance as V2P~ is that the power
a1

required to produce bunching is proportional to Va1
2 provided that the

excitation-voltage ratio is not excessive. This means that the power
required to produce bunching is the same as would be consumed by a
resistance Rv~ as defined in Eq. (17.67), in narallel with the shunt resist...
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ance of the resonator. Examination of Fig. 17.20 sho'vs that the equiva
lent bunching resistance is ten times the beam resistance for an intergrid
transit angle of 1.66 radians (95 deg). For transit angles less than a
quarter of a cycle the equivalent bunching resistance ,vill be greater than
ten times the beam resistance, and for transit angles greater than a
quarter of a cycle it ,yill be less than ten times the beam resistance.
The po\ver consumed by the equivalent bunching resistance is by no
means negligible and ,viII ordinarily be of the same order of magnitude
as the ohmic po,ver loss in the resonator itself. Measured values of
equivalent bunching resistance range from 20 to 50 per cent of the theo
retical values and are not ind~pendent of the excitation-voltage ratio,l

OUTPUT
TERMINAL

INPUT
TERMINA~

CATCHER GRIDS

CASCADE
BUNCHER GRIDS

BUNCHER GRIDS

ELECTRON GUN

FIG. 17.21.-Structui'e of the cascade amplifier.

17.6. The Cascade Amplifier. If a three-resonator klystron amplifier
be made with the first and third resonators used as input and output
resonators, respectively, but the middle resonator be left unloaded and
simply tuned to the frequency of the input signal, very large power
amplifications are obtained. Such an amplifier has been termed a
"cascade amplifier" and has the structure sho,vn schematically in Fig.
17.21. If a small input signal to the first resonator is assumed, there
is produced at the second resonator a fundamental component of current
that, though small, is appreciable. The second, or cascade, resonator,
being unloaded, will have a very high effective resistance, which is deter
mined by the parallel combination of its shunt resistance and its effective

1 HA.DLEY, C. F., Velocity Distribution of Velocity Modulated Beams, Ph,D.
Dissertation, Stanford, 1944.
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bunching resistance, as discussed in the previous section. Both these
components of resistance can be made quite high. As a result, a large
voltage \vill be produced in the cascade resonator by a small fundamental
component of beam current. Since the exciting current that produces
the voltage in the second resonator and the resulting current that is

-T1ME-

t 'ACCELERATION VOLTAGE '\8UNCHER VOLTAGE

___1 ---
FIG. 17.22.-Distance-time diagram of a cascade amplifier. (After Harrison.)

produced are 90 deg out of phase, the bunching actions before and after
the second resonator can be considered independently to a fair degree of
approximation. The ratio of bunching parameters of the first and second
resonators relative to the second and third resonators ,viII be proportional
to the square of the transit angle between resonators. The ratio of
the output power of the third resonator to the input power to the first
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resonator will be proportional to the fourth power of the transit angle
between resonators.

A distance-time diagram of a cascade amplifier is shown in Fig.
17.22. In this diagram it is seen that a very small bunching action
between the first and second resonators gives rise to an appreciable
voltage on the second resonator. This in turn gives rise to a higher
degree of bunching. The resultant bunching action is not due to that of
the second resonator alone. Those electrons which pass through the sec
ond resonator at times when the second-resonator voltage is zero form the
center of its bunching action, while those which pass through the second
resonator when its voltage is !Daximum are at the center of the bunch
formed by the first resonator. The combined action is much b~tter than
could be achieved by a single bunching resonator and approximates
that which would result from a single resonator ,vhich had a saw-toothed
instead of a sinusoidal gap voltage. Maximum theoretical efficiencies
are 74 per cent, though actual efficiencies are much less. Cascade
amplifier tubes have given power amplifica tions of the order of 1,000
to 5,000 times. Tuning of such an amplifier is quite critical since
all three resonators must be tuned to exactly the same frequency. Such
amplifiers are essentially single-frequency devices. Unfortunately,
the internal noise of klystron amplifiers is 80 high that the improvement
in signal-to-noise ratio is much less than the actual power amplification.

17.7. Frequency-multiplier Klystrons. Because the harmonic con
tent of a bunched beam is relatively high, the klystron makes a good
microwave frequency multiplier. The frequency-multiplier klystron
is similar to the amplifier except that the output resonator is designed to
be tuned to a harmonic of the input frequency. To get a tube with an
input resonator that tunes to a lo,v frequency it is necessary to use a
resonator in the form of a concentric line that is heavily loaded with
capacity. The structure of such a tube is shown schematically in Fig.
17.23. Such tubes are critical of excitation and beam voltage. This is
because the maximum value of harmonic current for a large frequency
multiplication factor is relatively critical \vith respect to the bunching
parameter, as may be seen from Fig. 17.14. As input excitation is
increased for a given beam voltage, a frequency-multiplier tube will
pass through its maximum output rather sharply and is easily over
driven. For a given input excitation, the power output as the beam
voltage is changed will follow a curve such as is shown in Fig. 17.24.
This curve is like the curves of Fig. 17.13 squared, but \vith the x axis
inverted. Maximum theoretical efficiencies are equal to half the ratio
of maximum value of harmonic current to d-c beam current as given in
Sec. 17.4. Actual efficiencies run about one-tenth of the maximum
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FIG. 17.23.-8tructure of the frequency-multiplier klystron.

theoretical efficiencies. Efficiencies are further found to drop off much
more rapidly with the order of the harmonic than the inverse one-third

High frequency
oufpuf

Buncher gap.

power that is expected from the theoretical maximum values of harmonic
components of current. Frequency multiplication by a factor of 10 in a
single tube is entirely practical in the range of 300 to 10,000 mc and makes
possible crystal-controlled microwave signals.

JO
THEORETICAL fREQUENCY

MULTIPLrER OUTPUT

[In (nkJj2 vs.;

~
J: n=/O~. I o consfanf
+-
~

~

~5
o
L
~

~
o
0-

Beam voltage. kv
FIG. 17.24.-Power output of a frequency...multiplier klystron as a function of beam
voltage.

17.8. Second-order Bunching Effects. The theory of bunching that
has been presented up to this rQint i~ \vhat may be called the "simole"
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or "first-order theory." It gives a correct picture of the mechanism,
but appreciable departures from it are encountered in actual tubes.

One of the limitations of the first-order theory is that it has entirely
neglected the mutual electrostatic repulsion forces between the electrons
associated with the electron charge. This is to say that space-charge
effects have been neglected. The analytical treatment of such effects
becomes sufficiently involved so that only a description of the principal
effects ,vill be undertaken here. 1

Space-charge effects will in general have the effect of reducing the
degree of bunching that would exist if there ,vere no space charge. For a
~eam that is large in diameter ,the axial repulsion forces of the electrons
,vill be greater than the radial forces except at the edge of the beam. For
such a beam, as electrons tend to come together there will ~ build up
repulsion forces that oppose the bunching action. Near the center of a
bunch there ,viiI develop forces that are proportional to the distance of a
particular electron from the center of the bunch. The resultant electron
action is similar to that observed in mechanical compression problems.
Imagine an observer riding along ,vith an electron at the center of a bunch.
He observes electrons approaching the center of the bunch in both direc
tions. These electrons will be progressively slowed down as they
approach the center of the bunch because the electrostatic repulsion
forces will build up. As a result, the individual electrons before and
after the center of the bunch will approach to within a given distance
of the center of the bunch and will then turn and move away from it.
This action is illustrated roughly in the distance-time diagram of Fig.
17.25. Here electrons near the center of the bunch are seen to approach
each other and then diverge ,vithout crossing. 2-4 To a first order of
approximation the velocity of an electron near the center of the beam and
the center of the bunch is a constant with a superimposed sinusoidal
variation. Webster has termed this action "longitudinal debunching."
From the distance-time diagram it is seen that the maximum degree of
bunching occurs considerably farther along the beam than the distance
corresponding to the formation of the first infinite peak of current in
the absence of space charge. Furthermore, the maximum degree of

1 The most complete treatment of bunching theory in all its aspects yet published
appears in Sperry Research Laboratories Rept. 5221-1043 by E. Feenberg, 1945.

2 WEBSTER, D. L., Cathode-ray Bunching, Jour. Appl. Phys., vol. 7, 501-502,
July, 1939.

3 HAHN, W. C., Small Signal Theory of Velocity-modulated Electron Beams,
Gen. Elec. Rev., vol. 42, pp. 258-270, June, 1939.

4 WARE, L. A., Electron Repulsion Effects in a Klystron, Proc. I.R.E., vol. 33,
pp. 591-596, September, 1945.



VELOCITY-MODULATED TUBES, OR KLYSTRONS 569

actual bunching ,vill be equal only to that ,vhich would occur con
siderably before the first infinite peak of current in the absence of space

3T
2"To T

2
Time

FIG. 17.25.-Distance-time diagram of a high-current-density beam showing space-
charge debunching effects.

charge. Infinite peaks of current are, of course, a physical impos
sibility, and it is doubtful whether or not even double peaks occur ,vhere
high beam currents are involved. Since the space-charge repulsion
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FIG. 17.26.-Picture of a bunched beam showing radial disper-
sion due to space charge.

forces near the edge of the beam are less than at the center, the bunches
will tend to form sooner near the edge and be more intense. As a result,
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the bunches will tend to be crescent-shaped in a plane through the axis
of the beam, with their concave side to\vard the cathode.

In Chap. 15 it was shown that an unbunched beam would tend to
spread _owing to radial electrostatic repulsion forces. The same action
occurs in a bunched beam except that it is accentuated by the bunching
action. As bunches tend to form, the space-charge density in that
region will increase and the radial expansion will be greatest about a
bunch center. Portions of the beam between bunches will have their
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t a , Departure time
FIG. 17.27.-Electron arrival time as a function of departure time for
a bunched beam with a short drift distance and relatively large values
of r-f voltage.

space-eharge density reduced and will not spread so much. The resultant
action is that the bunches will tend to form, achieve a certain degree of
grouping of electrons, and then literally explode radially. The actual
picture of a bunched beam may be expected to look something like
Fig. 17_26. As a result of this action, the current density associated
with any bunch will first increase as the electrons move along the beam
and then decrease.

The general observations made about space-charge effects above are
borne out in the operation of actual tubes. Studies of the velocity
distribution of bunched beams made with a special tube incorporating
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a velocity spectrograph where the collector electrode is normally placed
reveal that the actual velocity distribution is quite different from that
expected from first-order bunching theory neglecting space charge.. 1

Furthermore, it is found that amplifier and oscillator klystrons built
with relatively short drift spaces give higher output and efficiency than
do those with long ones, this being particularly. true of frequency-multi
plier tubes. Likewise, the output of almost any klystron amplifier or
oscillator can be increased by applying an axial magnetic field even when
the cathode design is good.

Since space-charge effects dictate short drift spaces, larger driving
voltages are required to produce a given degree of bunching. Accord-

ingly, the limiting value of ~: of 0.2 assumed in the first-order theory is

generally exceeded. In general, the resulting action is the same as
before except that the degree of bunching is less than that predicted by
the first-order theory. Curves of arrival versus departure time for a very

short drift distance but relatively large values of ~: are shown in Fig.

17.27 (space-charge effects neglected). According to such a set of
curves, double peaks occur at smaller values of k than unity, and maxi
mum output results at a value of k appreciably smaller than 1.84. This
tendency is frustrated by the space-charge effects.

17.9. The Reflex-kiystron Oscillator. The reflex-klystron oscillator
is a single-resonator klystron ,vith a reflector electrode, operated below
cathode potential and located so that electrons are reversed in direction
after a first passage of the resonator and made to return through the
same resonator. 2,3 The electron stream is velocity-modulated by its
first passage through the resonator gaps, and power is extracted from the
bunched beam current upon the second passage of the electrons through
the resonator. The structure of some typical 10-cm reflex-klystron
oscillators is sho,vn in Fig. 17.28. Tubes are of two types, those in which
the resonant cavity is sealed to the tube and evacuated and those in which
the resonant cavity is attached externally to the tube. Both types
utilize a cathode for the production of the beam. The magnitude of
the cathode current is sometimes controlled by a control grid or focusing
ring. The entire resonator is operated at the same potential above
cathode, and this potential is that through which the electrons are

1 HADLEY, op. cit.
'PIERcE, J. R., Reflex Oscillators, Proc. I.R.E., vol. 33, pp. 112-118, February,

1945.
3 GINZTON, E. L., and A. E. HARRISON, Reflex-klystron Oscillators, Proc. I.R.E.,

vol 34, pp. 97-117, March, 1946.
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accelerated. Since the reflex-klystron oscillator is seldom used to
obtain appreciable po,ver but rather finds its greatest application as a
local oscillator tube, large currents are not needed and the resonator gap
faces are made of a fine-mesh grid. The tube is usually constructed
so that immediately beyond the second resonator grid there is a region
of nearly constant potential gradient~ The reflector electrode is ordinarily

Glass.,

Evacuafed __
resonator

(A)

Ref/ecfor
,,' electrode

Ou/puf coup/inq
/ loop

:j ,,·-Ref/ecfor

InferOlcl/on _~lL.i.. --, .."Disks for affachinq
gap _..·.·""""'r;=~l~, external resonator

~--~
l- -,lJ..C. --~Cathode:r:
., I

(B)
FIG. 17.28.-Structure of the reflex klystron:
(A) evacuated resonator, Sperry type; (B) ex
ternal cavity required.

concave to\vard the resonator so that there is a focusing effect which
directs the electrons back to\vard the center of the resonator grid.

Behavior of Electrons in the Reflector Space. Electrons in the reflector
space encounter a nearly constant gradient of potential opposing theii'
motion. In all the subsequent analyses it will be assumed that the
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potential variation in the reflector space is linear with distance and that
as a consequence the gradient of potential is indeed constant. As a
result of this assumption, the la,vs of motion of electrons in the reflector
space are identical with those of a ball thro\vn up into the air in the
absence of friction. In this mechanical analogy the ball experiences a
constant do,vn,vard force due to gravity just as the electron experiences
a constant force directed to\vard the resonator. The equations of motion
for the acceleration, velocity, and position as a function of time of an
electron injected into a region of retarding potential gradient of value

Vo + V r • h'· . I I 'td WIt an Inltla ve OCI y Vo are

a = :~ = e(Vo~ V r
) (17.68)

v = dx = _ et(Vo + V r ) + Vo (17.69")
dt md

et2

x = - 2md (Vo+ V r ) + vot (17.70)

where a is acceleration, v is velocity, Vo is initial velocity, t is time, Vo is
cathode-resonator potential difference, Vr is the potential difference exist
ing between reflector and second resonator grid, ,vhich are separated a dis
ta.nce d, e and m are, respectively, the charge and mass of the electron, and
x is distance measured from the second resonator grid. I t is seen that the
acceleration is constant ,vith time, velocity decreases uniformly with
time, and distance is a parabolic function of time. Hence, if a distance
time diagram be plotted for electrons in the reflector field, the curves
,viII all be parabolas. The maximum distance to ,vhich an unmodulated
electron will penetrate the reflector field \vill be given by

dVo
X max = V

r
+ V

o
(17.71)

since at this distance the potential has changed by an amount Vo, as
is apparen~ from Fig. 17.29, \vhich sho,vs the potential profile of the tube.
Hence the distance to \vhich an electron penetrates the field is directly
proportional to the initial potential through \vhich the electron has been
accelerated. The average velocity of the electron in the reflector field
will be half of its initial velocity, and hence the time the electron spends
in the reflector field ,viII be

Since

t - 4xmax
0---

Vo
(17.72)

(17.73)
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(17.74)

where c is the velocity of light, then

to = 2,024d V'V;;
c(Vo + V,.)

If both sides of this equation be multiplied by the angular frequency
wand use is made of the relation c = Xi, where X is the wave length, then
the resulting expression for the d-c transit angle in radians spent in the
reflector space is

d VV;;
TO = 4,0481r X(Vo + V

r
)
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FIG. 17.29.-Potential profiles of a reflex-klystron
oscillator.

(17.75)

Distance-time Diagram of a Reflex-klystron Oscillator. Since the
distancE. to ,vhich an electron penetrates the reflector field against a
constant gradient of potential is proportional to the initial energy and
since the la\v of falling relative to the point at which the electron direc
tion is reversed is the same for all electrons regardless of their initial
energy, the distance-time curves of electrons entering the reflector space
\vith different velocities will all be parts of the same parabola. This
makes it relatively easy to construct a distance-time chart by means of a
template since the energy of electrons leaving the resonator will be

Va =. Vo(l + Aa sin wt) (17.76)

where Va is the voltage equivalent of the electron energy associated ,vith
the first resonator transit (subscript a). Other symbols have their
previous significance, that is, Vo is beam potential, A is beam coupling
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coefficient, and a is excitation-voltage ratio. For the present,· -it is
assumed that an r-f gap voltage

(17.77)

exists, without saying how it is created. The distance to which any
electron penetrates the field will be proportional to the value of Va
given by Eq. (17.76). The corresponding initial velocity of an electron
entering the reflector space is

Va = Vo (1 + ~a sin wt) (17.78)

which is identical with the expression encountered in the klystron
amplifier bunching resonator. The value of Va from Eq. (17.78) will
determine the initial slope of the parabola associated with any electron.
A sample distance-time diagram constructed by applying the above
observations is shown in Fig. 17.30. The bunching action is quite evident
and is slightly greater in this case than that required to produce a first
infinite peak of current. If the bunch which is formed returns to the
resonator at such a time that the electrons pass through the resonator
gap when they are opposed by the potential gradient between the resonator
grids, then energy will be extracted from the bunched current and the
tube may oscillate if other conditions are suitable. Of great significance
is the observation that the bunch forms about the electron which passes
through the resonator when the modulating voltage is changing from
accelerating to retarding in its action. (It will be remembered that in
the klystron amplifier the bunch formed about the electron which
passed through the bunching resonator when the modulating voltage was
changing from retarding to accelerating.) This happens because those
electrons which enter the reflector field with energies greater than the
average will penetrate farther and take longer to return. Accordingly,
electrons which have been slowed down will overtake those which have
been speeded up, which is just the opposite to what happens in the
klystron amplifier. A combination of this'property and the requirement
that the electrons return when the resonator voltage opposes their
motion through the resonator indicates that oscillations can occur only
when the d-c transit time is in the vicinity of n + ~~ cycles, where n is
zero or any integer. The distance-time diagram of Fig. 17.30 shows a
d-c transit time of 1~~ cycles, which admits of oscillation.

Bunching Theory of the Reflex-klystron Oscillator. There has already
been given in Eq. (17.78) an expression for the electron velocity resulting
from a first transit of the resonator. For the distance-time diagram
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(17.37)

of Fig. 17.30 the principle of conservation of charge will hold, just as it
did for the klystron amplifier; i.e., Eq. (17.37) will again apply,

I b = la I~~:I
where I a is again equal to 10 • Likewise it will be true that the relation
between arrival and departure time of any electron will be the same
as for the klystron amplifier; i.e., Eq. (17.30) will hold,

tb '" ta + to (1 - ~~ sin wta) (17.30)
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FIG. 17.30.-Distance-time diagram of a reflex-klystron oscillator.

Since the equations that determine the shape of the current pulse are
the same as for the klystron amplifier, it is expected that the resultant
current will be the same and it is. Thus

(17.50)

where all the symbols have their previous significance. It must be
noted, however, that for the case of the reflex-klystron oscillator the
current of Eq. (17.50) is taken with respect to the direction of the second
electron transit and this defines the positive gap voltage. For some
purposes it is more convenient to deal with the current associated
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~rith the direction of the first electron transit, which will be the negative
of that given by Eq. (17.50) and will have the form

(17.79)

17.80)

(17.81)

(17.82)

In this form it is apparent that the klystron-amplifier and reflex-klystron
oscillator bunches form about zero-excitation-voltage points which are
half a cycle apart.

From Eq. (17.50) it is apparent that \vhenever the d-c transit angle is

~' S;, 9;, etc., radians the current will be in phase with the gap voltage

and the beam action ,vill be equivalent to that of a positive resistance

h d h Wh h d · I' 311" 77(' l11rs unte across t e gap. enever t e -c transIt ang e IS 2' 2' 2'
etc., the fundamental component of beam current will be 180 deg out
of time phase with the gap voltage and the beam action will be equivalent
to a negative resistance shunted across the gap. TInder this last set of
conditions the tube may oscillate if the magnitude of the negative beam
resistance is less than the positive resonator resistance.

Self-admittance of the Beam. It is convenient for purposes of analysis
to speak of the beam admittance, defined as the ratio of the fundamental
component of induced resonator current to the gap voltage that produces
it. From Eq. (17.50) this is

Y
_ Alb1

e - VI

Y. = 2~:o J1(k) E-i(T.-i)

Y _ A2G J 1(k) -j(ro-i)
e - oro -k- E

where Y. is the self-, or electronic, admittance of the beam, Go = ~:'

d h b d
.' AaTo

an use as een rna e of the relatIon k = -2-· The factor A that

appears in Eq. (17.80) arises from the desirability of comparing beam
and resonator admittances in terms of induced resonator currents.

The ratio of the electronic to the beam admittance is perhaps most
conveniently written in component form by expanding the exponential
into a complex quantity.

Y e A2 J l(k) ( · . )Go = To -k- SIn TO + 3 cos TO (17.83)
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The electronic admittance of the tube is seen to be a function of the d-c
transit angle and the bunching parameter k, which also involves the
transit angle. Like\vise it is seen that the electronic admittance has
both a conductive and a susceptive component depending upon the value
of the d-c transit angle. Let it be assumed first that the value of k is

J 1(k)
zero, corresponding to zero r-f gap voltage. The factor k- then has a

value of 72. Accordingly, the conductance and susceptance of the beam
have the form shown in Fig. 17.31. The zero signal value of beam
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FIG. 17.31.-Electronic conductance and susceptance of a reflex klystron as a function
of electron transit-angle.

conductance is of the form x sin x. It is first positive and then alter
nately negative and positive with increasing amplitude. Correspond
ingly, the zero signal value of beam susceptance is of the form x cos x.
It is first positive for a quarter cycle and then alternately negative and
positive with increasing amplitude as d-c transit angle increases (reflector
voltage decreases). The tube may oscillate whenever the beam con
ductance is negative and exceeds the magnitude of the positive resonator
conductance. The negative of the resonator conductance is shown in
Fig. 17.31. For the value shown, oscillations will not occur the first
time the beam conductance is negative, for its magnitude is not large
enough. Oscillations ,vill occur the second time and subsequent times



VELOCITY-MODULATED TUBES, OR KLYSTRONS 579

the beam conductance is negative as d-c transit angle is increased, for
the magnitude is then greater than the resonator conductance.

Mechanism by Which Oscillations Start. The above statements about
conditions for oscillation are readily demonstrated by reference to the

Ot
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FIG. 17.32.-Transient response of an RLC circuit.

L

transient response of a parallel combination of a resistance, inductance,
and a condenser. Let the circuit be as shown in Fig. 17.32. The voltage
transient across such a circuit that has been shock-excited by some
disturbance has the form

V(t) . (17.84)

where G is the value of the shunting conductance, C is the capacity, and
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1
"'0 = __e This equation is quite a good approximation for circuits

VW
with a Q greater than 10. From the form of Eq. (17.84) it is seen that
the transient response has the form of a damped sine ,vave, though the
extent of the damping depends upon the nature of the conductance. If
the conductance is poslive, then the response is a damped sine wave, as
shown in Fig. 17.32a. If the conductance is zero, the response will
be an undamped sine ,vave, as shown in Fig. 17.32b. If the conductance
is negative, then the response is an exponentially increasing sine wave,
as shown in Fig. 17.32c. The circuit here discussed is the equivalent
of that encountered in the reJlex-klystron oscillator, the net conductance
being the algebraic sum of the resonator and beam conductance. The net
conductance can be positive, zero, or negative. If the beam conductance
is smaller in magnitude than the resonator conductance, then the net
conductance is positive. If the beam conductance is negative and equal
in magnitude to the resonator conductance, then the net conductance is
zero. If the beam conductance is negative and greater in magnitude than
the resonator conductance, then the net conductance is negative.

The mechanism by ,vhich oscillations start in a reflex-klystron
oscillator is evident from the above. Suppose that there is initially no
r-f voltage but that the beam conductance is negative and greater in
magnitude than the resonator conductance, as at the second negative
conductance peak sho,Vll in Fig. 17.31. The net conductance ,viII be
negative, and hence any small disturbance will start a transient response
like that sho,vn in Fig. 17.32c. As the transient gap voltage builds
up, the beam conductance ,vill decrease in magnitude in accordance with

the factor J lkk), as shown in Fig. 17.33. The result will be that the

transient voltage will build up less rapidly, but it will continue to increase
in magnitude as long as the magnitude of the negative beam conductance
exceeds the resonator conductance. As the transient gap voltage builds
up, the beam conductance will continue to drop off until finally it is
exactly equal to the resonator conductance. At this value of voltage
the net conductance will be zero, and stable oscillations of constant
magnitude as shown in Fig. 17.32b will result.

Variation of Beam Conductance with Amplitude of Oscillation. Exami
nation of the real part of Eq. (17.83) shows that the beam conductance

varies as the factor J lkk) with the degree of bunching. Of particular

interest are the values of transit angle of 3;, ;, 1;11'", etc., for which the

negative conductance has its greatest magnitude. Shown in Fig. 17.33
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are relative values of beam conductance as a function of resonator gap
voltage for different values of n, oscillations being considered possible for
transit times of n + ~~ cycles. All these curves have the same form

but differ in their initial magnitude, which is always ~, and in their rate

of decline, which increases as the value of n increases. Marked on the
curves are the abscissas corresponding to maximum power. As will
be sho\vn, this occurs for a value of k equal to 2.405 and yields a conduct-
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FIG. 17.33.-Electronic conductance of a reflex-klystron
oscillator as a function of r-f voltage for transit angles
admitting of oscillation.

ance that is 43.1 per cent of the maximum value. The curves are

extended only to a value of "'V: 1 of 0.5, which is well beyond the limit of

accuracy of the first-order theory. From the slope of the curves it is
expected that the oscillations for large values of n are more stable than
for the low values.

The Electronic-admittance Spiral. The condition for oscillation of a
reflex-klystron oscillator is that the electronic beam conductance be
negative and equal in magnitude to the positive resonator conductance.
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For the resultant circuit to be resonant it is also necessary that the net
susceptance of the parallel resonator-beam combination be zero. All
this can be stated by the single equation

(17.85)

where Y r is the resonator admittance and Y e is the electronic admittance
of the beam. For many purposes it is convenient to plot the locus
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FIG. 17.34.-Electronic-admittance spirals of reflex-klystron
oscillators.

of admittance as frequency is varied since for ordinary resonant circuits
the loci will usually be of some simple geometrical form. If a locus of
electron admittance also be plotted, then limits of oscillation can be deter
mined by intersections of the resonator and negative-hearn-admittance
loci. Pierce has suggested the use of a plot of the locus corresponding
to Eq. (17.83) for the beam admittance. For any fixed value of k the
locus of the beam admittance is a spiral of Archimedes. Two such
spirals are shown in Fig. 17.34. The solid curve is the spiral locus for
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k equal to zero, or the limit-of-oscillation value. The dotted spiral locus
is for a Talue of k of 2.405, or the maximum-power value. The spirals
are geometrically similar except that the dotted spiral is only 43.1
per cent of the size of the solid spiral. Transit angle is measured clock
wise from the positive susceptance axis, increusing transit angle cor
responding to decreasing reflector voltage. The beam conductance is

~
\,)

~
~
~
.~

----_-.~
~

b
~

lR==Gr (l+j200)

o=w-UO , Q=/OO
lOo

-"&= QaOI (between points)
FIG. 17.35.-Analysis of oscillations of a reflex-klystron
oscillator by means of admittance loci.

seen to be' negative whenever the transit angle is within; radians of ;,

77r l11r
2' 2' etc.

Reflex-klystron Oscillation with a Simple Resonant Circuit. When
the resonant circuit is representable by a parallel combination of a
resistance, jnductance, and capacity, then the locus of the circuit admit
tance is a straight line parallel to the susceptance axis in the positive
half of the admittance plane, as shown in Fig. 17.35.1 On this line,

1 Specifically, the approximate formula for admittance as a function of frequency is
Yr(w) = Gr(l + 2jQb), where 0 is the fractional frequency deviation from resonance.
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frequency increases upward. Also plotted in Fig. 17.35 is the negative
of the admittance spiral. Let it now be supposed that every parameter
in the oscillating circuit and tube is kept constant except the reflector
voltage, which is varied from some large negative value to zero. Then
on the beam-admittance spiral this corresponds to a clockwise traversing
of the spiral. As transit angle increases with reduction of the magnitude
of repeller voltage, the beam admittance ,vill spiral out from a point

-300

POWER AND FREQUENCY VS. REPELLER VOLTAGE
l'G =V;;2 = JIG =250 volts
I 1 3 I I I I I II

I , I I I J I IIFrequency chanqe
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I / I
I / I
I J /

J / V, , J

potvE~ OUTP~T
TYPE 2K28

V'\
/

A I
I ,

~n==1

/\ A=2 I
J \

/;3\ I \
-100 -200

Negative repeller voltage
FIG. 17.36.-Power output of a reflex-klystron oscillator as a func
tion of reflector voltage.
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on the curve near the origin. When the beam admittance first has a
negative-conductance component (right half of Fig. 17.35), oscillations
,viII not occur for the case sho,vn because the magnitude of the negative
beam conductance is less than the positive resonator conductance. As
transit angle is increased further, the beam conductance becomes positive
(left half of Fig. 17.35) and then negative again. When the transit
angle has increased to the point a on the spiral, the negative beam
conductance equals the resonator conductance in magnitude for the first
time and oscillations will start. As transit angle is increased still
more, the beam admittance will now follow a segment of the resonator
admittance line from point a to b, the beam-admittance spiral shrinking
with increased gap voltage and output until it is equal to the resonator
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a~mittance at every point. Maximum gap voltage and output will occur
\yhen the beam admittance is a pure negative conductance on the real
axis of Fig. 17.35. As transit angle is further increased, the tube will
drop out of oscillation at b. The admittance will now trace the spiral,
and oscillations ,vill start again ,,,hen the point c has been reached. As
transit angle is increased still further, the beam admittance ,yin no,v trace
the segment of the straight-line resonator-admittance locus bet,veen c
and d, where the tube will again drop out of oscillation, and so on.

If the power output of a reflex klystron oscillator be observed with an
oscilloscope connected to a crystal output as the reflector voltage is s\vept
sinusoidally, the trace shown in the lo,ver part of Fig. 17.36 results. Each
output pulse shown here corresponds to a segment of the resonator
admittance bet\veen intersections \vith the beam admi~tance. The
frequency corresponding to the center of the different output pulses is
the same but changes through the pulses as sho,vn. The frequency
deviation for each mode of oscillation is about the same, but it will occur
for a smaller change in voltage and be more linear for large values of n.

Power Relations in the Reflex-klystron Oscillator. The power trans
ferred from the resonator to the bunched electron beam is the product
of the resonator voltage by the in-phase component of jnduced resonator
current. This has the value

P = VIAIbl

e 2

P e = V1loAJ1(k) sin TO

or

Pc = ~ kJ lCk) sin To
Po TO

(17.88)

by application of the definition of k given in Eq. (17.33). The power
transferred from the resonator to the beam ,vill be negative whenever
sin TO is negative, ,vhich is to say that the po\ver is actually transferred
from the beam to the resonator under this condition. The power
delivered to the resonator \vill be a functioJ! of the bunching parameter k,
\vhich is in turn determined by the requirement that the negative of the
beam admittance equal the resonator admittance. A set of curves
sho\ving ho'v po,ver transferred from beam to resonator varies with
r-f gap voltage is given in Fig. 17.37. The peak power transferred for
each mode of operation sho,vn occurs for a value of k of 2.405 and is
lo,ver for successively higher values of the transit angle. This might at
first thought seem to indicate that the maximum power would be obtained

with the lowest transit angle of the possible oscillation values, 3;, 7;,
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117r2' etc. However, the maximum power for the lowest transit angle

occurs at such large gap voltages that the resonator and load demands
may exceed the power ,vhich can be delivered and oscillations will not
occur at all.

O._4r-----r----,..-----..,.-------,,....----r-----..,

0.1 t-----+---..",.~~'""r_-~~-~r___+_---_+_---~

O~--==-----:J.---_-..L...--_-...l..-...::1....---..l.----ll------_..l..----Jo 0.'3 0.4 0.5 0.6
Alj

J&
FIG. 17.37.-Power output of a reflex-klystron oscillator as a function of
bunching parameter (theoretical).

Equation (17.88) is really an expression for efficiency. The maximum
theoretical efficiencies apparent here for different values of n ,vhere
oscillations are presumed to occur in n + ~-4 cycles transit time are
listed below:

Efficiency
AV1n v;-

0 0.531 1 .018 (not valid)
1 0.227 0.436
2 0.145 0.278
3 0.106 0.204

n
0.398

11. + ~i

0.767-+3/. (for n > 3)n 74

In the above tabulation the d-c transit angle has the value of
(n + ~:4)21r. The values for n equal to zero are obviously not valid,
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for the excitation-voltage ratio greatly exceeds the limit of accuracy
of the theory. Values for higher orders are progressively more accurate.
Actual measured efficiencies are of the order of one-fourth of the theo
retical values given above.

In the previous discussion there have been given formulas for the
fundamental component of beam current [Eq. (17.50)], for electronic
admittance [Eq. (17.83)], for electronic power [Eq. (17.88)]. Each o'
these quantities depends upon the bunching parameter k in some com
bination of the first-order Bessel function of the factor k. Thus for h

O.1......--------r-------r-----,----r----.------r-----,

4.0J.O1.00.5 2.0
k

FIG. 17.38.-Theoretical current, conductance, and power function in a reBex-
klystron oscillator.
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fixed electron transit time the fundamental component of current is
proportion~J to J l(k), the electronic conductance is proportional to

J lik), and the electronic power is proportioDal to kJ l(k). It is of interest

to plot these functions side by side in order to compare their properties.
This is done in Fig. 17.38. The three functions have in common a zero
value for a value of k equal to 3.84. The maximum value of current
occurs for a value of k equal to 1.84. The maximum value of power
occurs for a value of k of 2.408, corresponding to 0.431 of the maximum
value of conductance.

The magnitude of the actual power delivered to the resonator is best
obtained by plotting contours of equal power output on an admittance
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diagram. Such contours may be calculated from Eq. (17.88) and are

shown in Fig. 17.39 for transit angles in the vicinity of 1~1r radians

(n = 2). Contours for other values of n will be similar. The power
transferred from beam to resonator for any given load admittance is

Frequency inferval between poinfs =Z, percent

FIG. I7.39.-Contours of electronic power output of a
reflex-klystron oscillator on an admittance plane. This
representation shows the power supplied to both
resonator and load.

immediately evident from these contours. Of particular interest are
the variations of power output with reflector voltage for different degrees
of resonator loading. As the resonant circuit is loaded, its straight-line
admittance locus assumes a larger conductance component, ,vhile at
the same time equal frequency increments along the line become smaller
relative to the conductance. This is due to the fact that the conductance
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is given by ij, where B is the magnitude of either the circuit inductive or

capacitive susceptance. At the same time the frequency increment
between values of admittance having angles of plus and minus 45 deg

is~. Hence, as the resonant circuit is loaded the Q decreases and

the conductance component increases, as does also the frequency incre-
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FIG. 17.40.-Power output of a reflex:=::klystron oscillator as
a function of loading for variable reflector voltage.

ment between the 45-deg values of admittance. Accordingly, the change
in susceptance for a given frequency increment decreases. Figure 17.39
shows admittance loci of a resonant circuit for three degrees of loading.
The dots on the straight-line admittance loci of this figure show ~& per
cent frequency variations. The corresponding curves of povver output
versus reflector voltage are shown in Fig. 17.40.

Of interest is the amount of frequency variation bet,veen the limits
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of oscillation for a given resonator loading as the reflector voltage is
varied. This may be calculated exactly from determining the frequencies
corresponding to intersections of the zero-signal beam-admittance spiral
and the straight-line resonator locus. This determination requires
numerical or graphical computation. A good approximation for the
amount of frequency variation between limits of oscillation may be
obtained by assuming that the beam-admittance locus is a circle whose
radius is that corresponding to a transit angle of 2?r(n + ~'4) radians
instead of the actual spiral. With this assumption the limiting inter
sections of the beam and resonator admittance loci can be calculated.
The errors appearing at the t,wo intersections as a result of the assumption
of a circular locus cancel as far as the difference in frequency for the two
intersections is concerned and the resulting expression is accurate within
a few per cent. It is

Half band width between ~! = 2.- l(roGoA 2)2 (17.89)
oscillation limits f 0 2Q "J 2Gr - 1

where the Q is that of the resonator, Go and Gr are beam and resonator
conductance at mid-mode, respectively, TO is the transit angle at mid
mode of value 21r(n + ~~).1 It will be noted that this expression
properly reduces to zero when the resonator-admittance line is tangent
to the beam-admittance spiral, i.e., when

Gr = ToG~A2 (17.90)

(17.92)

(17.91)

amperes

This equation represents a limit of oscillation. It may also be used to
determine the minimum beam current required to start the oscillation for
a given resonator and a given reflector mode of operation. Since the beam
admittance as given by Eq. (17.83) is proportional to the d-c beam
admittance, which in turn is proportional to the d-c beam current, then
the starting current for any resonator and reflector mode is

I. = 2GrV o amperes
ID.In roA 2

I . = 2Vo
IWD 'ToA 2R 8h

where R.Tr. = ~r is the shunt resistance of the resonator.

1 This is arrived at as follows: At the intersection of the assumed circular beam
admittance locus and the straight-line resonator locus the equality of the conductance
component gives Gr = 72GOToA 2 cos ~:ro, whereas the equality of the susceptance

components gives QGr ~: = ~ GOToA 2 sin ~TO, where ~TO = To ~~. Squaring and adding

these relations and then solving for the band width yield Eq. (17.89).
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Voltage Stability of Reflex-klystron Oscillators. Since the d-c transit
angle of the electrons in the reflector space depends upon the electrode
voltages, the frequency of oscillation changes with supply voltage, as
has already been shown. This may be a serious limitation in applica
tion, for a small change in electrode voltage will cause a relatively
large change in frequency of oscillation. If it is assumed that the cathode
and reflector voltage both change by the same percentage with a given
change in line voltage, then the frequency stability at mid-mode with
respect to voltage is!

(17.93)cycles per volt
df _ 'To dVo
10 - 4Qo V;

For the 2K28 with the characteristics shown in Fig. 17.36, this variation
is of the order of >~ mc per volt at mid-mode.

If the cathode-reflector voltage instead of varying proportionally to
cathode-resonator voltage is kept constant, then the frequency change
with voltage is zero when the cathode-reson3Jtor and cathode-reflector
voltages are equal. This occurs because under this condition the gradient
of potential in the resonator-reflector space and the distance to the point
vf electron reversal change by the same percentage with a change of
cathode-resonator voltage, thus keeping the transit angle constant.
The frequency change with voltage for other conditions can be made
low by giving the cathode-resonator and cathode-reflector voltages
different degrees of regulation of the proper value.

The relatively large frequency change with voltage observed in Eq.
(17.93) may actually be of use in some applications, for it indicates that
frequeney modulation is easily achieved. Even in cases where stability
is desired, automatic frequency control is easy to apply.

17.10. Broad-band Operation of Reflex-klystron Oscillators. Tubes
of the type shown in Fig. 17.28b are frequently used with an external
resonant cavity in the form of a concentric line. Such an arrangement
permits of an extremely wide band of frequency operation. The low
frequency limit of oscillation will be governed by the resonator-reflector
distance, which in turn determines the largest transit time that can be
used without the reflector drawing current. The high-frequency Iimii
will be determined either by the gap transit angle, which reduces the beam

1Arrived at by applying the relation ::0 = :~ :;0to the formulas

2Q(f- /0)
/0 ::: COS TO

and Eq. (17.74) on the assumption that ~: is constant.
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(17.94)

(17.95)

coupling coefficient A and thus reduces the beam conductance, or by
the resonator shunt resistance, \vhich may drop off ,vith increasing
frequency to the point ,vhere oscillations cannot be maintained. Opera
tion over a frequency band of as great as 2 to 1 may be had with this type
of tube and resonator.

Equivalent Circuit of Concentric-line Resonator. In the ordinary
reflex-klystron-oscillator tube built to use an external resonator there
will be an appreciable capacity across the electron bunching gap. As a
result of this capacity, the tube ,viII oscillate ,,,,hen the capacitive react
ance of the gap is equal in magnitude to the inductive reactance of the
shorted concentric line attached to it. Accordingly, the equivalent
circuit is that shown in Fig. 17.41. This is simply a capacity in parallel

Cg1 Zo I

~--------------- -- 1-----------------~
For resonance

1 (Z1Tl)-=z lan-UJCg 0 A

or
A f'ACo )

l = 211' arc lanrZTfCg

FIG. 17.41.-Equivalent circuit of a concen
tric-line resonator and reflex-klystron oscil
lator.

,vith a shorted section of concentric line. Resonance ,viII occur whenever
the gap reactance equals the inductive line reactance in magnitude,
i.e., when

_1_ = Z0 tan (21rl)
wCg A

_1_ = Z 0 tan (wZ)
wCo c

where w is the angular frequency, Co is the gap capacity, Zo is the charac-

teristic impeda.nce of the line given by 138 loglo (~} I is the equivalent

line length, and A is the wave length. Curves of magnitude of capacitive
reactance and inductive line reactance are shown in Fig. 17.42. Reso
nances will occur at the intersections of the two reactance curves shown.
The resonances are multiple, which means that, for a given line length,
resonance can occur a.t. a number of different frequencies. The fre-
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quencies of resonance ,vill occur at frequencies some,vhat less than those
for which the line is ~~, ~4:, ~~, etc., ,vave lengths long.

For convenience in subsequent analysis, Eq. (17.94) may be solved
for l and written in the form

X (AGo)1 = - arctan --
27(' 21rCg

as a function of ,vave length, "There Co is the distributed capacity of the
concentric line per unit of length. l The general form of curves of 1 as a

+x

-x

FIG. 17.42.-Cutves of reflex-klysL on gap reactance ~nd induc
tive line reactance as a function of frequency.

function of \vave length is shown in Fig. J7.43. The various branches
of this curve correspond to the different possible line lengths. The
lowest branch of the curve gives resonant lengths slightly less than
~~ wave length, the next. gives lengths slightly shorter than ~~ wave

1 This follows from the fact that Zo = We!::!! and c = _ /
1

t as a result of which
o v LoCo

cZo = ~o· Utilization of this last relation along with c = AI leads to Eq. (17.%).

Distributed inductance of the line per unit length is Lo; velocity of pronagation is
c = 3 X 1010 em per sec.
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length, and so on. All curves start out like parabolas from the origin
and then become straight lines parallel to a line whose slope is .74, ,~, ~:4:,

etc. respectively for the different curves starting from the bottom.

32r----....,....---~--.-,r-----_r__--__,

28 t----L- __------ ---t--~-+-4

24 t------+--

20I------+-----+---~~. ~-+-----t

l, em 16 J------+------+--~

12 I------+---++--#--------+~

10 15 20 25
It, em

FIG. 17.43.-Length of a capacitively loaded line required
to give resonance at various wave lengths.

Possible M odes of Oscillation. A reflex-klystron oscillator with an
external concentric-line resonator has numerous possible modes of
oscillation. Oscillations can occur whenever the transit time of electrons
in the reflector space is n + ~~ cycles, where n is zero or any positive
integer, and the cavity length is effectively an odd quarter of wave lengths
long. The tube gap capacity always loads the line resonator so that its
actual length is less than an odd quarter of wave lengths long, but it is
convenient to speak of the effective length as that corresponding to the
nearest odd number of quarter waves. Accordingly, if the ca,vity length



VELOCITY-MODULATED TUBES, OR KLYSTRONS 595

and electron transit time in the reflector space are admitted as variables,
a considerable number of oscillation modes are possible. Each oscillation
mode needs to be designated in terms of both the electron transit time
and the effective cavity length.

The possible oscillation modes of the reflex-klystron oscillator with a
concentric-line resonator may be investigated conveniently by applying
an alternating voltage to the reflector and observing by means of a
cathode-ray oscilloscope the reflector voltages at which oscillations occur.
This is done by connecting the output of a crystal detector to the vertical
plates of the oscilloscope while at the same time applying the alternating
reflector voltage to the horizontal plates. The resultant screen repre
sentation on the cathode-ray tube will be like that shown in the lower
half of Fig. 17.36. If now the cavity length is varied, the modes will
change position progressively as the voltage required to give different
transit times changes. A plot can be made sho,ving reflector voltage
ranges that maintain oscillation as a function of cavity length, which is
usually nearly linear with wave length. It is even possible to record
such an oscillation mode plot photographically by intensity-modulating
the oscilloscope with the crystal output, applying the alternating reflector
voltage to the horizontal plates, and obtaining a vertical deflection
proportional to cavity length by means of a potentiometer connected to
the cavity-plunger drive. The cavity plunger is then moved uniformly
throughout its entire travel while a camera integrates the line indication
of the oscilloscope. Such a photographically recorded mode plot is
shown in Fig. 17.44. The numerous possible modes of oscillation are
labeled in terms of their corresponding electron transit time in cycles
and their equivalent cavity length in wave lengths. For the type 707B
tube shown, oscillations occur for transit times ranging from 1.75 to
3.75 cycles in integral steps and for equivalent cavity lengths ranging
from 0.25 to 1.25 wave lengths in half-wave-Iength steps. Maximum
output is obtained for an electron transit time of 2.75 cycles and an
equivalent cavity length of 0.75 wave length.

Method 'oj Calculating Oscillation Mode Plot. It is possible to deter
mine graphically the form of a mode plot ~uch as was obtained photo
graphically in Fig. 17.44 on the basis of the simple theory proposed in
the previous sections. Such a determination serves as a check upon the
validity of the assumptions made in deriving the above theory.

There is desired a relation between reflector voltage and cavity
length for the different cavity-length and electron-transit-time modes.
A relation between cavity length and wave length has already been given
in Eq. (17.96) and shown in Fig. 17.43. A relation between resonant
wave length and reflector voltage has been given in Eq. (17.75). From



596 VACUUM TUBES

this relation it is seen that for a given transit angle the reflector voltage
is linear with the reciprocal of the resonant wave length. Plots of Eqs.
(17.75) and (17.96) can be combined to give the desired relations bet\veen
reflector voltage and cavity length by means of the construction shown in
Fig. 17.45. In the second quadrant of this chart is given the linear rela
tion between reflector voltage and reciprocal ,vave length. In the fourth
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t;-200
OJ

4=
Q)
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Cavity length, ems.

Zo= 50 ohms
FIG. 17.44.-Photographically recorded mode plot of a broad-band reflex
klystron oscillator. The number pairs give the number of quarter waves
in the resonator and the value of n respectively.

quadrant is given the relation between resonant wave length and cavity
length as sho,vn in Fig. 17.43. In the third quadrant is given the curve
relating ,vave length and its reciprocaL A set of rectangular con
struction lines tying together points in the second, third, and fourth
quadrants for a given set of electron-transit-time and cavity-length
modes yields an intersection in the first quadrant ,vhich is a point on one
of the reflector voltage-cavity-Iength modes desired.

Differences between the theoretical and actual reflector-voltage-
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cavity-length curves result from numerous -limitations' to -the,: simple
theory. Prominent among these is the inadequacy of th~ assumptiop.
of the equivalent circuit shown in Fig. 17.41. This equivalent circuit
is probably adequate at long wave lengths, but not _at short ones. At
short wave lengths the effect of the corner of the concentric-line cavity
adjacent to the tube needs to be considered. The corner has the effe~t

of an impedance-transforming network in the form of a 1r section with a
series inductive reactance and shunting capacitive reactances. )~nother
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FIG. 17.45.-Construction of a reflector-voltage-cavity-length plot.

0.2

limitation to the simple theory is the assumption that the reflector field
is-linear. Actually, the curvature given the reflector electrode to focus
the electrons on the resonator grids may give an appreciable departure
from linearity.

Mode Interference. Mode interference may exist in reflex-klystron
oscillators with concentric-line resonators. This results from the
simultaneous resonance on several modes and may be a serious limita
tion in oscillator design. The mode interferences may be said to arise
primarily from the external resonator characteristics in that they do not
exist in an ideal line resonator ,vhich has no capacity loading and in
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that they are independent of the reflector geometry. For an unloaded
line the length will be directly proportional to the wave length,

l = ph
4

unloaded line length, em (17.97)

where p = 1,3,5, etc., is the number of quarter wave lengths of field
variation along the line. The transit time of an electron in the reflector
space will be

n + ~~
to = f

, (n + ~~)hto = ---c

sec

sec

(17.98)

(17.99)

(17.100)

(17.101)micromicroseconds

sec

Equations (17.97) and (17.99) can be combined to give the transit time
in the reflector space in terms of idealized cavity length for the various
reflector-transit-time and cavity-length modes.

to = (n + ~i)4l
pc

to = 133.3(n + ~i)l
p

A plot of electron transit time in the reflector space against ideal cavity
length is shown in Fig. 17.46.1 Examination of this chart shows that
ideally there will be no tendency for the tube to oscillate simultaneously
on two frequencies. (An exception is the coincidence of the 1.25-,vave
length-3.75-cycle mode with the O.25-wave-Iength-o.75-cycle mode.)
However, many of the prominent modes are very close together, and a
small change in the resonator tuning curve may bring them into
coincidence.

In reflex-klystron oscillators with concentric-line resonators greatest
dependence is placed at present upon the O.75-wave-Iength-resonator
modes. This is because the line loading by the cold-tube capacitance is
usually so high that only very low frequencies can be obtained with
quarter-wave resonance and interest is invariably centered about the
high frequencies. Undoubtedly, the tubes of the future will be made
smaller for a given wave length of operation so that greater use will be
made of quarter-wave-Iength resonances. With O.75-wave-length
resonator modes and the usual dimensions, oscillations will ordinarily
not occur for O.75-cycle electron transit times, for the beam conductance
will be lower than the resonator conductance. Oscillations will not

1 An alternative form of this type of chart was first proposed by W. Huggins and
H. Zeidler.
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ordin~rily occur for electron transit times greater than 4.75 cycles,
for th~ electrons-wiH eventually strike the reflector as its voltage is reduced
to lengthen the transit time.: The resultant range of frequencies that
can be obtained with-O.75-wave-Iength resonators ,viII bracket a 2-tO-l
rang~--of frequencies; though use will ordinarily have to be made of s~veraI
transit-time modes.--
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FIG. 17.47.-Electron transit time as a function of length of a capacitively
loaded line used with a broad-band reflex-klystron oscillator.
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.The chart of Fig. 17.46 serves only to give a general idea of the relation
bet,veen the modes. 'The effect of tube capacity is to put a bend in the
quarter-wave mode line. From Eq. (17.96) it is seen that for very short
,vave lengths the cavity length varies as the square of the \vave length and
hence the electron transit time. All curves of the form given by Eq.
(17.96) have the same form for anyone cavity length ,vhen plotted on
log-log paper, regardless of the ratio of Co to Cg • Some sample curves
of this form are shQ,vn in Fig. 17.47. ,rarious mode interferences are
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possible because of the bend in the curves introduced by the tube capacity.
Unfortunately, the bend frequently occurs right in the region of desired
operation. Examination of Fig. 17.47 sho,vs that the mode interferences
are independent of the reflector-field characteristics of the tube. This is
because the possible crossovers in a chart such as that of Fig. 17.47 are
entirely determined by the geometry of the resonant- cavity. Since the
reflector voltage required to give a certain transit time is always a single
valued function of the transit time regardless of the shape of the reflector
field, it will be true that the mode intenerences \vill not be altered by
changing the reflector-field characteristics. This is to say that, if a given
gap capacity and resonator dimensions result in mode interferences,
merely changing the resonator-reflector distance or the shape of the
reflector electrode ,vill not eliminate these intenerences. All that can
be done is to change the reflector voltage at "\vhich they occur.

The above serves only to introduce the problem of mode interference.
The actual problem is vastly more complicated than indicated above.
This is because a simple capacity loading of the line is not an adequate
equivalent circuit. Actual circuits may have impedance-transforming
circuits associated with the corner connection. Some tubes will even
have an equivalent shunting inductance at the resonator gap. In addi
tion, the reflector field is seldom exactly linear. It may be expected
that in the near future much will be added to the present knowledge of
mode interferences.

Blind Spots. In addition to mode interferences the broad-band
reflex-klystron oscillator will frequently exhibit blind spots, i.e., regions
of no oscillation. In general, such spots ,vill occur when the cavity
impedance is reduced by the effect of a coupled resonant circuit. The
possibility of such coupled resonances are numerous. Most of them can
be eliminated by proper design, but some cannot be eliminated by
resonator design alone since they are inherent in the higher-order oscil
lations of the resonator.

The nature of the change of resonator admittance caused by coupled
resonances is of considerable interest. The admittance locus of a single
high-Q parallel resonant circuit is a straight line parallel to the susceptance
axis in the admittance plane, ,vith frequency increasing uniformly
upward along the line in the vicinity of resonance. Mathematically,
this may be represented by

YT(w) = ~: (1 + 2j (hQl) (17.102)

where B 1 is the magnitude of either susceptance at resonance and 01 is

the fractional deviation of frequency from resonance, I ~ 10. If now
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another resonant circuit is coupled to the above circuit, a bump in the
form of a protrusion to the right will appear in the line locus of resultant
admittance as the coupled circuit passes through resonance. If the
coupling to the second circuit be increased, the size of the bump will

increase up to a critical value of coupling, K I = J2' at which value the

bump will have the form of a cusp. If the coupling be increased still
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FIG. 17.48.-Admittance loci of a resonant circuit with a coupled
resonant secondary.

further, the cusp transforms into a loop. This action is shown in Fig.
17.48. It will be apparent that if the bump, cusp, or loop extends suffi
ciently far to the right the resonator admittance may exceed the electronic
beam admittance of the oscillator tube and oscillations will cease. Even
if the beam admittance is not exceeded, if the resonator admittance has a
loop there will be a frequency discontinuity in the oscillations as reflector
voltage or cavity length is changed because of the inability of the beam
admittance to follow the loop.

The quantitative details of the above phenomena will be indicated
a little further. The impedance of the secondary circuit in the vicinity
of resonance is approximately
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(17.103)

where ~2 is the fractional deviation of frequency from secondary resonance
and X 2 is the magnitude of either reactance at resonance. The imped-

I d . t th· - -t -II b w
2
M2 ·ance coup e In 0 e prImary CIrcuI WI e Z;-' or, In component

form,
_ w2M2Q2 1

Coupled resIstance = X
2

1 + (2 02Q2) 2 (17.104)

2 ~2Q22W2M2 1
Coupled reactance = - X 2 1 + (2 02Q2) 2 (17.105)

Accordingly, the series impedance of the primary is

(17.106)

where

and
202Q22K2

b = 1 + (2 ~2Q2)2

(17.107)

(17.108)

where use has been made of the relation K2 = L~22· Since Yr = Ci~\

the corresponding resonator ttdmittance across the capacity junction is
approximately

(17.109)

where all the symbols have their previous significance_ It is seen that
the effect of a coupled resonant secondary circuit is to increase the normal
conductive component of the primary admittance by a fractional amount
a and to reduce the normal susceptive cOIIJ.ponent of the primary admit
tance by a fractional amount b/201• The reduction in the susceptance
component may be so large that the net susceptance actually decreases
with frequency. This happens when the coupling exceeds the critical
value

(17.110)

for the case of equal primary and secondary resonant frequencies, as
may be seen by setting the derivative of the susceptance term of Eq.
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(17.10Q). with respect to 0 equal to zero: The values of zero susceptance
for equal primary and secondary resonant frequencies occur for

Om = 0 at maximum conductance

~'" = ± ~ ~K2 - d
2

2 at loop crossover

The corresponding values of conductance are

(17.111)

(17.112)

maximum value (17.113)

and

at crossover when crossover eXIsts

(17.114)

Because of the factor K2 in the expression for maximum conductance
and its nonappearance in the crossover value it is expected that the
loop size is a sensitive function of the degree of coupling.

Some typical admittance curves in the presence of a coupled secondary
resonant circuit are shown in Fig. 17.48 for fixed primary and secondary
Q's, equal resonant frequencies, and different degrees of coupling. The
transition from bulge to cusp to loop as the coefficient of coupling is
increased is evident. It is seen that the loop can be eliminated by
reducing the coupling. It can also be eliminated by decreasing the Q
of the secondary circuit. Examination of Eq. (17.109) shows that the
change in admittance introduced by the presence of the resonant second
ary circuit depends only on the frequency parameter 02 and hence the
shape of the resultant admittance does not depend upon the primary
resonant frequency. The primary resonant frequency will determine
only the position of the bulge, cusp, or loop and not its shape. In the
usual case, where the secondary resonant frequency is fixed, the resultant
bump on the resonator-admittance curve will move up as the resonator
length is increased.

Resonances may be coupled into the line resonator in many \vays.
The resonator load may be resonant. Under certain conditions a reso
nant load may be connected to the cavity coupling loop through an
unmatched line, in which case numerous loops may be induced in the
resonator admittance. This is kno\vn as the 'llong-line effect." Some
times the line plunger is not a perfect short, in which case back-cavity
resonances may couple in admittance loops, ,vhich will cause blind spots
or frequency jumps. When the resonant cavity is operating on a 0.75
wave-length resonance, there may occur a higher-order cavity resonance
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that will be coupled into the principal cavity resonance through virtually
imperceptible asymmetries in the structure. The commonest higher
order mode that may occur in cylindrical resonators is sho,vn in Fig.
17.49 in both the actual and the developed form. This is a transverse
electric mode for which the tube gap is a virtual short circuit, for voltage
drops resulting from equal currents flo,ving in opposite directions cancel.
Its resonant ,vave length is given approximately from the developed
rectangular form by the formula

(17.115)

where r2 and rl are the outer and inner radii of the concentric-line reso-

Ouler raclius=rz~
Innerradius=rt~ E8ifB

k------l -----J

Only E lines
are shown
(TE111 )

~jllf )
,,.,l ".- Developed View

~7T~+12)-~'-/

FIG. 17.49.-Commonest higher order resonance field of a con
centric-line resonator.

nator, respectively, and l is its length. Resonance in this manner cannot
exist until the length exceeds a half ,vave length and the mean circum
ference of the line exceeds a ,vave length. Tuning curves for both the
desired cavity resonance and the undesired higher mode are sho,vn in

Fig. 17.50. For an equivalent cavity length of 3; the desired line mode

,viII have the shape sho"vn and previously discussed.. Its slope ,vill be
slightly greater than ~~ for the axes of Fig. 17.50. The first higher
order mode ,vill have a curve that starts out with a slope of 2 and then
becomes asymptotic to a wave length equal to the mean circumference
of the line. It is inevitable that the t,vo curves sho,vn should intersect.
For usual tube dimensions the intersection occurs at about 70 per cent
of the maximum ,vave length of resonance of the higher-order mode.
When the cavity is simultaneously resonant in both modes, a slight
coupling bet,veen them through some asymmetry in construction ,viII
cause a loop to be induced in the resonator impedance with a resultant
blind spot or frequency jump as line length or reflector voltage is varied.
Such a blind spot is very difficult to eliminate. It should be pointed out
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that this type of blind spot cannot occur when the cavity is operated on a
O.25-wave-Iength resonance; for then the resonator tuning curve has a
slope of about 4 on a plot like that of Fig. 17.50, and it is impossible for
an intersection with the higher-order resonance to occur. This fact gives
a great incentive for developing tubes which are small enough so that
they can be operated on a O.25-wave-Iength line resonance.!
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FIG. 17.50.-Tuning curves of a concentric-line cavity for the desired mode and the
first higher order mode.

17.11. The Two-resonator Klystron Oscillator. A picture of an
early type of two-resonator klystron has already been shown in Fig. 2.9.
Modern tubes are quite similar except that the resonators are back to
back so that coupling may be introduced through a set of coupling loops
instead of by means of loops at the end of a transmission line of
appreciable length. A schematic dra\ving of a t\vo-resonator klystron
oscillator and its equivalent circuit is shown in Fig. 17.51. The only
difference between the amplifier and oscillator is that the oscillator has
coupling between secondary and primary.

In the equivalent circuit shown in Fig. 17.51 several assumptions
have been made in the interests of simplicity, all of \vhich are justifiable.

1 For further information on the subject of broad-band reflex-klystron oscillators
s~e Chaps. 31 and 32, Vol. II of "Very High-Frequency Techniques," report of
the wartime researches of the Radio Research Laboratory, Harvard University,
McGraw-Hill, New York, 1947.
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It has been assumed that the coupling between buncher and catcher
resonators is purely inductive~ This it is in many tubes, though in
some there is coupling through a transmission line, which merely changes
the phase of the mutual impedance from 90 deg to an arbitrary value.
It has been assumed that all losses may be inserted in series ,vith the
resonator reactances. This is quite satisfactory if the proper conversion
factors are always used and if the circuit Q's are greater than 20. Final

Za=Ser/es
impedance

IouI'

~
· --I': '" Cb ~6- Z~)

"- --......... R L6 {1. Za

-~..... -Z6=Series impedance

FIG. 17.5L--8chematic drawing of a two-resonator klystron
oscillator and the equivalent circuit.

answers will involve the Q's of the resonators and will be independent
of whether the loss resistances are in series or in parallel ,vith the reso
nator~ The resistance in series with the buncher resonator includes the
effect of the ohmic resonator losses and also the power required to bunch
the beam. The resistance in series with ...the catcher resonator includes
the ohmic losses of the resonator and also the load. The catcher reso
nator will ordinarily be more heavily loaded than the buncher resonator
so that its Q will be lower.

The analysis of the two-resonator klystron oscillator will proceed
along the lines used for the reflex-klystron oscillator, though equivalent
methods are just as satisfactory.l.2 The fundamental requirement for

1 WEBSTER, D. L., Theory of Klystron Oscillations, Jour. Appl. Phys., vol. 10,
pp. 864-872, December, 1939.

2 HARRISON, A. E., Klystron Oscillators, Electronics, vol. 17, pp. 100-107, Novem
ber, 1944~
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oscillation in a klystron is the same as for any oscillator. This is to say
that the transadmittance of the tube must equal the current-voltage
reduction factor (transfer admittance) of the network

where the transadmittance of the tube

Y = lout
m Va

(17.116)

(17.117a)

has been given in Eq. (17.62) and the current-voltage step-down factor
of the coupling circuit is

(17.1176)

under the condition that all circuit meshes are closed.
The beam transadmittance Ymhas a phase angle that depends only

upon the electron transit angle between resonators, i.e., only upon beam
voltage. The magnitude, ho,vever, has a maximum value that is
directly proportional to the transit angle, while the fraction of this value
that is realized depends upon the buncher-resonator voltage Va. Thus
Y m is a nonlinear admittance, decreasing with amplitude of exciting
voltage. The circuit transfer admittance Yba, on the other hand,
does not vary with electron transit angle, beam voltage, or amplitude
of r-f voltage. It is a quantity that for a given adjustment of the
resonators, coupling, and loading varies only with frequency. Hence
for a fixed adjustment of the circuit the tube may be expected to go in
and out of oscillation as beam voltage is varied, for this changes the phase
of the beam transadmittance progressively. The resultant selective
oscillation with respect to beam voltage has already been shown in Fig.
2.10. It may be expected that the t\vo-resonator klystron can be
analyzed by a method similar to that used for the reflex-klystron oscil
lator, the difference being that instead of equating resonator admittance
and negative beam admittance for the condition of oscillation we now
equate beam transadmittance and the circuit transfer admittance Y ba.

In order to specify conditions of oscillation it will be necessary to
know the form of the factor Y ba• This is readily obtained by direct
application of standard circuit theory. Let the series self-impedances
of the input and output resonant circuits be Za and Zb, these circuits
including all the loss effects in the form of series resistance. The input
and output impedances of the box representing the tube in Fig. 17.51
,viII be assumed infinite since the beam effects have been incorporated
into the resistance of the input and output circuits. The output voltage
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is developed across an admittance Y r , which includes the effect of the
coupled input resonator and has the form

(17.118)

where Zm is the mutual impedance between the input and output circuits.
In order to establish the relation bet,veen output current and input
voltage let the sequence of current-voltage relations be traced back,vard
from the input. The input voltage is related to the current flo,ving in
the input resonant circuit by

(17.119)

to a good degree of approximation for a high-Q circuit. The circulating
current in the input resonator is related to that in the output resonator by

I = ZmIb
a Za (17.120)

(17.121)

The circulating current in the output resonator is related to the output
current from the tube by

I - lout
b - iwLbYr

with sufficient accuracy for high-Q circuits. Putting these last four
equations together to obtain the ratio of tube output current to the input
voltage that it produces,

~: = L:Zm (Z$b - Zm2
) (17.122)

Since wLb = ~C in the vicinity of resonance and since the coefficient
w b

of coupling between buncher and catcher resonators is given by_

(17.123)

then

(17.124)

This ratio obtained from the circuit action must equal the ratio of output
current to input voltage produced by the beam, i.e.,

(17.125)
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This is the important defining relation for oscillation, similar to the
relation

(17.85)

that holds for reflex-klystron oscillators.
Conditions for oscillation can now be studied by examining the locus

of beam transadmittance in the admittance plane and comparing with
the locus of circuit transfer admittance. The beam-transadmittance
locus will be exactly the same as the self-admittance spiral of the reflex
klystron oscillator if the beam current does not change as the beam voltage
is varied. Under these conditions the locus of the beam transadmittance
will be a spiral as the beam voltage is varied.

Another type of beam-tr8:nsadmittance locus commonly occurs. If
the cathode is space-charge-limited, the current will increase as the three
halves po,ver of the beam voltage. For this condition the d-c beam
conductance will be proportional to the square root of the beam voltage.
Since the beam conductance is also directly proportional to the d-c
transit angle, which depends upon the square root of the beam voltage,
this means that the transadmittance magnitude will be independent of
d-c transit angle for any given value of the bunching parameter. As a
result, the locus of the beam transadmittance will be a circle as the beam
voltage is varied. The power that the beam can deliver to the circuit
,vill, however, vary as the beam voltage, and the maximum power will
be proportional to the cube of the beam voltage.

The locus of the transadmittance through the circuit given by the
right side of Eq. (17.125) is not so well known. It will be recognized,
however, that the factor ZaZb - Zm2 is one which appears frequently
in coupled-circuit theory and is the one that contributes virtually all the
variation of the transfer admittance in the vicinity of resonance. In
the vicinity of resonance the factor Zm is relatively constant compared
with the factor ZaZb - Zm2 and will be so considered. In particular, the
factor ZaZb - Zm2 appears in the denominator for the expression relating
secondary current to series primary voltage in coupled-resonant-circuit
theory.l It is this factor that gives rise to the well-known double
peaked response curves for couplings greater than critical. It would
be expected therefore that the locus of ZaZb - Zm2 itself would be such
as to exhibit two minima for coupling~ greater than critical. This is
readily shown to be the case.

To examine the defining relation for oscillation given by (Eq. 17.125)
let the mutual impedance be assumed to be inductive of the form

Zm = jwM (17.126)

1 TERMAN, F. E., uRadio Engineering," 2d ed., p. 74, Eq. (42), p. 82, Eq. (45),
McGraw-Hill, New York, 1937.
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For small coupling factors, coupling of any other form will lead to the
same result except that the phase of the coupling impedance may be
different from 90 deg. With the above assumed form of the coupling
impedance, Eq. (17.125) reduces to

(17.127)

If the input and output circuits have relatively high Q's then their series
impedances can be represented by

(17.128)

and

(17.129)

where 0 is the fractional deviation from resonance and it has been assumed
that the resonant frequencies of the input and output resonators are the
same. The above are simple linear approximations for the actual
expressions but hold well enough in the vicinity of resonance. The
effect of different input and output resonant frequencies \vill be discussed
later. Using Eq. (17.125) and substituting Eqs. (17.128) and (17.129)
into Eq. (17.127),

Y m = wMbaQb [(1 + K2QaQb - 4QaQb (j2) + j2 (j(Qa +Qb)] (17.130)

The locus of the circuit transfer admittance is a simple parabola. The size
of the parabola depends upon the Q factors and upon the coupling factor.
The parabola is symmetrically disposed about the imaginary axis when
the primary and secondary resonant frequencies are the same. For a
given set of Q values the parabola will merely be shifted upward and
have its curvature increased by an increase in coupling. For critical
coupling ,

1 'K 2-
c - QaQb (17.131)

and smaller values of coupling, the vertex of the parabola will be the
closest point to the origin. For values greater than critical coupling
there ,vill be two points symmetrically disposed about the vertex that
are closest to the origin, while the vertex itself will be slightly farther
away.

Some typical parabolic loci are shown in Fig. 17.52. These reveal
all the well-kno,vn characteristics of tuned coupled circuits and some
of the less well-known. Below critical coupling the transfer admittance
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is large, which means that there is a small buncher voltage for a large
output current. It is convenient to talk in terms of the reciprocal
magnitude of the transfer admittance since this gives the ratio of buncher
voltage to catcher current. Assuming a constant catcher current, the
buncher voltage increases as the coupling increases up to the critical
value and is single-peaked as frequency is varied. As critical coupling
is approached, the single resonant peak becomes broader, indicated by

-K=00025=Kc/4

j3

lba=(IJ~a ah [i/+K
2
Qa Q6 -4Qa 0" &2)

+j20(Qa+Q6f}

Qa=ZO~ Qh=SO

~o=Q0005

(be/ween po/nts)
z M2

K=-
LaLh

Arrows .show dlrecllon of'
increasing frequency

FIG. 17.52.-Parabolic transfer-admittance loci of a two-mesh coupled resonant
circuit.

the decreased size of a constant-frequency interval on the admittance
locus. Up to and including critical coupling the vertex of the parabola
is the point on the parabola closest to the origin, ,vhich means that the
frequency response ,vill be single-peaked and that maximum buncher
voltage will occur at the frequency of resonance of the resonant circuits.
For couplings greater than critical, the vertex of the admittance locus
recedes from the origin, but the parabolas become curved strongly
enough so that two points symmetrically disposed on either side of the
vertex are closest to the origin. This means that the input voltage is
double-peaked as frequency is varied and that the response at the peaks
i& less than for critical coupling. This is a proper characteristic of
coupled circuits. The peak response for couplings greater than critical
will be equal to that at critical coupling only if the circuits are the same,
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i.e., if the Q's are identical. 1 The peak response with greater than
critical coupling drops off more rapidly with coupling as the dissimilarity
of the two circuits is increased (same resonant frequency but different
Q's). In addition to becoming double-peaked and smaller in peak
amplitude as coupling increases, the response curves become broader
with frequency, as may be seen from the decreased size of the constant
frequency interval. For klystron oscillators with the Q ratio given, it is
seen that coupling will probably have to lie within a factor of two of the

-j3

-J:B
FIG. 17.53.-Two-resonator klystron-oscillator operation in terms of ad
mittance loci.

critical value in order to give appreciable output. The error made in
using the linear approximations to the correct expressions is quite small.
It is independent of the Q values and depends only upon the value of o.
The error is equal to three-halves of the 0 value. Thus the maximum
error for any of the loci shown in Fig. 17.52 is about two per cent.

The two-resonator klystron oscillator will oscillate whenever the
beam-transadmittance locus enters the area outside the cjrcuit-transfer
admittance parabola (the area outside of the parabola is that in which all
the possible tangents to the parabola lie). This requires that the cou
pling between buncher and catcher circuits be great enough, that the
beam transadmittance be large enough in magnitude, and that the phase
angle be correct. Shown in Fig. 17.53 is the intersection of a beam-

1 AIKEN, C. B., Two Mesh Tuned Coupled Circuit Filters, Proc. I.R.E., vol. 25,
;;p. 230-272, February, 1937.
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transadmittance spiral and the circuit-transfer-admittance parabola.
Whenever the zero-signal beam transadmittance exceeds the circuit
transadmittance in magnitude, oscillations will build up that will shrink
the beam-transadmittance locus. This has the result that as beam
voltage is varied the beam transadmittance will trace the circuit transfer
admittance whenever the latter is smaller than the zero-voltage beam
transadmittance. Oscillations will in general occur whenever the
electron transit angle is in near equality with the phase of the circuit
transfer admittance, i.e., whenever

(17.132)

where 4> is the angle of the circuit transfer and n = 1, 2, 3, etc. For the
particular case shown in Fig. 17.53 this will give oscillations in the vicinity
of

TO = 27rn (17.133)

In general, oscillations will occur for values of the transit angle differing
by integral multiples of 211".

For anyone loop of the beam-transadmittance locus, relative power
contours can be draWll, as for the reflex oscillator in Fig. 17.39. Positive
power-output contours will occur only in the upper half plane of Fig.
17.53, because as may be seen by comparing Eqs. (17.118) and (17.127)
the circuit transfer admittance equals the output admittance multiplied
by some numerical factors and rotated 90 deg in the counterclockwise
direction. This means that the positive-conductance region of the output
admittance appears in the upper half plane of the circuit-transfer
admittance plot. The relative power contours will have the same general
shape as those of the reflex tube.

The beam-transadmittance locus is traced in a clockwise direction as
the beam voltage is decreased. Hence, for a constant current, the
lnagnitude of the beam transadmittance will decrease as the beam voltage
is increased. This means that there is a highest voltage at which the
tube will oscillate which occurs when the transit angle is so small that
the magnitude of the beam transadmittance is reduced to the point
where it does not intersect the circuit-transfer-admittance parabola.
With actual tubes it may not be possible to reach this voltage without
exceeding some design limitation of the tube.

The selective oscillation with voltage is shown in Fig. 2.10. Output
power loops as sho,vn in Fig. 2.10 may be single- or double-peaked. If
the resonator coupling is much below critical, the mode loops will gener
ally be single-peaked. However, with critical coupling the output-power
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pulses may be either single- or double-peaked. In general, if the vertex
of the circuit-transfer-admittance parabola is exceeded only slightly in
magnitude by the zero-signal beam transadmittance, the power loops
will be single peaked. If the vertex of the circuit-transfer-admittance
parabola is greatly exceeded in magnitude by the zero-signal beam
transadmittance, the output loops will generally be strongly double
peaked. When the resonator coupling is considerably above critical,
the power-output loops will generally be double-peaked.

As the beam voltage is changed during a condition of oscillation, the
frequency of oscillation will change slightly. The curves of frequency
deviation will resemble the curves of phase shift through the coupled
resonant circuits as a function of frequency. When the resonator
coupling is critical or less, the frequency deviation will be nearly linear
with transit angle or beam voltage everywhere but at the edges of the
oscillation modes. The frequency will increase as the beam voltage
increases. When the resonator coupling is in excess of the critical value,
there will be a strong kink in the frequency-deviation curve near the
middle of the mode due to the fact that the frequency changes more
rapidly there. Of interest is the rate of frequency change at mid-mode
with beam voltage. By a method similar to that used in obtaining Eq.
(17.93) it is readily shown that

df = (1 + K2QaQb) ~ dVo

10 Qa + Qb 4 Vo

at the mid-mode. The frequency stability will ordinarily be of the order
of tens of kilocycles per volt.

If all operating conditions of the two-resonator klystron oscillator
but the magnitude of the beam current are kept constant, it will be found
that there is a minimum beam current which wUI sustain oscillations.
The limiting condition for oscillation is that at which the beam-trans
admittance spiral is just tangent to the circuit-transadmittance parabola.
This point of tangency will be near the vertex of the parabola for all
cases except coupling greatly in excess of critical. For the usual condi
tions the limiting condition of oscillation, trom Eqs. (17.60) and (17.130),

GoA 2To _ 1 + K2QaQb
-2- - WMQaQb

from which the minimum current that "viII sustain oscillations is

2 1 + K2Qo,Qb
[min = -A2 MQ Q VO

TO W a b
(17.136)

Two-resonator klystron o~cillators have been built for frequencies
ranging from 600 to 4,000 mc. In power output they have ranged from
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a fraction of a watt to one kilowatt. In the United States the develop
ment of these tubes has been pioneered by the Sperry Gyroscope
Company, which has specialized in tubes with evacuated resonators.
European tube developers have favored tubes with cavities external
to the evacuated parts of the tube.

17.12. The Heil Tube. Historically, the first tube to use the velocity
modulation principle was one proposed by the Heil brothers. l A diagram
of such a tube is shown in Fig. 17.54. The tube makes use of a beam
of electrons, ,vhich are shot across the ends of a concentric-line resonator.
Each electron thereby follows a path along which r-f voltage appears
twice. The voltage across the second gap is instantaneously 180 deg
out of phase with the voltage across the first gap. Mter crossing both

gaps the beam electrons are taken out
of action by a collector electrode. The
tube operates by bunching the electron
beam in the first gap and extracting
energy from the bunched electrons in
the second gap. As with the reflex
klystron oscillator the tube will reso
nate when the transit angle bet,veen

COtfhode .'·/nferOlc lion gap crossings is n + ~i cycles and if
gaps the resonator admittance is smaller in

FIG. 17.54.-Diagram of the Hei! magnitude than the beam conductance.
tube. The analysis of the Reil tube proceeds
along exactly the same lines as does that of the reflex tube. Some excel
lent Heil tubes have been made, but they seem to have lost the applica
tion race in competition with the reflex-klystron oscillator. This is due
to a number of reasons prominent among which are the following: The
transmission-line type of resonator is not quite as efficient at super
high frequencies as is the reentrant-cavity type of resonator; the tube
is not so well adapted to an external resonator. Against these dis
advantages, the Heil tube is superior to the reflex-klystron oscillator
in that multiple electron transits are avoided and that tubes can be built
to which magnetic beam focusing is easily applied.

17.13. Bunching Effects in Negative-grid Tubes. The analysis of
klystron tubes by means of simple bunching theory is so enlightening that
the question is raised whether the action of negative-grid tubes cannot
be explained in similar terms. Certainly, when transit times are large
and voltages are not excessive, there will be a bunching action occurring
in the electron stream of negative-grid tubes. An examination of this

1 HElL and HElL, op. cit.; see also HAHN, W. C., and G. F. METCALF, Velocity
Modulated Tubes, Proc. I.R.E., vol. 27, pp. 106-116, February, 1939.
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bunching action should reveal some relations that will tie in with the
observed action of such tubes at ultra-high frequencies.

In attempting to analyze the action of negative-grid tubes in terms
of velocity modulat~on one immediately encounters the difficulty of
accounting properly for space-charge effects. However, even though
the neglecting of space-charge effects is bound to lead to large errors, it is
instructive to examine tube behavior under the assumption of their
absence. Let it be assumed that the potential variation from cathode to
grid plane and from grid plane to plate is linear. Let it further be
assumed that bunching action occurs only in the grid-cathode region, a
reasonable assumption since the a-c components of field will be larger
here and since the time spent in this region will be larger too. Let it
further be assumed that alternating components of voltage appear only
on the grid and that these are small compared \vith the direct potentials
involved. The final assumption is that the emission is directly propor-

tional to the equivalent grid voltage V g + V p. In addition to space
fJ.

charge, the displacement components of current are neglected6
If ,vith the above assumptions an analysis of the electron action is

made, it is possible to solve for electron arrival time at the plate in terms
of its departure time from the cathode. Plate current can then be solved
for by allo\ving for variation of emission over the cycle. The resulting
expression for plate current is expected to be a function of the amplitude
of grid voltage and of the transit angles involved. It should reduce
properly to approximate expressions for current flow for negligible transit
angles and should exhibit some bunching effects.

'!he resulting expression for plate current obtained by neglecting all
but first- and second-order terms in grid voltage is

lin phase = U COS rep + V sin rep

lout of phase = U sin rep - V cos rep

where the phase is taken relative to the grid voltage and T ep is the cathode
plate transit angle and where

U = -2G(:b + VC)Jl(a2~eo2)JoGar:o)

+ GV0-10 (a2~co2) J oGareo) (17.138)

and

(
Vb ) (a2Tco2) (1 )V = 2G -; + Ve J o -6- J 1 "2 aT t;(J

(
a

2Tc(J2) (1 )- GVgJ 1 -6- J 1 "2 a'TC (1 (17.139)
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where G is mutual conductance, V 11 and Vcare d-c components of plate and
grid-plane potentials, a is the ratio of a-c to d-c grid-plane potential,
T eg is cathode-grid transit angle, Vg is a-c component of grid-plane poten
tial, and J 0 and J 1 are the zero- and first-order Bessel functions of the first
kind. From the above the expression for magnitude of plate current
can be written

(17.140)

and the corresponding phase by which plate current lags grid voltage is

cf>p = rep - arctan (~) (17.141)

The above expressions reveal much about the nature of the plate
current as affected by the transit time and the bunching action. In the
first place the magnitude of plate current as given by Eq. (17.140) is
independent of the cathode-plate transit angle and depends only upon
the magnitude of the a-c component of grid voltage and the cathode
grid transit angle. The dependence is partly in terms of the well-known
first-order bunching parameter ~aTc(J and also in terms of the second-order

a2r 2
bunching parameter f· The components of plate current given by

Eqs. (17.137a) and (17.137b) each contain two types of terms. The first
term gives the a-c components of current that ,vould result if the emission
were constant over the cycle and the plate current were produced only by
bunching action. These terms properly reduce to zero for zero transit
angle. The second terms give the current components resulting from
the normal grid action but reduced by the dispersing effect of the bunching
action. The normal-current terms are correctly maximum for zero
transit angle and drop off in magnitude as the transit angle increases..
The bunching terms initially are zero, increase, and then decrease again.

The nature of the plate current is best illustrated by some specific
examples. In Fig. 17.55 are sho,vn the magnitude and phase of plate
current for a typical tube under the conditions that a = 0.2 and
T ep = 2Tcg e The magnitude is seen to drop off more or less gradually.
Undoubtedly this should be a smooth curve, but it exhibits some small
ripples because higher-order effects have been neglected. The phase
of the current initially is -180 deg and then drops back progressively
as the cathode-plate transit angle is increased. The change of phase is
always less than the change of cathode-plate transit angle but has its
principal dependence upon this angle.

In Fig. 17.56 is given another set of curves showing magnitude and

phase of plate current for the conditions that a = 0.5 and rep = 4;<11.
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This is a rather large value of a for bunching relations but is not too large
in this case because second-order effects have been included. The
magnitude in this case exhibits a striking decrease with transit angle
and then a slight increase. The locus of plate current in amplitude and
phase is again a form of spiral, but with the second turn not enclosing
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FIG. 17.55.-Triode plate current as a function of transit angle
for relatively small excitation.

the origin. As before, the magnitude depends only on the cathode-grid
transit angle, and the phase has its principal dependence upon the
cathode-plate transit angle, though the actual phase is always somewhat
less than this value. The plate-current spirals, which are really trans
admittance spirals, bear a striking resemblance to the transadmittance
spirals for klystron tubes"
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1.0 1-210°

The above analysis must not be taken too seriously because it has
neglected space-charge and displacement currents. However, the
nature of the variations in plate current is quite possibly not too different
from that shown in Figs. 17.55 and 17.56. Correlations with reduction
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FIG. 17.56.-Triode plate current as a function of transit angle
for moderate excitation.

in amplifier output with increasing frequency and reduction of oscillator
output as a result of both reduction in magnitude of current and change
in phase are evident.



CHAPTER 18

MAGNETRON OSCILLATORS

18.1. Introduction. A brief description of the magnetron has already
been given in the chapter on Basic Tube Types. Basically, the mag
netron is a tube containing a cathode and what is usually a symmetrical
distribution of anodes in which electrons move under the influence of an
internal electric field and a crossed externally supplied static magnetic
field. The electrons move in complicated curved paths, and under certain
conditions powerful oscillations will be sustained.

The magnetron underwent a tremendous development during the
Second World War. Its development made possible the numerous
microwave radars, which used it as a source of extremely high power
pulses in the frequency range of 700 to 24,000 mc. It has amazed every
one by its efficiency, relatively high for an electronic device. Efficiencies
are of the order of 50 to 80 per cent, and these are obtained at reasonable
values of current, voltage, and magnetic field. Furthermore, the physical
dimensions of magnetrons are of the order of the wave length, so that
even the highest frequency magnetrons are not too hard to build.

A brief study of electronic motion of the type encountered in mag
netrons has already been made in Chap. 6. Here it was found that
electrons in combined electric and magnetic fields will move in strongly
curved paths with periods of rotation corresponding to microwave
frequencies. Thus, an electron in a uniform magnetic field of 1~070

gausses rotates in a circular path at a frequency of 3,000 me per sec.
By the use of multisegmented anodes, oscillations at frequencies higher
than that.. corresponding to the simple rotation can be obtained. Inher
ently, then, electron motion in magnetic ,fields is of the right nature to
produce microwave oscillations.

Many kinds of magnetron tubes can be built, ranging from a single
anode tube to multisegment-anode tubes. Many kinds of oscillations
are also possible. The nature of the electron paths is such that a negative
resistance can be obtained from the division of current between anode
segments. This leads to negative-resistance oscillations. This type
of oscillation is effective only at low frequencies and is no longer con
sidered of great importance. Early work in the field was largely con
fined to oscillations of two- and four-segment-anode tubes involving

621



622 V ACUUM TUBES

electron-transit-time characteristics. Later development sho,ved that
such tubes were the least efficient of the entire class of magnetrons, and
they are no,v not of much interest except for special applications. 1

Present interest is concentrated mainly in electronic oscillations of multi
segment cavity magnetrons, and most of the comments in this chapter
will be restricted to this case.

The complete theory of magnetron operation is not known at present.
Wartime developments were largely of an empirical sort. Even a large
fraction of the present information available on the subject is based upon
specific calculations and tests. 2 It will probably be some time before
the great mass of informatio,n on this subject is reduced to a simple
organized treatment. The most complete organization of this sort
appears in the report of the wartime researches of the Radiation Labora
tory.3 The complete story will, of course, have to be written by the men
who are responsible for most of the recent development and by their
successors who will carryon this work. There will be given in this
chapter only those fundamental relations which are fairly well estab
lished. This will obviously be insufficient as a basis for the design of
tubes but will serve as an introduction to the subject, which will furnish
a basis for understanding the detailed reports on this subject.

18.2. Structural Form of Magnetrons. All magnetrons have in
common a cathode, an anode, and an output-coupling device. In
addition, magnetrons may have tuning mechanisms, mode suppressors,
and end plates. Early two- and four-segment magnetrons were housed
in glass envelopes with the cathode in the form of a tungsten filament
and the anode segments supported from a two-wire transmission line
brought out through the end of the tube opposite to that at which the
filament leads were brought out. In some tubes, special end plates
supported from leads brought out at the filament end of the tube
were used to remove out-ai-phase electrons from the cathode-anode
region. 4•5

Modern multicavity magnetrons are housed in metal and use glass

1 Bibliographies of magnetron articles prior to 1941 are given in "High Frequency
Thermionic Tubes" by A. F. Harvey, Wiley, New York, 1943, and "Einfiihrung in
der Theorie und Technik der Dezimeterwellen" by O. Groos, Herzel, Leipzig, 1937.

2 FISK, J. B., H. D. HAGSTRAM, and P. L. HARTMAN, The Magnetron as a Gen
erator of Centimeter Waves, Bell Sys. Tech. Jour., vol. 25, pp. 1-188, April, 1946.

3Radiation Laboratory Series, 28 Volumes, McGraw-Hill, New York, 1947-1948.
4. LINDER, E. G., Description and Characteristics of End Plate l\tfagnetrons, Proc.

I.R.E., vol. 24, pp. 633-653, April, 1936.
5LINDER, E. G., Anode Tank Circuit Magnetron, Proc. I.R.E., vol. 27, pp. 732

738, November, 1939.
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only around the high-voltage filament leads and at the point where the
output power is taken from the tube. The multisegmented anode is
commonly formed of laminations having one of the forms shown in Fig.
18.1. Each of these consists in effect of a number of parallel resonant
circuits in series around the inner circumference of the anode. In form
a the individual resonant circuits are nearly lumped, i.e., there is a

(aJ
Hole and slot type

(6)
Slot type

(c) (dJ
VOlne type Rising sun type

FIG. 18. I.-Various forms of muftisegment anodes.

capacity across each gap in parallel with the inductance formed by the
inner surface of the circular hole. Actually, such a circuit is not truly
lumped, for the dimensions of the various parts may be an appreciable
fraction of a wave length long. In other forms of the anode the resonant
circuit consists of a shorted section of strip transmission line.

The cathodes of multicavity magnetrons are usually of appreciable
diameter and in tubes for pulsed operation are indirectly heated and make
use of oxide emitters. The cathode is usually supported by the filament
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L9ads, which are brought oui at right angles to the axis of the tube. The
cathode usually extends on each end about 25 per cent in length beyond
the stack of anode laminations. Great precautions are taken to insulate
the cathode leads for the high voltage that the tube must withstand;
often the cathode lead insulator takes up about one-third the volume
of the tube.

The output-coupling device in a multicavity magnetron is commonly
a loop located at the base of one of the resonant radial anode spaces and

fa)

~.)Tapered
:,' ramps -~-

H-Shaped~
window ,..~

(h)
FIG. 18.2.-0utput-coupling schemes for multicavity
magnetrons.

leading out of the tube through a concentric line \vith a vacuum
glass seal. Such an arrangement is shown in Fig. 18.2a. In some tubes
the output coupling is accomplished by means of a tapered transmission
line feeding from a narrow slot at the base of one of the radial resonant
spaces and leading to a wave-guide section, with the vacuum seal effected
by a window at the end of the guide section as shown in Fig. 18.2b..
Numerous variations of these t,vo basic schemes, including aperture
coupling to a wave guide, form the bulk of the output-coupling
arrangements.



MAGNETRON OSC1Ll"ATORS 625

FIG. 18.3. - Approximate
equivalent circuit of the
magnetron of Fig. i8.la.

Multicavity magnetrons will frequently have iron pole pieces built
into them, with the iron brought close to the cathode and arranged so
that a magnetic field parallel to the cathode is created. The pole pieces
are brought to the external surface of the tube so that a magnet can be
attached external to the vacuum. In some tubes the cathode leads are
brought out axially through a hole in the iron pole pieces.

In addition, there are frequently straps interconnected between the
anode pole pieces in order to separate the
various natural resonant frequencies of the
resonant circuit. Various tuning devices are
also used. These will be described in connec
tion with the resonant properties of the multi
cavity circuit.

18.3. Resonant Properties of Multicavity
Magnetrons. The resonant systems shown
in Fig. 18.1 will have a series of natural
resonant frequencies. These frequencies are
most properly determined by an analysis of
the electromagnetic fields of the system.
Ho,vever, since most engineers are more
familiar with circuits than with fields, a partial approximate analysis will
be made in terms of some equivalent circuits. It must be recognized,
ho\vever, that the determination of suitable equivalent circuits depends
originally upon a knowledge of the fields.

The anode-cathode arrangement of Fig. 18.1a is, at first glance,
expected to have the equivalent circuit shown in Fig. 18.3. The capacity
C1 represents the capacity between a pole face and the anode. The

capacity C2 represents the capacity
between two adjacent pole faces.
The inductance L 1 is the induct
ance of the inner surface of the
circular hole. Actually, this is a
poor equivalent circuit, for it neg

FIG. 18.4.-Developed form of the equiva- lects transmission-line effects and
lent circuit of the magnetron of Fig. 18.la.

the large mutual inductance be-
tween adjacent anode spaces. I twill, ho,vever, serve as a basis for an initial
discussion. Let the circuit be developed by unwrapping the structure to
give the arrangement of Fig. 18.4. This is seen to be a low-pass filter. As
such, it will have a pass band in which the attenuation is substantially
zero and in \vhich there is a phase shift per section which increases
uniformly from zero at zero frequency to 1r radians per section at cutoff.
When the total phase shift. along the series of N pole faces and hence N
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sections is any integral multiple of 2r, then standing waves can exist in
the circular arrangement, which is merely the developed form connected
onto itself. The actual resonant fields are formed by two waves of equal
amplitude traveling in opposite directions around the cathode. Ana
lytically, this occurs whenever

{3 = 2nr
N

(18.1)

where {3 is the phase shift per section in radians, n is the number of cycles
of a traveling wave around the cathode, commonly referred to as the
mode number, and N is the number of gaps or pole faces. When n

equals ~, then the phase shift per section is 7r radians and the fields will

reverse at adjacent gaps. This mode is called the 1r mode and is the one

(a) lhJ
FIG. 18.5.-Fields in multicavity magnetrons.

ordinarily used in multicavity magnetrons. In Fig. 18.5 are shown the
fields in a multicavity magnetron of eight segments for n equal to 1 and
4, the latter being the 7f' mode. The resultant field has the properties
of a standing wave, i.e., it remains stationary and only varies in magni
tude periodically with time. Such a standing wave can, of course, be
resolved into traveling waves, and it is the study of the interaction
of the electrons with one of the traveling-wave components that leads
to the best picture of magnetron operation.

The phase-shift function of the circuit of Fig. 18.4 can be evaluated
bJT applying Campbell's formula. 1 In the pass band this has the form

cos {3 = 1 + (2~) (18.2)

1 EVERITT, W. L., "Communication Engineering," 2d ed., p. 173, McGraw-Hill,
New York. 19&:--
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where {3 is the phase shift per section in radians, Z 1 is the total series
impedance per section, and Z2 is the total shunt impedance per section.
In this case

which reduces to

L1

Z - c;
1 - • L 1

JW 1 +~CJW 1

(18.3)

(18.4)

where WI is the angular resonant frequency of the parallel LIC l com

bination equal to vi 1 in magnitude. The shunt impedance is given
L1C1

by
1

Z2 = -.~
JwC2

Making the indicated substitutions into Eq. (18.2),

(18.5)

(18.6)

1 W 2C2

2 W1
2C 1cos{3 = 1 - --
w2

1--
Wl

2

If now Eq. (18.1) is invoked and the above equation solved for (:)2,

there is obtained

(18.7)

where w is now the angular resonant frequency corresponding to a given
value of nand N. The resonant frequencies for the assumed circuit
will have the form shown in Fig. 18.6. The important observation about
:Fig. 18.6 is that the frequency of the 1r mode is not very different from
the next resonant frequency. This is a bad situation and cannot be
tolerated if the frequency separation is too s~all. A 1 per cent frequency
separation is poor and will give trouble from the oscillation jumping to
the adjacent frequency. 1\ 3 per cent frequency separation is marginal.
A 15 per cent frequency separation is good.

The above analysis is not very satisfactory, for it neglects the mutual
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FIG. 18.6.-Resonant frequencies of the circuit
of Fig. 18.3.
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FIG. 18.7.-Equivalent circuits of multicavity magne
trons including the mutual inductance between slots.
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inductance between adjacent slots, which is expected to be quite high.
The magnetic flux lines are parallel to the axis of the tube in the slots.
At the edges of the slots the magnetic flux lines divide and return through
the adjacent slots. Accordingly, the equivalent circuit is expected to
look like that shown in Fig. 18.7a. The ratio of the number of magnetic
flux lines returning through adjacent slots to the total number will be
nearly unity, which means that the coupling is nearly unity. The mutual
inductances of Fig. 18.7a can be replaced by the T-section equivalent
of Fig. 18.7b. 1 This allows the circuit of Fig. 18.7a to be represented
as in Fig. 18.7c. This circuit has the characteristics of a band-pass

o 2 3 4
n

FIG. I8.B.-Resonant frequencies of the circuit
of Fig. 18.7.

filter, the phase shift at the low-frequency cutoff being 1r radians per
section. For this circuit the resonant frequencies are given by

w
2

= ( 2~) 2 1 (18.8)
1 - cos N W1 2 + W22

1 1
where W1

2 =. Mel and W2
2 = MC

2
- The relative disposition of the

resonant frequencies for the different mode numbers is shown in Fig.
18.8. Again the frequency separation between the 7r mode and its
neighbor is very small.

Actual magnetrons will have characteristics between those cor
responding to the two cases discussed, the behavior more frequently
corresponding to a band-pass filter and the resonant frequency of the 'K

mode occurring slightly above the lo\v-frequency cutoff.
The difficulties associated with closely spaced resonant frequencies

1 EVERITT, op. cit., p. 232.
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Sfraps

C: I

can be greatly reduced by strapping alternate pole tips together. The
commonest form of strapping, known as "double-ring strapping,"
is shown in Fig. 18.9. In this arrangement two rings are run around
the pole tips. Each ring is connected to alternate pole tips, one ring
being connected to all the odd-numbered pole tips and the other to all
the even-numbered pole tips. In the 1r mode of resonance, alternate
poles are 180 deg out of time phase ,vith each other. As a result, the
straps will be 180 deg out of phase with each other, and thus the capacity
between the straps is added in parallel with the capacity C1 in the equiva
lent circuits. From Eq. (18.8) this is seen to lower the resonant frequency
of the 1r mode. Because of the symmetry and phasing no current will
flow in the straps at the resonance frequency of the 1r mode. For other
modes, the phase shift bet,veen adjacent poles is not 180 deg, and so
currents will flow in the straps. This effectively puts more inductance
in parallel with the inductance of the slots and so raises the frequency

of the adjacent resonances. Both the
capacity and inductances thus com
bine to increase the frequency separa
tion between the 1r-mode resonance
frequency and the adjacent resonant
frequency. The shorter and heavier
the strap segments, the more heavily
strapped the magnetron is said to be.
Another device sometimes used to

FIG. 18.9.-Double-ring strapping.
increase the frequency separation

between the desired resonance and its neighbor is that of making alter
nate anode slots of different length, as sho"rn in Fig. I8.Id. Magnetrons
using this arrangement are designated as being of the rising-sun type.
By proper proportioning of the lengths a very good frequency separation
can be achieved.

All the multicavity-magnetron resonances correspond to standing
waves formed by two traveling ,vaves of equal magnitude moving in
opposite directions. These traveling waves will have radial components
of electric field that are strongest at the plate and drop off somewhat
toward the cathode. They will also have tangential or angular compo
nents of electric field that are very strong at the anode gaps and drop off
very rapidly to,vard the cathode. For the plane-electrode case of Fig.
18.15 the tangential component of electric field will drop off exponentially
from anode to cathode. In the cylindrical case the tangential compo
nent will vary approximately as the nth-order Bessel function of the
radius, where n is the mode number.

Multicavity magnetrons may be tuned over an appreciable range by

D
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changing either the slot capacity or the inductance. One way of doing
this is to use a set of plugs, in a crown-shaped arrangement, that are
dropped into the slots at the appropriate point. If the plugs are inserted
near the interaction gap of the anode slots, the capacity of the resonant
slots will be increased and the frequency decreased. If the plugs are
inserted near the base of the anode
slots, the inductance will be decreased
and the frequency increased. An
arrangement using both an L ring and
a C ring for tuning is sho,Vll in Fig.
18.10. Where a very broad range is
desired, both an L and a C ring are
used. In this case the rings are
ganged so that the L ring enters as the
C ring emerges. For a narrow tuning
range a capacity tuning alone suffices. FIG. IS.lO.-Inductive and capaci
This tuning arrangement admits of a tive tuning rings.
great variety of forms. Numerous
other methods of changing the slot capacity or inductance are also used.

18.4. Electron Behavior in Crossed Static Magnetic and Static
Electric Fields: Plane Case. The behavior of electrons in combined
electric and magnetic fields has already received a brief treatment in
the chapter on Laws of Electron Motion. This subject will be reviewed
and extended here.

First review the behavior of an electron moving at right angles to a
uniform magnetic field ,vith a flux density B in the absence of an electric
field. The electron in this case will describe a circular path whose
radius will be

R = 3.372 X 10-6V~2

B
meters (18.9)

where ~ is the potential in volts through which the electron has been
accelerated and B is the magnetic-flux density in webers per square meter
(104 gausses). If this relation is conierted to practical cgs units, it
becomes

R' = 3.37V~
B' cm (18.10)

where R' is in centimeters, V in volts, and B' in gausses [see Eq. (6.62)
for the development of this relation].

The frequency of rotation of an electron under the above conditions
depends oniy upon the magnetic-field strength.. This is because the
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electron velocity and radius are in direct proportion. The frequency of
rotation is given by

e
Wo =-B

m
radians per sec (18.11 ")
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where B is in ,vebers per square meter. In practical egs units the fre
quency of rotation is

10 = 2.800B' me (18.12)

where B' is magnetic-flux density in gausses. For obvious reasons, this
frequency ,vill hereafter be referred to as the cyclotron frequency. Note
that electron rotations in a magnetic field are inherently of the right
frequency for microwave operation. Thus a magnetic-flux density of
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1,000 gausses gives rise to a cyclotron frequency of 2,800 me or a \vave
length of 10.82 Cffi. A curve of the cyclotron frequency as a function
of the magnetic-flux density is given in Fig. 18.11.

Another frequency that appears in magnetron electron orbits is the
Larmor frequency, which is just half the cyclotron frequency. The Larmor
frequency is the frequency with which atoms will precess about lines of
magnetic flux.! The atoms may be thought of as little gyroscopes hav
ing the property of magnetic dipoles because of the fact that each rotat
ing electron is equivalent to a small current loop. If an external magnetic
field is applied, the magnetic dipole of the atom has a torque applied to
it, which causes the atom to precess like a top. The Larmor precession
frequency is

eB
WL =-

2m
radians per sec (18.13)

where B is in ,vebers per square meter and !!-- is in coulombs per kilo
m

gram. In practical egs units this is

fL = 1.400B' me

where B' is in gausses. The Larmor frequency as a function of magnetic
flux density is also shown in Fig. 18.11. Something akin to atomic
precession is encountered in magnetron orbits. If an electron is moving
in a circular path under the influence of a radial electric and an axial
magnetic field and is then disturbed, it will oscillate about the original
circular path at the Larmor frequency. It is also found that electron
rotations in the presence of space charge occur at the Larmor frequency.

An electron starting from rest in a region that has a uniform gradient
of potential in the positive y direction and a uniform magnetic field in
the negative z direction will move in a cycloidal path progressing in the
positive x direction with components of displacement given by

and

at a.
x = - - - SIn wot

"'0 wo2

a
y = -2 (1 - cos wot)

"'0

(18.14)

(18.15)

where a = - eEy and '-"0 = eBz
• The corresponding velocity terms are

m m
given by

1 See, for instance, HARNWELL, G. P., uPrinciples of Electricity and Electro
magnetism," p. 336, McGraw-Hill, New York, 1938.
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x = !!... (1 - cos wot)
Wo

. a. ty = - SIn Wo
Wo

(18.16)

(18.17)

where the dots over the letters indicate derivatives with respect to time.
(See Sec. 6.8 for the development of these equations.) Examination
of the above equations shows that the cycloidal motion is a combination
of a circular motion at a frequency equal to the cyclotron frequency and a

linear translational motion at a constant velocity of !!:- or BEy, the field-
Wo z

neutralizing ratio (see Sec. 6.8).
When there is again a y component of gradient of potential and a

negative z component of magnetic field and the electrons have an initial
velocity with components Xo and Yo at a point of zero potential, then
the equations of motion are

at ( ) Yo (a - woXo) .x = - + 1 - cos wot - - 2 SIn wot
Wo Wo Wo

(
a - woxo) ) Yo.y = 2 (1 - cos wot + - SIn wot

Wo Wo

(18.18)

(18.19)

(18.20)

(18.21)

(These were also developed in Sec. 6.8.) The corre~ponding velocity
components are

. a+.. t (a - woXo) tx = - Yo SIn Wo - cos Wo
Wo Wo

.. t + (a - woxo). ty = yo cos Wo Wo SIn wo

Consider now only the periodic terms in the displacement.

yo (a - woxo) .
Xl = - - cos wot - 2 SIn wot

WQ Wo

Yo . (a - woio)Yl = -- SIn wot - --- cos wot
Wo wo2

This is seen to be a circular motion with a radius given by

R 12 = X1 2 + Y1
2

R12 = (~:Y + (a ~;oi°Y

(18.22)

(18.23)

(18.24)

(18.25)

For zero initial velocity, R 1 reduces to ~, which checks the cycloidal
Wo

case, as may be seen from Eqs. (18.14) and (18.15). Note that the COD-
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stant term in the x component of velocity is independent of the initial

velocity and is equal to !!.- or BEy as with the cycloidal case. Note also
WO z

that the frequency of the rotational component of the motion is again
the cycloidal frequency. Motion is again a combination of a circular
motion and a translational one. The velocity of the circular motion is

V1
2 = X1 2 + Y12

V1 2 = wo2R 12

(18.26)
(18.27)

Thus the velocity is proportional to the radius and therefore corresponds
to motion in a magnetic field alone. The resulting paths are those
generated by a point on a projecting spoke of a rolling wheel alld are
known as trocho~'dalpaths. The radius of the rolling wheel and its angular

Rolling
circle ....,.

, Trac/nq circle

FIG. 18.12.-Modification of cycloidal path by subtraction of energy.

velocity are determined by the ratio of the fields and the magnetic field,
respectively, but are independent of the initial velocity, which is to say
the energy of the electrons. The square of the radius of the tracing circle
is directly proportional to the energy of the system and may drop to zero
if sufficient energy is extracted from the electron.

Because of the fact that the average translation velocity and the
frequency of rotation do not change with instantaneous velocity of the
electron, some observations can be made on the electron paths as energy
is added or subtracted from the electron by any means. Assume an
electron .starting from rest at zero potential. Then the resulting path
will be cycloidal. Suppose no\v that ene...rgy is gradually taken from the
electron by some means. The path then becomes trochoidal, ,vith the
radius of the tracing circle smaller than the radius of the rolling circle
but maintaining the same average translational velocity and the same
cyclotron frequency of rotation. This situation is sho\vn jn Fig. 18.12.
If energy ,vere added to the electron in its original cycloidal path, the
orbit would again become trochoidal, but ,vith the radius of the tracing
circle greater than the radius of the rolling circle. The resulting path is
shown in Fig. 18.13. Such electrons ,,,,"ould be removed from operation
in an actual tube, for the electrons would strike the cathode as soon as
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any energy were added. The above conclusions on the effect of changing
the electron energy will be verified quantitatively in the next section.

18.5. Electron Behavior in Crossed Magnetic and Alternating Electric
Fields: Plane Case. Alternating Transverse Electric Field. Consider
now the case of an electron starting from rest at a point of zero potential
\vhen the electric field is y-directed and consists of a constant component
with a superimposed alternating component of a frequency different from
the cyclotron frequency and when the magnetic field is directed in the

Trac/nq_
CIrcle ",

,,-Rol/inq
circle

FIG. IS.l3.-Modification of cycloidal path by addition of energy.

negative z direction. To treat this problem it is best to go back to the
original differential equations of motion

and
x = woy

fj = a(l - a cos WIt) - woX

(18.28)

(18.29)

where E1I = -E1(1 - a cos WIt), B = -Bz, a = - eEy
, and Wo = eBz

•
m m

The starting conditions are that the initial velocity is zero, that is, x = 0
and if = 0 for t = O. Equation (18.28) integrates to give

x = woy

Substituting this value into Eq. (18.29),

Y + wo2y = a(l - a cos WIt)

(18.30)

(18.31)

This is analogous to the circuit problem of a series inductance and
capacity with an impressed voltage consisting of a direct potential \vith
a superimposed alternating potential of a frequency different from the
resonant frequency. The solution will consist of t,vo parts. The first
part is the transient response known as the "complementary function"
and is the same as that given in Eq. (18.15). The second part is known
as the" particular integral" and corresponds to the steady-state solution
in the equivalent electrical circuit. It is expected to be of the form

y. = A cos WIt + B (18.32)
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from inspection of Eq.. (18 ..31). Substitution into Eq. (18.31) shows that
the particular integral associated with the a term of Eq. (18.31) is of the
form

aa
Yi = - -- (cos wot - cos WIt)

",",0
2

- WI
2 (18.33)

The complete solution is therefore represented by the sum of Eqs. (18.15)
and (18.33),

a aa
y = -2 (1 - cos wot) + 2 2 (cos wot - cos WIt) (18.34)

Wo Wo - WI

Substituting this into Eq. (18.30) and integrating to obtain x,

x = !!:... (t _sin wot) + aawo 2 (sin wot _ sin WIt) (18.35)
Wo Wo wo 2

- WI WO WI

the constant of integration being zero because the initial velocity was
taken as zero. The above equations reduce to the cycloidal form for

21;,

7j 2~ 31j
x axis (Time)----....

FIG. 18.14.-Path of an electron in crossed magnetic and alternating electric fields.

a ~ O. Each of the coordinate displacements is seen to have alternating
components with frequencies "'0 and WI. Because of this we expect that
the resultant path will display some beat phenomena at the difference
frequency of "'0 - Wl. This occurs because the alternations at frequencies
Wo and WI are alternately in phase and out of phase. A plot of the
resultant path is shown in Fig. 18.14. The amplitude is seen to be high
initially, to decrease to a minimum, and then to build up again. As the
amplitude decreases, average kinetic energy of the electron drops and

then builds up again.. Average translational velocity is ~ + ~awo 2'
Wo Wo - WI

a value that is maintained constant regardless of the amplitude of
oscillation. It should be pointed out, ho,vever, that, although the
translational velocity will be constant for an electron starting at any
particular time, the magnitude of the translational velocity ,viII vary
for electrons starting at different points on the cycle. The value given
above is the maximum translational velocity that will be encountered.
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The minimum value \vill be ~ - 2
aawo

2 and will occur for electrons
Wo Wo - WI

that leave half a cycle later than for the case solved above. The ratio
of the alternating components of displacement of frequency Wo and Wl

will be

Magnitude of Wo component wo2 - W12

Magnitude of WI component = awo2 (18.36)

When the frequency of the alternating component of electric field is the
same as the cyclotron frequency, a resonance ,vill occur that may build
up the oscillations to infinIte amplitude. For the off-resonance case
discussed above the instantaneous radius of the rotational "motion ,viII
be given approximately by

2 f"'-I ( a )2 2a2
aR1 = -2 + 2( 2 2) COS (wo - Wl)t

Wo Wo Wo - WI
(18.37)

on the assumption that Wo and WI are not greatly different. This shows
that the radius changes periodically at the difference-frequency rate,
which means that the rotational kinetic energy changes periociically at
the same rate. In an actual magnetron, use is made of electrons behaving
somewhat like the one discussed above. Electrons liberated at the proper
point on the cycle will have high initial kinetic energy, which they ,vill
lose at first through interaction with the alternating component of electric
field. If such electrons can be removed from the field before they begin
to take energy from the electric field and if electrons that initially
take energy from the electric field can be removed quickly, there "'.vill be a
selective mechanism by which the electrons will convert their kinetic
energy derived from the static field to r-f energy, ,vhich is supplied to
the alternating field. This naturally occurs in cylindrical magnetrons,
for electrons that lose energy will move a\vay from the cathode, and, with
proper design, they will be taken out of action by striking the plate
before they begin to absorb energy. Electrons that tend to take energy
from the field will have the amplitude of their oscillations built up and
,viII usually be removed from action by coming back and striking the
cathode on the first loop of their orbit.

Effect of a Traveling Electric Field. In actual tubes the alternating
components of field result from standing waves, which may be resolved
into traveling ,vaves of equal amplitude moving in opposite directions.
Such waves will have both transverse and longitudinal components. In
general, both the transverse component and the longitudinal component
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of electric field will increase in strength from cathode to plate. If an
electron moves with a translational velocity corresponding closely to
the velocity of the traveling waves, then the field components of the
wave moving with the electron will have a considerable effect, while the
field components of the wave traveling in the opposite direction will be
going by the electron at twice the frequency of the alternating field and
will merely introduce some perturbations, which will average out over
short periods of time.

It is possible to make a reasonably exact analysis of such a case as is
cited above, though by now enough properties of the electron orbits have
been pointed out so that a qualitative discussion will reveal the out
standing characteristics of the resulting paths. Assume that the transla
tional velocity of the electron is nearly equal to that of the traveling-wave
components, and neglect the effect of the wave traveling in the direction
opposite to that of the electron. Consider the effect of the longitudinal
component of electric force, which increases toward the plate. An elec
tron initially moving in the same direction as the longitudinal force will
pick up energy on the portion of its loop closest to the plate and lose
relatively less on the portion of its loop nearest to the cathode. There
,vill thus be a net gain in energy, and the radius of the rotational part of
the motion will increase, with the result that the electron will probably
strike the cathode at the end of its first loop and be retired from action.
Such electrons as tend to extract energy from the traveling wave will
therefore in general be quickly removed. Those electrons which initially
move against the longitudinal component of electric force will lose
considerable energy on the portion of their loop closest to the plate,
where the longitudinal field is strongest, and regain relatively less energy
on the portion of the loop closest to the cathode. There is therefore a
net loss of energy, which will cause the electron to have the radius of the
rotational part of its motion decreased, indicating that the electron is
giving up energy to the traveling wave. If no,v the associated transverse
component of force is in the direction to attract the electron to the plate,
the electron will drift toward the plate, where it will strike with an
energy less than that corresponding to the direct potential of the plate.
Electrons moving under these conditions constitute the useful, or working,
electrons and serve to supply energy to the traveling wave. All other
groups will be retired from action by striking one of the electrodes in a
relatively short time, and the energy which they take from the traveling
,vave will be much less than that supplied by the working electrons.
The mechanism by which the nonworking electrons are retired from action
is highly selective and accounts for the high efficiencies obtainable with
magnetron oscillators.
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The diagram in the upper half of Fig. 18.15 is the approximate form
of the electric field at the peak of a cycle. Both traveling-wave com
ponents will have the same shape of field, and the shape of this field
will be preserv~d approximately as the waves move along. Shown
in the figure are lines of electric force on electrons. The direction of the
force on an electron will be opposite to the direction of the flux and field
lines. In magnetron tubes designed so that the average translational
velocity of the electrons is approximately equal to the velocity of the
traveling waves the electrons ,viII be subjected to a nearly constant

+ +
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Arrows show direcfion of force on an e/eclron

FIG. IS.i5.-Force lines in a plane-electrode multianode magnetron.

electric force as they move along, except that the field strength increases
as the electrons move from cathode to anode.

The direction of the electric force at a point midway between cathode
and anode is approximately as shown in the lower half of Fig. 18.15.
The force is seen to rotatp progressively along a line parallel to the
electrodes.

Consider now the behavior of electrons emitted at different points
along the cathode (or at different times on the cycle). An electron
emitted in the region B will encounter a transverse force, which will
tend to drive it back toward the cathode. It will also encounter a
longitudinal force, which will tend to accelerate it. This means that the
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axis of the rotational component of its motion will be bowed, as shown b:r
the dotted line of Fig. 18.16a. Also, because the electron is being
accelerated in the longitudinal direction the amplitude of its rotational
component of motion will increase, giving rise to a trochoidal orbit.~

with the result that the electron ,viII strike the cathode after a half cycle
of rotation. This is one of the non,vorking electrons. It extracts a
little energy from the traveling-wave component of the alternating field.

LJLJlJLJlJ
ra}

(6)

(c)

F

H~'.7"---> (d)-------"'"A)(is

FIG. IS.16.-Approximate electron paths in a plane
electrode multianode magnetron.

An electron emitted in the region D will meet with accelerating
components of both transverse and longitudinal forces. The axis of
its rotational motion will be bowed toward the anode, as shown by
the dotted line of Fig. 18.16b. Because this electron is accelerated, the
amplitude of its rotation will increase and it will probably strike the
cathode after a half cycle of its rotational motion. This is also a non
working electron, and it extracts a little energy frore the alternating
field
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An electron emitted in the region F will meet with an accelerating
component of transverse force and a retarding component of longitudinal
force. As a result, the axis of its rotational motion will be bowed toward
the anode, as shown in Fig. 18.16c. Because of the retarding component
of longitudinal force the electron will give up energy to the alternating
field and suffer a decrease in its rotational amplitude. It will strike
the anode after about one cycle of its rotational motion, and during this
time the rotational component of its kinetic energy will be greatly
reduced. This is one of the working electrons, and it is electrons in this
group that convert the energy of the direct component of electric field
into r-f energy.

An electron emitted in tne region H encounters retarding components
of both transverse and longitudinal force. As a result, the axis of its
rotational motion will be bowed, as shown by the dotted line in Fig.
18.16d. Because of the retarding component of longitudinal force the
amplitude of the rotational component of its motion will decrease
somewhat, though not very much, for it is forced back toward the cathode,
where the longitudinal component of force is very weak. Such electrons
will probably strike the cathode after the first half cycle of rotation, but
some may drift along the cathode, where they ,vill form a space-charge
cloud, ,vhich will act as a source of electrons at different parts of the cycle.
These electrons are lo,v-grade working electrons in that they will con
tribute a little to the energy of the alternating field.

There is a bunching action associated with electrons in the F group.
Those electrons in the F group emitted near the point G will meet with a
larger retarding component of longitudinal force than those emitted
near the center of the group. Accordingly, they will be retarded more,
\\·ill move more slo,vly, and will fall back on those emitted near the center
of the region. Those electrons which are emitted in the F group near
the point E ,vill meet \vith a smaller retarding longitudinal component of
force and hence will not be retarded so much, will move faster, and so
',vill catch up with those electrons emitted near the center of the group.
Calculations of electron paths show that this bunching action is very
strong and undoubtedly contributes to the efficiency with which energy
is transferred to the alternating field.

18.6. Electron Behavior in Crossed Magnetic and Radial Electric
Fields. The motions of electrons in crossed magnetic and radial electric
fields are somewhat similar to those for the plane case. The similarity
is close in the limiting case of ver)~ large radii but disappears as the radii
become small. The equations of motion for such fields are best expressed
in polar coordinates of radius and angle. The :differential equations of
motion may be obtained by transforming the well-known rectangular-
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coordinate equations to polar coordinates. l In polar coordinates the
equations for the case of an axial magnetic field and a radial electric
field are

and

e e dVr - r82 = - - r(JB z + - -
m m dr

1 d ( 2·) .. 2· A e·B- - r 0 = rO + ru = - r z
rdt m

(18.38)

(18.39)

,vhere the dots over the coordinates indicate derivatives ,vith respect tv
time and the other symbols have their usual significance in mks units.
The equation for the radial component of motion is seen to consist of two
acceleration terms and two force terms. The first acceleration term is
the simple radial acceleration. The second radial-acceleration term
represents the acceleration associated with circular motion. The differ
ence in signs is due to the fact that a positive radial force is required to
sustain positive radial acceleration, while a negative radial force is
required to overcome the acceleration due to circular motion. The first
force term in the radial equation is the radial force caused by the reaction
of the angular component of velocity with the axial component of mag
netic field. The second radial-force term is that due to the radial
electric field. The equation for the angular component of motion
involves two angular-acceler~tion terms and one angular-force term.
The first angular acceleration results from the change of angular velocity
\vith time. The second angular-acceleration term corresponds to the
force required to maintain a constant angular velocity as the radial
distance changes. The angular component of force is entirely derived
from the magnetic field and results from the reaction of the radial
component of velocity with the axial magnetic field.

The above equations of motion are more simply written if the cyclo-

tron angular frequency Wo = eBz. is introduced. The equations in terms
m

of this frequency are

and

.' e dVr - r82 = - worD + - 
m dr

(18.40)

(18.41)

These equations are amenable to a little simplification if attention is
initially restricted to ~ases in which both the radial and the angular

1 See, for instance, MACMILLAN, W. D., tCStatics and the Dynamics of a Particle,"
p. 238, McGraw-Hill, New York, 1927.
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component of velocity are zero at a cathode, T = Teo Equation (18.41)
can be integrated to give

or, solving for fJ,

(J = ~o (1 - ~:) (18.43)

This equation is subject only to the restriction that the velocity be zero
when the radius is equal to the cathode radius. It shows that the angular
velocity depends only on the radius and the magnetic-field strength.
The angular velocity is seen to rise from a value of zero at the cathode
to a limiting value of half the cyclotron angular frequency, ioe~, the Larmor

-------..""~

/
v

I i=J..(I_:1)

/ Wo 2 r z

I I
V

°0 2 3 4
if·racHOlI distance

FIG. 18.17.-Angular velocity of an electron moving
under the influence of an axial magnetic field and a radial
electric field as a function of radius.

0.5

angular frequency, at very large radii. A curve giving the relation between
the angular velocity and the cyclotron angular frequency as a function
of radius is shown in Fig. 18.17. Equation (18.43) does not apply if
the electron gains or loses energy after its departure from the cathode.

It is possible to get a differential equation for the radial component
of motion alone by substituting the value of the angular velocity as
given in Eq. (18.43) into Eq. (18.40). The resulting equation is

r + rwo
2 (1 _re4

) = !!.- dV (18.44)
4 r4 m dr

This equation is rather difficult to solve in general because it is non
homogeneous and because V is a function of r (usually logarithmic).
However, many useful deductions about orbits in limiting cases can be
made from this equation.

The energy equation for polar coordinates is like that in any set of
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coordinates except that the velocity is expressed in terms of radial and
angular components. It is

(18.45)

on the assumption that the velocity and potential are zero at the cathode.
This simply states that the kinetic energy gained is equal to the potential
through ,vhich the electron has fallen. The magnitude of the velocity
is seen to depend only upon the potential and to be independent of the
magnetic field and the direction of the velocity. The direction of the
velocity ,vill, ho,vever, depend upon the magnetic field. With the above
assumptions it is possible to specify conditions under ,vhich an electron
,viII just graze the plate of a cylindrical magnetron. Substitute the value
of the angular velocity from Eq. (18.43) into Eq. (18.45) to eliminate this
factor. There results

t2 + r2w02 (1 _rc2)2 = 2e V (18.46)
4 r 2 m

For an electron grazing the plate, i.e., for cutoff, the condition that T = 0
for r = r p is imposed, where the subscript p refers to the plate. This
gives

Of, solving for V pc in terms of the other factors,

2 ( 2)2V - e rp B 2 1 Tc
pe--- z --

m 8 rp
2

(18.47)

(18.48)

where V pc is the voltage below which no electrons emitted with zero
velocity will reach the plate. This equation shows that the voltage
requil'ed to give cutoff in a magnetron increases as the square of the
magnetic field for a given tube geometry. It is often referred to as the
" cutoff parabola" and ,vas originally derived by Hull. 1 For convenience
in calculation let the magnetic field be ~xpressed in gausses as B/,
let distance be measured in ems, and let the constant be numerically
evaluated. Then

Tp
2Bz'2 ( rc2)

2

V pc = 45.48 1 - r
p

2 volts (18.49)

The cutoff equation given above is exact whether there is space charge
present or not, for it is derived from the energy relation. The shape

1 HULL, A. W., Effect of a Uniform Magnetic Field on the Motion of Electrons
oetween Coaxial Cylinders, Phys. Rev., vol. 18, pp. 31-61, July, 1921.
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(18.50)

of the potential field between cathode and plate will be influenced by the
presence of space charge, but the grazing relation will not. A nomo
graphic chart of the cutoff relation of Eq. (18.49) is given in Fig. 18.18.

In the absence of oscillations and space charge, electrons will move out
from the cathode in cardioid-like orbits, returning again to the cathode
with zero velocity provided that they are not intercepted by the plate
en route. When there is no energy added or subtracted en route, the
orbits will always consist of single loops between the contacts with the
cathode. For the limiting case of a very small cathode the orbits are
represented approximately by!

( . 2())~
T""= Tmax SIll 3

Another static orbit of interest is that in which the electron simply
rotates in a circular orbit around the cathode at a constant radius.
In the absence of space charge, it is a little difficult for an electron to
get into such an orbit, but such an orbit is possible. The equation for
this case is obtained from Eq. (18.40) by setting the radial acceleration
equal to zero. The resulting equation may then be written

. . woE ( )
(J2 - woO - - = 0 18.51

rB:

h E dV. d· d· dwere = - dT IS lrecte lnwar ·

velocity to give

This may be solved for the angular

(18.52)

Numerical substitution shows that the second term in the radical is
invariably much smaller than the first, and thus the first two terms of the
binomial expansion may be used to give

or
. 1 dV
(J~wo---

- rB dr

(18.53a)

(18.53b)

where B is in webers per square meter (104 gausses). This sho,vs that
the angular velocity is a little less than the cyclotron angular frequency.
Numerically, the second term seldom exceeds 10 per cent of the cyclotron
angular frequency. This means that the inward-directed radial magnetic
force is much greater than the outward-directed radial electric force.

1 ['inA.-
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(18.54)

(18.57)

For ordinary purposes the angular velocity for a fixed radial distance
can be taken as the cyclotron angular frequency.

18.7. The Effect of Space Charge. In an actual operating magnetron
it is expected that space-charge effects cannot be neglected. Since the
transit time associated with the curved paths is relatively large, the
electrons will stay in the interelectrode ~pace of a magnetron much longer
than in that of a cylindrical diode without axial magnetic field. As a
result, the space-charge effects should be much more pronounced and
should exhibit a considerable smoothing effect upon the shape of the
electron paths. The analytical treatment of space-charge effects is
expected to be somewhat difficult; yet a considerable impression has
been made on this subject.

The basic differential equations that have been given before are
expected to apply to the space-charge case, with the difference that the
potential distribution will be altered by the space charge. Specifically,
the equations involving angular velocity but not the potential distribu
tion [Eqs. (18.41) to (18.43)] will be unchanged. Likewise, the energy
equation [Eq. (18.45)] and the corresponding differential equation for
radial displacement [Eq. (18.46)] will apply, with the difference that the
potential function is influenced by the space charge. The potential
distribution will be given by Poisson's equation in polar coordinates for
the single coordinate of radius,

1d(dV) -p
rdr r dr = ~

where p is space-charge density in coulombs per cubic meter, negative
for electrons, and £0 is the dielectric constant of free space in mks units.
The radial current through any cylinder concentric with the axis of the
tube is proportional to the radial velocity and the space-charge density,

J r = 27rrpr (18.55)

With this substitution, Eq. (18.54) becomes

1 d (dV) -Jr (18.56)
T dr r dT = £027iri

If now the value of r from Eq. (18.46) be substituted, there results

d ( dV) -J r

dr r dr = ~ 2eV wo2 ( rc2)2
£o27r +--- r--

m 4 r

This is the differential equation for the potential as a function of radial
distance, including the effect of space charge.
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A deta.iled study of Eq. (18.57) shows that the radial acceleration
of an electron is governed by an apparent potential which varies as the
two-thirds power of the radius near the cathode and as the inverse square
of the radius close to the plate as long as the current is not cut off. The
apparent potential referred to is the real potential less the critical poten
tial that would just prevent an electron from reaching a plate of radius
T. 1- 3 Between the cathode and plate the apparent potential is a

a
He
T

He
4

3~ ~ 2~
4

FIG. 18.19.-Spiral electron orbits in the cylindrical magnetron in the presence of
space charge. (After Brillouin.)

continuously increasing function of radius. As a result, the radial
velocity will always be positive, increasing rapidly at first and then more
slo,vly. Since the corresponding angular velocity as given by Eq.
(18.43) and Fig. 18.17 is a continuously increasing function of the radius,
being small at first and then increasing with the radius, the resultant
eiectron paths will be nearly radial at the cathode, and ,vill then curve
strongly into a spiral orbit out to the plate. In Fig. 18.19 are shown some

1 BRILLOUIN, L., Theory of the Magnetron, Elec. Commun., vol. 20, pp. 112-121.
2 BRILLOUIN, L., Theory of the Magnetron I .. Phys. Rev., vol. 60, pp. 385-396,

Sept. 1, 1941.
3 BRILLOUIN, L., Practical Results from Theoretical Studies of Magnetrons, Proc.

l.R.E., vol. 32, pp. 216-230, April, 1944.
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(18.58)

electron orbits in the presence of space charge for a fixed plate potential
as the magnetic-flux density is increased. For low magnetic fields, the
paths are nearly radial, with only a slight curvature. As the magnetic
field is increased, the spiral orbits evidence themselves and the total
angular progression increases. At cutoff all the electrons move in circu
lar paths, constituting a core of space charge that rotates about the
cathode almost as a solid body. As the magnetic field is increased still
further, the radius of the space-charge core decreases but still maintains
its composition of electrons moving in circular paths with a nearly
constant ang1.l1ar velocity.

The case of the electrons moving in circular orbits for voltages
beyond cutoff is of considerable interest, for it is found that actual
magnetrons operate most efficiently well beyond cutoff. The rotating
core of space charge undoubtedly plays an important role in the operation.
This case may be handled analytically. Setting the radial current in
Eq. (18.57) equal to zero requires that the radical in the denominator of
the right-hand term also be zero. Hence

m wo2
( r 2)2V(r) = + - - r - ...!!-

2e 4 r

Upon differentiating this in accordance with Eq. (18.54) there is obtained
an expression for the space-charge density as a function of the radial
distance,

(18.59)

Each of the above expressions applies only out to the radius at which
the cutoff relation of Eq. (18.49) holds, with a general radius substituted
for plate radius. The potential is seen to increase nearly quadratically
\vith radius out to the edge of the space-charge core. Beyond that it will
follow the logarithmic function that applies for cylindrical electrodes
in the absence of space charge. The space-charge density is seen to be
nearly constant for large values of r but will rise to twice the large-radius
value at the cathode. The angular velocity follows the Jaw of Eq.
(18.43) and Fig. 18.17. Accordingly, the core is one whose density is
nearly constant except for an increased density near the cathode and
whose outer portions rotate at half the cyclotron frequency and whose
inner portions rotate at lower frequencies.

The above picture of a rotating core of space charge has been verified
experimentally. In an experiment in which an indication of the current
flowing is measured by the number of positive ions created by collision,
the positive-ion current is found to increase sharply as the plate current
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is cut off, indicating that a greater current is flowing around the cathode
than was flowing to the plate. 1 Further confirmation of this type of
motion is obtained by considering the equivalent relative dielectric
constant of an electron cloud, which in this case, by application of Max
,veIl's equations, is found to be

wo2

£' == 1 - - (18.60)
2w2

If an experimental coaxial diode is made that can be inserted into a
coaxial line, it is found that the equivalent dielectric constant of the tube
section of the line follows very closely the relation given above. 2•a The
quantitative agreement with the simple theory in the above experiments,
while not perfect, is very convincing, though the complete validity
of the ideas involved is subject to some question. 4

18.8. Electron Behavior in Crossed Magnetic and Alternating Radial
Electric Fields. No complete analysis of electron motion in crossed
magnetic and alternating radial electric fields is available although the
relations seem to be reasonably well understood. Relations for small
amplitude oscillations with and without space charge can be given,
though these obviously tell only part of the story since actual magnetron
oscillations involve large amplitudes.. Large-amplitude relations can
be calculated numerically for specific tube dimensions and operating
conditions, from which some general deductions can be made. It is
worth considering the small-amplitude relations, however, in that they
,viII contain some elements of truthful representation of the actual
picture.

Consider first the small-amplitude oscillations without space charge,
based upon Eq. (18.44). Let the gradient of potential at any radius
ro be given by

e dV- - = ao + al(r - To)
m dr

i .. e.. , a con~tant plus a linear term, and let

5" = T - To,

(18.61)

(18.62)

1 HULL, A. W., The Paths of Electrons in the Magnetron (Abstract Only), Phys.
Rev., vol. 23, p. 112, January, 1924.

2 BLEWETT, J. P., and S. RAMO, High Frequency Behavior of a Space Charge
Rotating in a Magnetic Field, Phys. Rev., vol. 57, pp. 635-641, April!, 1940.

3 BLEWETT, J. P., and S. RAMO, Propagation of Electromagnetic Waves in a Space
Charge Rotating in a Magnetic Field, Jour. Appl. Phys., vol. 12, pp. 856-859, Decem
ber, 1941.

4 GABOR, D., Stationary Electron Swarms in Electromagnetic Fields, Proc. Roy.
Soc., (IJondon), Ser. A, vol. 183, pp. 436-453,1945.
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Upon making these substitutions in Eq. (18.44) and preserving only
first-power terms in r there results the differential equation for the
perturbed motion about any radius To,

- + rwo
2 [1 3 (rc)4 + 4a1J _ [1 (rc)4J wo

2
r - - - - - ao - To - - -

4 To wo2 To 4
(18.63)

Of principal interest is the periodic term in the solution of this equation.
This will have the form

610 ~ (rc) ,1 4al
~1 = A cos - 1 - 3 - + ~2 t

2 ro Wo
(18.64)

The resulting path is like that generated by a point on a small circle
rolling on a large circle of radius To concentric with the cathode. The

angular frequency of the perturbed motion is seen to differ from ~o by a

radical containing a distance ratio raised to the fourth power (generally
small) and the coefficient of the gradient, aI, which will be positive in
the presence of space charge and negative in its absence. This means
that the perturbation frequency ,vill ordinarily be less than the Larmor
frequency (half the cyclotron frequency) in the absence of space charge
and greater than the Larmor frequency in its presence. Correspondingly,
the average angular velocity will be

fJ = ~o (1 - ;::) (18.65)

which is the same as previously given by Eq. (18.43). At large radii
and· in the presence of space charge the perturbation frequency can be
many times the average angular velocity.

The conclusion that the perturbat.ion frequency is more than the
Larmor frequency (half the cyclotron frequency) is confirmed by examina
tion of a simple oscillation mode in the presence of space charge. Let
it be assumed that there is under consideration a rotating core of space

charge. At the outer edge of the core, where (~)4 is much less than

unity, the differential equation of the radial component of motion will be

(18.66)

from Eq. (18.44). Now let T = To + r as before, and apply this to a
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uniform expanliion through the core. Conservation of charge then
requires that

Now since
1 dV _ -P

r dr - 2to

from Eq. (18.54) and the large-radius value of Po is

(18.67)

(18.68)

(18.69)

from Eq. (18.59), then the differential equation [Eq. (18.66)] takes the
form

(f r) = w~2 (1 _~) _W~2
To 1 +ro

which reduces to simply

(18.70)

(18.71)

if terms in i of powers higher than unity are disregarded. From this
To

it is seen that the perturbation frequency of the electrons in the space-

charge cloud is 0 for the simple mode of oscillation in which the whole

cloud pulsates uniformly.l.2
Solutions other than the simple one indicated above can be obtained

for the magnetron with space charge. These will not be discussed in
detail, for their application is limited to small-amplitude oscillations.
In addition to the pulsating core of space charge just referred to, solutions
have been found in which the edge of the space-charge core has sinusoidal
ripples appear on it in the form of standing waves, with an integral
number of sine waves around a complete circumference. These standing
waves can be resolved into traveling waves of equal amplitude traversing
the circumference of the core with equal velocities in the two directions. 1 •2

1 BRILLOUIN, L., Theory of the Magnetron II, Phys. Rev., vol. 62, pp. 166-177,
Aug. 1 and 15, 1942.

2 BRILLOUIN, L., Theory of the Magnetron III, Phys. Rev., vol. 63, pp. 127-136,
Feb. 1 and 15, 1943.
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Some of these modes exhibit an associated negative resistance and so
may give rise to oscillations. Likewise, there have been found solutions
in which there is a rotating cylinder of space charge with definite inner
and outer edges not in contact \vith the electrodes. In such cylinders of
charge it is possible to have clumps or spokes of increased space-charge
density, which rotate at half the cyclotron angular frequency.l The
appearance of spokes of space-charge density in an analytical solution
is of great significance, for it confirms the existence of such spokes pre
dicted from simple qualitative considerations.

So far the information obtained about electron behavior in the
presence of alternating components of electric field has not been very
enlightening with regard to efficiency of operation and other practical
matters. It is perhaps too much to expect that an analysis of this
complex problem will yield neat and simple engineering-design formulas.
The best that can be done at present is to attempt to get a composite
picture of the mechanism of operation by combining the impressions
obtained by looking through the various windows corresponding to
the different avenues of approach to the problem.

Considerable information is obtained from considering the reaction
of electrons with rotating-field components. If an electron moves so
that it is being continuously retarded by a tangential component of
electric force, it will give up energy, which will allow it to move in a larger
radius path. Since energy is being given up, it is possible for such an
electron to have its angular velocity become progressively less than the
value it would have at any radius if it had not lost energy. Accordingly,
it is possible for electrons to spiral out to the plate with a constant or
nearly constant angular frequency of rotation. 2

The alternating components of the electric field of a cylindrical
multicavity magnetron contain both radial and tangential components,
which can be resolved into components traveling in the two directions.
Let the radial component of the alternat.ing gradient of potential in the
direction of the electron travel be R(r)ep(nO + wt) and the tangential
component be T(r)t/;(nO + wt). The components rotating in the oppo
site direction will be neglected. The functions 1/1 and cP are periodic
functions of the angle 0, with n an integer equal to the number of full
period variations of field around the magnetron. Near the cathode, t/;
and ep will be simple cosine waves, but near the plate they will be nearly
square waves. If these components of the gradient of potential are

1 BLEWETr, J. P., and S. RAMO, High Frequency Behavior of a Space Charge
Rotating in a Magnetic Field, Phys. Rev., vol. 57, pp. 635-641, 1940.

2 Application of the above ideas was first made by POSTHUMUS, K., Oscillations in a
Split Anode Magnetron, Wireless Eng., vol. 12, pp. 126--132, March, 1935.
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included in the basic differential equations of motion, then Eqs. (18.40)
and (18.41) become

r - r02 = ~ [~~ + R(r)cf>(nfJ + wt)] - worO (18.72)

~ 1t (r20) = ~ T(r)1/;(nfJ + wt) + WoT (18.73)

Let it now be considered whether it is possible for an electron tc
follow the field around in such a way that

nO = -wt + a (18.74)

where the negative sign goes with the counterclockwise rotation of an
electron which occurs for a magnetic field in the negative z direction and
it is assumed that a changes very little with time. The interpretation
of the angle a is that it is the angle by which the electron lags some
reference point on the rotating field, conveniently the maximum. Then
since

the equations of motion above become

r - rw
2

= !!- [dV + R(r)cP(a)] + w wor
n 2 m dr n

2fw . e
- -- = wor + - T(r)y;(a)n m

(18.75)

(18.76)

(18.77)

These equations can be partly solved without knowing the exact nature
of the functions y; and 4>. Let Eq. (18.76) be integrated on the assump
tion that the radial velocity and potential at the cathode are zero. Then

( ,.2)W(W ) 2e 2eJf2 = r2 1 - ;2 n n+ Wo + m VCr) + m R(r)cP(a) dr (18.78)

Jf no\v the yalue of f2 from Eq. (18.77) is substituted in the above, there
results

[

- ~ T(r)1/;(a)]2 _ ( rc2) w (w )
- r 2 1 - - - - + Wo

2w + r 2 n n
- '-'0
n

2e 2e J+ - V(r) + - R(r)cP(a) dT
m m

(18.79)

This equation tells how the angle a by which the electron lags some
referenc~ line on the rotating field varies with the radial distance. Simple
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physical reasoning indicates that electrons will be in equilibrium when
they are slightly behind a radial line of maximum retarding force. Under
this condition a momentary increase of angular velocity increases the
radius of the orbit and brings the electron into a region of stronger
retarding force that acts to decrease the angular velocity. The argu
ment here is the same as that used in consideration of Figs. 18.15 and
18.16. The radial force is not necessary to the argument and will for
the moment be considered negligible. A possible situation demon
strated by Eq. (18.79) is shown in Fig. 18.20. Shown here are tangential
components of electron force rotating in the counterclockwise direction
for a six-segment magnetron operating on its 1(' mode. Nodal planes

trons and field

~

FIG. 18.20.-Electron orbits in a multicavity magnetron as deter..
mined by rotating tangential components of field.

of force are shown by dashes. The position of electrons in equilibrium
'Nith the field is shown by the dotted curve lagging a plane of maximum
retarding force. If the square of the radial function T(r) increases less
rapidly than the radial function of the right-hand side of Eq. (18.79),
then the angle a by which the electron lags the line of maximum retarding
force must increase as the radius increases. Note that, although the
effects of space charge have not been specifically considered, this treat
ment admits of solution in cases with space charge, for then it is merely
necessary to introduce the proper form of the potential, V(r). Including
the effect of the radial forces will only change the locus of the electrons
in equilibrium with the field. The locus will always lie within the zone
between a plane of maximum tangential force and the nodal plane of
tangential force behind it.
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For the case of negligible radial force the square of the radial velocity
of the equilibrium electrons at the plate will be

r 2 = r 2 (1 _r
c2

) (w 2 + wwo) + 2e V (18.80)
P p T

p
2 n 2 n m P

Correspondingly, the square of the total velocity at the plate ,vill be
obtained by adding Tp

2(J2, as obtained from Eq. (18.75), to the value of
1"1'2 above.

vp
2 = T p

2
[ (2 - ;;:) ~: + (1 - ;;:) w:oJ + ~ V p (18.81)

The above two equations are those whose properties it is desired to study..
For purposes of simplification let the angular velocity at the plate be
written as

· rpwrp8 = - = XVon (18.82)

where Va is the velocity corresponding to the plate potential and introduce
the factor

B 610
Z = - = - (18.83)

Be We

where Be is the cutoff value of magnetic-flux density corresponding to
the plate potential V p, as obtained from Eq. (18..48). Let the cutoff
relation be written

T p
2

W o
2 (1 - ;;:) = 4vo2

With the above substitutions, Eq. (18.80) becomes

f p: = (1 - TO:) (X2+ 2xz 2) + 1
Vo ~ ~1 _ ~

Tp
2

and Eq. (18.81) becomes

vp
2

= (2 _ Tc
2

) x 2 + 2 ~1 _ T
o

2

xz + 1
vo2 Tp

2
"Tp

2

(18.84)

(18.85)

(18.86)

Posthumus has examined these equations for the case of T
e = 0 forT
p

,

which the above equations simplify to

r 2
L. = x 2 + 2xz + 1
210

2

and
V 2
L = 2x2 + 2xz + 1
'IJ,'J

(18.87)

(18.88)
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The relations between these factors are shown in the curves of Fig. 18.21.
These curves show the square of the radial velocity and the square of
the total velocity as a function of the angular velocity XVo which is
proportional to the square root of the plate potential and inversely
proportional to the mode number n. Since the energy taken from

o k---....L.I....-..L..--J,...L.-.-+--.L---_O..L..8---::::i-~---+-----f 0

oo~~~-~~----L..--.........-----L.--..I...---JIOO
-0.2 -0.4 -0.6 -0.8 -1.0

wrp ;oX, relative angular velocity
M.IL _

FIG. 18.21.-Total and radial electron velocity at the anode-of a
magnetron as a function of magnetic-flux density and angular veloc
ity for a small ratio of cathode to plate radius. (After Posthumus.)

the potential source per electron is 31mvo2 on the average, then the
electron efficiency is

Vp
2

Electron efficiency = 1 - 
vo2 (18.89)

which means that an efficiency scale can be included on the curves of
2

total velocity squared with a zero value of vp
2 corresponding to 100 per

Vo

cent efficiency. This efficiency does not, of course, include the effect.
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of circuit losses. The curves indicate only the maximum efficiencies
that can be obtained. Actual efficiencies will be less, since not all
electrons are as favorably operated as those discussed in this analysis.
The principal things to be learned from Fig. 18.21 are that higher effi
ciencies can be obtained at progressively higher mode numbers with
higher d-c potentials and with magnetic-flux densities higher than the
critical value. The dashed curve in Fig. 18.21 is for the case of Tp

2 = o.
This corresponds to the case of electrons that have given up all their
radial energy to the field and strike the plate at grazing incidence. This
curve represents the highest efficiencies obtainable for any value of
angular velocity and ma.gnetic-flux density.

Equations (18.85) and (18.86) are a generalization of Eqs. (18.87)
and (18.88) originally given by Posthumus and make possible an exten
sion of this analysis to magnetrons ,vith finite ratios of cathode to plate
radius. Let a limiting small value of the ratio of cathode to plate radius
De 0.707. Then Eqs. (18.85) and (18.86) become

r 2 x 2

2!- = -+ v'2xz + 1vo2 2
v 2 x2

L=3-+v'2xz+lvo 2 2

(18.90)

(18.91)

The corresponding curves for this high ratio of cathode to plate radius
are shown in Fig. 18.22. These have the same general form as those of
Fig. 18.21 except for some rather pronounced displacements. The
limiting curve (shown dashed) for which the radial velocity of an electron
at the plate is zero is the same for any ratio of cathode to plate radius
and is simply

(18.92)

Ho\vever, for the larger ratio of cathode to plate radius of Fig. 18.22,
oscillations can be had for a given mode and magnetic-flux density at a
lower value of plate voltage but with a slightly lower efficiency.

In spite of some rather general assumptions made in this analysis,
the results have considerable validity. Without question, the curves
demonstrate c0rrectly that it is possible to get :higher efficiencies by going
to higher mode numbers and magnetic-flux densities in excess of the
critical value. Deductions as to the effect of the ratio of cathode and
plate radius cannot be taken too seriously. The curves of Figs. 18.21
and 18.22 should be displaced upward by the amount of the integral
of the radial force, which was neglected in Eq. (18.80). When this
displacement upward is made, the minima of the efficiency curves play
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p

CQ)

a more prominent role within the region of operation and specific deduc
tions with regard to the effect of the dimensions definitely need to consider
the effect of the radial electric forces.

B/Bc=as
"1S O.81----t-'~r-+----.:::IIoo~-_t_--+__-____7_--+__-~

~
a
5
;. 0.6
·0
o
j
t5 O.4t---;---++~~"-~-f----+

~

E ~=a707

~~~~O.'ll----+--:-\---::-:-~~-+--~:f-----+-Ij-p--+----I

°O~~-~O""-::-.2---~O""-::-.4----0"-.6---0.....8----1......0--..I.-----IIOO

bJrp=x J relative angular velocity
nvo

FIG. 18.22.-Total and radial electron velocity at the anode
of a magnetron as a function of magnetic-flux density and
angular velocity for a large ratio of cathode to plate radius.

18.9. Basic Relations for Multicavity Magnetrons. Of the various
relations given for magnetrons thus far, the most important is the cutoff
relation of Eq. (18.48). Further relations which have a bearing upon
the a-c operation are semiempirical. Slater and his colleagues have
shown by extensive calculations and tests that maximum bunching
action and resultant efficiency occur in a tube when the area between
cathode and plate and between two corresponding pole points, as shown
by the shaded area in Fig. 18.Ie, is approximately a curvilinear square.
More specifically, the ratio of the radial to the average angular dimension

of the four-sided figure shown should be ~. In terms of the radii and the
'7r
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number of poles this gives

4 2 (rp + TC)
Tp - rc =;. 7r ~ (18.93a)

where N is the number of pole tips. This reduces to

(18.93b)

4
1 - Nrc

~ - 1 + 4
N

A curve of T
c as a function of N is given in Fig. 18.23. For 4 plate

Tp

segments or fe\ver, the ratio of plate to cathode radius should be zero.
For a larger number of plate segments the optimum ratio increases but

(18.94)

~~
~~

V
/'

V
0.4

Tc
rp

0.2

0.6

oo 2 4 £> 8 10 12 14 16
N

FIG. 18.23.-0ptimum ratio of cathode to plate radius as
a function of the number of plate segments. (After
Slater.)

does so rather slowly and even at 12 segments is only at half its asymp
totic value of unity. Under the condition of Eq. (18.93b) the dimensions
of a multicavity magnetron will be such that the ,vorking electrons ,viII
traverse about t\VO loops of a modified trochoidal path before being taken
out of action at th·e plate \vith a small residual energy.

Another condition \vhich ensures favorable action is that the electrons
in their motion around the cathode move at the velocity of the traveling
wave. The angular velocity of the electrons varies considerably from
cathode to plate, and therefore let the angular velocity half\vay bet\veen
the cathode and plate be set equal to the velocity of the traveling wave.
Referring to Eq. (18.40), setting the radial acceleration equal to zero,
and letting the angular velocity rO be represented by VB,

dV = Vo (Bz _ mvo)
dr ero

where To is to have the value corresponding to the halfway points between
cathode and plate,
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Tc + rp
To = --2- (18.95)

If now, V8 is to be equal to the wave velocity, then

V8 = ToB
ToW

V8 =-
n

21fToC
VB = ,----

nXo
1r(rc + Tp)C

VtJ=----
nXo

Assume now as a simplifying approximation that

dlT
=~

dr rp - Tc

(18.96a)

(18.96b)

(18.96c)

(18.96d)

(18.97)

(18.98a)

(18.98b)

(18.99)

for r = To. Then, with the substitutions of Eqs. (18.95), (18.96d), and
(18.97), Eq. (18.94) becomes

V
p

= r(Tp
2

- Tc
2

) 3 X 108 (B _0.010463)
nXo nXo

in mks units. For those who are more familiar \\"ith practical cgs units
this will appear as the general relation

V
p

= 30Or(Tp
2

- Tc
2

) (Bz' _10,463)
nXo nXo

where Vp is in volts, B/ is in gausses, and r and Xare in centimeters. If
now the optimum ratio of cathode to plate radius of Eq. (18.93b) is intro
duced, the above equation becomes

_ 300r
p

2~ r (' 10,463)
V p

- ( 4)2 nXo B z
- ~

1+ N

for the optimum dimensions. This is the important relation that has
been sought. It shows that there will be a linear relation between Vp

and Bz for optimum operation on anyone mode. A plot of Eq. (18.99)
is usually referred to as the mode line or the Hartree line. The mode
lines have slopes that vary inversely as the value of n, Xo, and N. For
anyone tube there is a family of mode lines in the V-B plane that
almost pass through the origin. Such a family of lines is shown relative
to the cutoff parabola in Fig. 18.24.
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The mode-line equation [Eq. (18.99)] may be solved for plateradius
to give

(18.100)
( 1 + ~) ynNJ A Vr - 0 p

p - Y4,8001r B/ _ 10,463
. nAo

where B/ is in gausses. Tubes will ordinarily operate on the highest,
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15.0 rp .

f 1'2.Sj-----f----+---+-I~~-_____.'-I
o
>

.E
x
~ 10.0I------f----+--
C"
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~
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>

.f 5~ 7. ~----+---~-
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2.5 t-----+-~--+--__+_---1-----t

oO.....-::~-5....LO-O--IO~O-O--150.......0--2-00...L.-O--25~OO
MQgnetic· flux density, gauss

FIG. 18.24.-Mode lines in th~voltage-magneti(}

flux-density plane.

or 11'", mode for which n = ~, in which case the above reduces to

(18.101)
AOVpN+4

r =---
p V9,6001r B' _ 20,926

Z NXo

where B/ is in gausses. The above may serve as an approximate design
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equation in determining plate radius of a magnetron. It. assumes the
optimum ratio of cathode to plate radius of Eq. (18.93b).

The cutoff relation itself may be rewritten to include the optimum
electrode ratio of Eq. (18.93b). When restricted to the optimum ratio,
the cutoff parabola becomes

(18.102)

1 0 /n em
B zin6auss

\

\
\
\
~r------r----

30,000

5000

10,000

20,000
"'N
~o
t< 15,000

25/000

where Bz' is in gausses, and the relation is independe~t of the value of n
since it is a static relation.

35,000

o o 2 4 6 8 10 11
Number of poJes,N

FIG. 18.25.-Values of 'AoB/ for different values
of N.

Upon combining Eqs. (18.101) and (18.102), the quantities Tp and V p

may be eliminated and an expression obtained that gives hoRz' in terms

of the number of poles, N, for the case that n =~. This relation may be

solved for the product hoB/, ,vhich applies at cutoff for tubes with

different numbers of poles N and operating in the 11" mode, n = ~. The

reslJ.lts llre given by the curve of Fig. 18.25. 1 The advantage of large

i This and the other relations of this section follow the early work of J. C. Slater
and colleagues. Details of the .analysis, along with refinements on this elementary
point of view, are given in th~ report of the wartime researches of the Radiation
La,b{lra..f.nrv~ volum~ on ma~p.~tr9p.S, l\190r~w-Hill} New York, 1948.
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values of N in terms of low magnetic field is apparent. Actual operation
,viII be best at flux densities considerably above cutoff.

Another condition for operation which may be specified is that the
frequency of oscillation should be approximately equal to the cyclotron
frequency. Examination of this condition sho\vs that the optimum
value of magnetic-flux density is approximately 33 per cent greater than
the cutoff value for values of N greater than 4. Oscillations may occur
almost anywhere in the V-B plane of Fig. 18.24, but greatest output
will be obtained in the vicinity of the mode lines to the right of the cutoff
parabola.

18.10. Dimensional Relations in Magnetrons. Many important
deductions about the effect of the various parameters involved in mag
netron operation can be made by examining the dimensionality of the
basic differential equations involved, just as was done for the ultra-high
frequency triode.! The differential equations of motion of an electron
under the influence of electric and magnetic fields in rectangular coordi
nates are

and
dvy B Em (fi = -ev:c, z - e 11

(18.103)

(18.104)

for a magnetic field having only a z component and an electric field
having no z component. Poisson's equation, which governs the space
charge relations, is

iJEx + aElI _ p ()ax ay - ~ 18.105

The relations between current density, space-charge density, and velocity
are

Jz. = pVz,

J y = pVy

(18.106)
(18.107)

Let now the comparative operation of two tubes that are geometrically
similar be considered. Let D be the dimension ratio and W be the \vave
length ratio of the two tubes. Then, if an electron is moving bet\veen
two corresponding points in the t\VO tubes,

(18.108)
and

dX2 = D dx! (18.109)
dY2 = D dy! (18.110)

1 The analysis of this section follows the early work of A. M. Clogston, done at the
Radiation Laboratory.
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where

and
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D=~
Tl

(18.111)

(18.112)

The equation of motion for tube 2 then becomes

dVx 2 D E
m dt

z
= eVy2LJ2 - e z2

or

(18.113)

(18.114)D dVzl D
m WZ dt

l
= e W vy1Bz - eEz2

For these last two equations to be consistent it is necessary that

(18.115)

(18.116)

(18.117)

and that
D

E 2 = - E 1WZ

Since potential is the product of gradient by distance and the distance
ratio is D, then

D2
V 2 = - VIW2

By an extension of this type of reasoning, ratios of all the critical quanti
ties in the two tubes as a function of the factors D and W may be obtained.
These are summarized in the table on page 667.

The quantities in Table XII enable the tube designer to tell how the
various operating quantities in a tube that has been scaled from a
given tube will compare with the corresponding quantities of the given
tube. It further tells how the quantities in a single tube will change
if the operating characteristics are changed. Thus, if a tube is enlarged
by a factor D but is to work at the same wave length, then the factors
in the Voltage scaling column apply. In this case the required magnetic
flux density is unchanged, the required voltage is increased by a factor
of D2, and so on.. If a given tube is to be operated at a wave length
greater by a factor of W than that for \vhich the operating characteristics

are known, then the required magnetic-flux density is ~ times as great

as before, the required voltage is i2 times as great as before, and so on.
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If with a known set of dimensions and operating characteristics the
dimensions and wave length are changed in direct proportion, then the
values in the Complete scaling column apply. The values in the General
column take care of the general case.

TABLE XII
MAGNETRON SCALING FACTORS

Complete Voltage Wave-length
Quantity Ratio General scaling scaling scaling

W=D W = 1 D = 1

Magnetic-flux density .......
B 2 1 1

1
1

B 1 W W W

Voltage ....................
V 2 D2

1 D2 1
VI W2 Wi

Current density .............
J 2 D 1

D
1

J 1 W 3 W2 WI

Current ....................
12 D2 1 D2 1
It W3 W W3

Power ..................... P2 D4 1 D4 1
PI WS W W5

Conductance ...............
G2 1 1

1
1

GI W W W

Gradient ...................
E2 D 1

D
1

E 1 W2 W WI

18.11. Output Characteristics of Magnetrons. It is not possible
to write simple formulas that describe the output characteristics of
magnetrons as was possible for reflex-klystron oscillators. This is because
no valid expressions for the equivalent electronic admittance of a mag
netron have yet been proposed. From external measurements on mag
netrons it has been established that the electronic conductance is negative
for conditions of oscillation and decreases in magnitude as the r-f voltage
increases, ,as was the case for reflex-klystron oscillators. However, the
electronic admittance evidently depends ...upon the effective impedance
presented by the cavity, whereas in the reflex klystron the beam admit
tance was independent of the cavity impedance. For this reason the
only suitable way of representing magnetron characteristics is by means
of a set of contours on some sort of load-impedance coordinates which
show the way in which such quantities as efficiency, power output, and
frequency depend upon the load impedance. In practice, magnetrons
feed loads through transmission lines, and the effective impedance into
,vhich the magnetron works is determined by the standing-wave ratio
and position of the minimum of voltage on the line. Accordingly, it is
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convenient to plot magnetron characteristics on special transmission
line-coordinate paper instead of on an impedance plane directly.

Although the exact nature of the electronic admittance of a magnetron
(which corresponds to the beam admittance of a reflex-klystron oscillator)
is not kno,vn, the nature of the conventional representations of magnetron
characteristics may be understood from a brief analysis based upon the
assumption that the electronic admittance of the magnetron is some
thing like that of the reflex-klystron oscillator. With this assumption
the equivalent circuit of a magnetron, resonant cavity, coupling loop,
and line terminated in load, is that given in Fig. 18.26. The electronic
admittance of the magnetron is represented by the admittance labeled Yeo
It will have a negative conductance component for a conditioIl. of oscilla
tion. ,The electronic admittance is considered to be in shunt ,vith the
unloaded resonator, which is represented by a parallel combination of an
inductance and capacity, and with the shunt resistance of the unloaded

FIG. 18.26.-Simple equivalent circuit of mag
netron oscillator, output coupling, line, and
load.

resonator. The resonator is assumed to be inductively coupled to a
transmission line leading to a load. The impedance seen looking back
into the coupling loop from the line is

(18.118)

where Zz is the impedance of the coupling loop, w is the operating angular
frequency, M is the mutual impedance bet,veen the loop and the resona
tor, and Y r is the unloaded admittance of the resonator at the operating
frequency. The requirement for oscillation is that the impedance seen
looking back into the coupling loop be the negative of the impedance seen
looking into the line Z L,

(18.119)

While this equation is not capable of analytical solution, it is capable of
graphical representation. This graphical representation will now be
developed.

Assume that the electronic admittance is as shown in Fig. 18.27.
The lo'cus of the electronic admittance is given by the vector in the



MA.GNETRON OSCILLATORS 669

+B
R.I: Volfaqe IS zero
at e~/remifybuf
increases toward base

second quadrant. For zero r-f voltage the electronic admittance has
the value given by the extremity of the vector. As the r-f voltage
increases, the vector ,viII be assumed to shrink but maintain its direction.
This is not strictly true but \vill serve for a basis of discussion. It ,vill
further be assumed that the electronic admittance is not affected by the
resonator admittance. Sho\vn in the same figure is the unloaded reso
nator admittance. This has a locus that is approximately a straight line
parallel to the susceptance axis, as ,vas sho,vn in the chapter on Velocity
modulated Tubes, or Klystrons. Different points along this locus cor·..
respond to different frequencies, frequency increasing up,vard. At
unloaded cold resonance the resonator admittance is a pure conductance.

", Locus of'
. unloaded

resonanf
Elecfronic ' __ . circuit
admittance fo+~f

ofmcrqnetrom
G

.fo
- ------~--F-~----+G

Oriq/n or'
crdm/ffance
axes

-B

FIG. 18.27.-I.JOci of electronic admittance of a magne
tron and the resonator admittance in an admittance
plane.

Sho\vn in Fig. 18.28 is the sum of the resonator and electronic admit
tance. The electronic-admittance vectors are shifted to the right by
the resonator conductance and shifted up or do,vn by departures in
frequency from the cold unloaded resonant frequency of the resonator.
The locus of w2M2(Yr + Y e) ,vill have the same form as that sho,vn in
Fig. 18.28 except that the scale \vill be changed and the locus ,vill be
plotted on an impedance plane ,vith axes of resistance and reactance
instead of conductance and susceptance. The locus of

Zl + w2M2(Yr + Y e)

is shown in Fig. 18.29. The addition of the loop impedance merely
shifts the previous representation strongly up\vard and a little to the
right since the loop ,vill ordinarily have a higher reactance than resistance.
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l~he negative of the impedance seen looking into the loop is shown in
Fig. 18.30 against coordinates of load impedance. In this representation

!'a-Af

+Bf o+4f

Locus of'__ ~.... /;
le+]1. 0

for zero R.F. £-4£
voltage 0

, .
Successively <" .~
greater volues ..::~.:
ofR.r: voltage .......---

-B

{,+~f

,.fo-6 ---+-~~+----3Ik:----O-~~---,---+6

FIG. 18.28.-Sum of resonator and electronic admittance of a
magnetron.

it is possible to plot power contours. Ideally, the power will be con-

t t 1 · 1 1· .. · · b V
2

Ps an a ong any vertlca Ine Since power output IS given Y /I. ower

+X

Locus 01 -------
19 +(lJ. +Je)
for zero R. F:
volfage

fo-Af

....1$
-R ----t--~~-~-Q--~--:.;;;.,-----+R,,

, ,
" ,y'

Locus of ,.,:.... .....:.•.,.-----
Y8+(Yr+Je) ..~,.,
for successively
greater yalues of"
R. F.. voltage -X

FIG. 18.29.-Locus of ZI. + w2M2(Yr + Ye) in an impedance
plane.

is expected to be zero along the vertical line through the extremities of the
transformed admittance vectors since here the r-f voltage is zero. It is
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also expected to be zero along the zero-resistance axis since the power
that can be delivered to a zero resistance is zero. Between these limits
the power will rise to a maximum. Actual contours of constant power
are not straight vertical lines but elongated closed loops, for the electronic
admittance of the tube apparently changes with the admittance into
which the electrons work. Such elongated loops are shown dotted.
They are closed about a point of maximum power output. Also shown
in Fig. 18.30 are lines of constant frequency in the form of the transformed

+x
\

\

max \
-R +R

-ys~. ,
.~

~ I'o-Af< 11

~ ,
fo~ /

fo+~£.

---Contours oT
constantsfandinq
WRIle ratio on'
ou/put I/ne

-----COnfours of
constal7; p(Jwer
output;P.t >P2

-x
/'

Locus of'
-[ys.,. (Yr+~)J

forzeroBF
voltage

FIG. I8.3Q.-Locus of -[Zl + w 2M2(Y, + Ye )] in an impedance
plane.

electronic-admittance vectors. For the reflex-klystron oscillator the
slope of this line is related to the transit time in the repeller space. For
the magnetron the slope of these lines is also probably related to the mean
transit time, though the exact relation has not been definitely established.
Shown in this same figure are some loci of constant standing-wave ratios
on a transmission line that will produce the indicated load impedance.
These loci are circles about the characteristic impedance of the line.!

1 See KING, R. W. P., H. R. MIMNO, and A. H. WING, "Transmission Lines,
Antennas and Wave Guides," McGraw-Hill, New York, 1945, for an introductory
treatment of transmission-line impedance loci.
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Along any circle about the characteristic impedance of the line the
magnitude of the standing \vave of voltage or current is constant, but
the distance from the magnetron output to the minimum of voltage
changes.

The contours of Fig. 18.30 are usually transformed to a representation
on which the circles of constant standing-wave ratio are concentric about

~oo
8

FIG. 18.31.-Rieke diagram of a Raytheon 2J38 magnetron.

the center of the plot and evenly spaced on a radial scale, the value of the
standing-wave ratio at the center being unity. The contours of Fig.
18.30 are correspondingly deformed to give the representation of Fig.
18.31, which is known as a Rieke diagram. Positions of constant distance
of a voltage minimum from the output loop in electrical degrees become
radial straight lines in such a plot. The contours of constant po\ver
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output are closed contours about a point of maximum output, though
for lo'v powers the contours are closed off the chart through regions of
voltage standing-wave ratios greater than 5. Contours of constant

fn
o
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5
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o
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Pulse widfh = I microsecond from mea-IT frequency tiS determinedby
---Maqnef/c r/e/~ gauss corre.spondin'l Rieke diagram, pnd I~kenunder
--- Peak power, kilowatts conditIons ofcon6tcrnf temperature). Matched
--- Efficiency "l,/8"(48ohm)coClxlct/llne u.sinq,spec/fied

malchi'nq iransf'ormer.

FIG. 18.32.-Voltage-current characteristics of a Raytheon 2J30 magnetron.

frequency are sho\vn in this diagram, corresponding to those in Fig.
18.30. Ideally, these \vould intersect the constant-po,ver contours at a
constant angle. It is seen that for a load corresponding to a given
standing-,vave ratio of voltage and location of voltage minimum from



674 VACUUM TUBES

the output loop the power output and frequency are specified. The
position of the point of maximum power output relative to the center
of the chart is determined primarily by the design of the output-coupling
loop. It is not always desirable to operate the tube at maximum output,
for here the frequency changes relatively rapidly with changes in load
impedance, an effect known as frequency pulling. Accordingly, the
output loop is usually designed so that the center of the chart falls at a
point in the characteristic field which represents a suitable compromise
between output and high-frequency stability. The amount by which the
frequency changes for a given standing-wave ratio as the position of
the minimum of the standing wave is changed is a figure of merit for the
tube; the less the frequency cliange, the better the tube. In a good tube
the amount of the frequency variation at a standing-wave ratio of 1.5 is
less than 710 of 1 per cent. Rieke diagrams are usually plotted for a
condition of constant plate current and constant magnetic-flux density,
the voltage being varied slightly to keep the current constant as the
load is changed. The advantage of the Rieke diagram over other
possible representations is that a change in the reference point from which
the standing-wave maxima and minima are measured merely rotates the
plot without changing its form.

Another representation of magnetron characteristics that is commonly
given is a voltage-current plot as shown in Fig. 18.32. On this plot, known
as the "performance characteristic," there are shown contours of con
stant magnetic field, output, efficiency, and frequency. The controlled
variables are the magnetic field and the voltage, which determine the
current and at which frequency, power. output, and efficiency can be
measured. Such plots are made for a constant load impedance, usually
a flat line of the proper characteristic impedance.



CHAPTER 19

PHOTOELECTRIC TUBES

19.1. The General Form of Photoelectric Tubes. Photoelectric
tubes, or, as they are now more frequently referred to, "phototubes,"
are at first glance very simple devices, though the preparation of the
photosensitive surface involves some of the most delicate operations in
modern electronic practice. The tube is generally housed in a small
glass envelope and contains, in its simplest form, just two electrodes.
The cathode, or photosensitive emissive surface, is usually in the form
of a half cylinder. The anode, or electron collector, is usually in the
form of straight wire on the axis of the cylindrical cathode. Great pains
are taken to make the leakage resistance between the two electrodes as
high as possible. In some tubes the leads to the two electrodes are
brought out at different ends of the tube in order to achieve a high leakage
resistance. The envelope of the tube is usually made of a special glass,
which acts as a light filter to make the light absorption as low as possible
in the desired light frequency band.

Applications of the phototube are too well known to require much
discussion. Phototubes can be used to activate almost any kind of
electrical or mechanical device through the medium of suitable amplifiers
and relays. They can be used to cause a device to respond to almost
any variation in light intensity. They can be made to respond to light
of any color in the visible spectrum and to respond as well to radiation
in the infrared and ultraviolet portions of the spectrum. Applications
as door openers, counters, automatic light switches, and color sorters
are well known.

19.2. Fundamental Photoelectric Relations. Phototube operation
is based upon what are no\v the ,veIl-established properties of the photo
electric effect. These may be enumerated as follows:

1. Electrons are emitted from lo,v-work-function surfaces when
exposed to radiations in the visible or near-visible region of the
spectrum.

2. The magnitude of the emitted photoelectric current is propor
tional to the intensity of the illumination.

3. Photoelectrons are emitted with finite velocities. The maximum
675
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velocity of emission is independent of the intensity of the illumina
tion of the emitting surface (time rate of flow of radiant energy).

4. Any photoemissive surface has a low-frequency limit of radiation
beyond ,vhich no electrons are emitted regardless of the intensity
of illumination.

5. The emission velocity of photoelectrons depends upon the work
function of the emissive surface as well as upon the frequency of
the illuminating radiation.

These various properties ,vill be described in some detail in subsequent
sections.

19.3. History of the Photoelectric Effect. The history of the dis
covery, theoretical development, and experimental verifica.tion of the
photoelectric effect is so fascinating that it deserves at least a topical
recapitulation. It is all the more remarkable in that the fundamental
relations of the photoelectric effect were established before the existence
of the electron was verified! Chronologically, the high spots in the
history of the photoelectric effect are somewhat as follows:

1887 Hertz discovered the photoelectric effect in his experiments on
electromagnetic waves. His experiments dealt with obser
v'ations on the transmission of damped electromagnetic
waves of a frequency of about 1,500 mc, generated with a
spark coil and a suitable resonant circuit. Transmitted
energy ,vas picked up on a resonant circuit, and the intensity
of the transmission ,vas observed on a spark gap adjustable
with a micrometer. Hertz found that his receiving circuit
sparked more readily ,vhen the electrodes were illuminated
by the spark from the transmitting gap. He further found
that the effect ,vas present only ,vhen the negative electrode
(the gaps ,,,,ere polarized ,vith a direct voltage) ,vas illumi
nated. He verified that ultraviolet radiations were responsi
ble for the effect and that the effect ,vas independent of the
source of the radiations.

1888 Hallwachs established that the effect consisted in the emission
of negative particles of electricity.

1889 Elster and Geitel showed a relation bet\veen the contact
potential of a surface and its long-\vave limit of photo
emission. They built the first photocells and made the
first photometer.

1889 J. J. Thompson discovered the electron as a fundamental
particle and constituent of matter. He established that
the negative particles emitted from incandescent bodies
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were the same as the particles emitted photoelectrically.
He deflected electrons electrically and magnetically and
made the first determination of the ratio of the charge to
the mass of the electron.

1889 Lenard showed that the magni-
tude of the photoelectric current Phofofube "Rttd/anl

· h . ,./ enerfJ,Y
was proportIonal to t e mten- Cathode- _ ~__ -Anode
sity of the exciting illumination.
He also discovered that the
velocity of emission of photo
electrons was independent of
the intensity of exciting illumi
nation.

1905 Einstein applied the quantum
theory enunciated by Planck in
1900 to the photoelectric effect.
He predicted correctly the rela
tion between the velocity of
emission of photoelectrons, the
work function of the emitting surface, and the frequency of
the exciting radiation.

1912 Hughes verified the Einstein equation.
1916 Millikan checked the values of Planck's constant by photo

electric measurements.

19.4. Specific Photoemission Characteristics. The photoemissive
properties of surfaces are usually investigated by means of the arrange
ment of Fig. 19.1. Here the phototube is shown by the circle containing
a photosensitive cathode and an anode. The cathode is illuminated
from an external source. The cathode and anode are connected to a
source of direct potential in such a way that the anode can be made either
positive or negative relative to the cathode. A sensitive current meter
is connected in series with the tube and voltage source.

With the arrangement of Fig. 19.1 the'current registered by the meter
is a function of the intensity of the light and the electrode voltages, as
shown in Fig. 19.2. From this figure it is observed that for any anode
voltage positive relative to cathode voltage the photoelectric current is
directly proportional to the intensity of the illumination. Let the differl

ence between anode and cathode voltage be designated by V. (V includes
the effect of contact potential.) Then for positive values of V the photo
electric current is constant for a fixed illumination. This means that
the photoemission is constant and that the anode is collecting all the
photoelectrons. When V is made negative at a fixed illumination, the



678 VACUUM TUBES

current falls off, reaching zero at a value of Vo that is independent of
the intensity of the illumination. The explanation of these effects is
apparently that photoelectrons are emitted with velocities ranging from
zero to some maximum value. The number of electrons emitted is propor
tional to the rate of incidence of radiant energy, but the maximum
velocity of the emitted electrons is independent of the intensity of illu
mination of a given spectral distribution.

The maximum velocity of emission does, however, depend upon the
frequency of the light, as may be shown by illuminating the photo
emissive surface with monochromatic light of a variable frequency but
constant intensity. The results of such a test are shown in Fig. 19.3.

1
....
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:J
c.> 3L lumens
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L lumens

-v 0 +V
Poientia) difference between anode ~ncf cQthode

FIG. 19.2.-Photoemission current versus retarding volt
age for various intensities of illumination.

The three curves shown give current against retarding voltage for equal
intensities of illumination of three different frequencies of light such
that /1 > 12 > /3. The higher the frequency of the light, i.e., the farther
toward the short-wave-Iength (blue) end of the spectrum, the greater
the maximum velocity of emission. Curves such as those of Fig. 19.3
are rather difficult to obtain, for it is necessary to measure radiant energy
with a thermocouple or bolometer, correct the resultant curves for contact
potential, stray light, and secondary emission, and be sure that the
emissive surfaces are free from any contamination and totally outgassed.

Tb.e relation between the maximum velocity of emission and the
frequency of the exciting radiation is given in Fig. 19.4. This sho\vs
that the maximum energy of emission of photoelectrons is linear ,vitn
the frequency of the exciting radiation. There is a minimum frequency
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of light for any surface beyond which photoelectrons are simply not
emitted. The curve of Fig. 19.4 is a good straight line, which Millikan
has shown comes down to the axis ,vith a definite angle and not asymp
totically. The straight line of Fig. 19.4 may be represented by the
equation

(19.1)

where - V o is the intercept with the voltage axis of any curve in Fig.
19.3, Vm is the corresponding maximum velocity of emission, m is mass of
tbe electron, - e is charge of the electron, f is light frequency in cycles per
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FIG. 19.8.-Photoemission current versus retarding voltage
for various frequencies of illumination.

second, h is the slope of the straight line of Fig. 19.4, and w is the fre.,
queney axis intercept of the straight line of Fig. 19.4. As given above)
Eq. (19.1) is purely empirical. Howev;er, Eq. (19.1) is the equation
predicted by Einstein on purely theoretical grounds, with h identified
as Planck's constant and w identified as the work function of the photo
emissive surface in electron volts. From Eq. (19.1), the minimum fre
quency of emission occurs when the velocity of emission is zero and is
given by

w
fo =

h
(19.2)

The relation between the work function and the minimum frequency
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or maximum wave length of exciting radiation predicted by Einstein in
the form of Eq. (19.1) has been verified experimentally. If we let

(19.3)

where w is work function in electron volts, e is electron charge, and cPP
is the voltage equivalent of the work function as determined from
photoelectric measurements, then the work function in volts should be
inversely proportional to the maximum wave length in angstrom units.
In Fig. 19.5 is given a plot on log-log paper of the relation between
experimentally observed values of the thermionic work function and

+

f .....

FIG. 19.4.-Maximum velocity of emission
of photoelectrons as a function of frequency
of exciting radiation.

the maximum wave length of photoelectric emission for different mate
rials. If the relation predicted by Einstein is correct, then the plot of
the work function against the threshold wave length on log-log paper
should be a straight line ,vith a slope of -1. Reference to Fig. 19.5
shows that this relation is obeyed fairly well. Departures from the
relation postulated are primarily due to the difficulty of getting an
uncontaminated emitting surface. There are also some discrepancies
due to a correction which must be made for the temperature of the
emitting surface. The most extensive work in trying to correlate values
of the work function as measured by thermionic and photoelectric
methods has been done on platinum. It is the consensus of workers in
this field that the photoelectric and thermionic work functions of platinum
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are the same and that those of other metals would be revealed as the
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FIG. 19.5.-Relation between the thermionic work function of
different metals and the threshold wave length of photo
emission.

19.5. Fundamental Theory of Photoemission. The wave theory of
light meets with considerable difficulty in explaining the various aspects
of the photoelectric effect. The proportionality between the photoelectric
current and the intensity of illumination is consistent with the wave theory,
but the fact that the maximum velocity of emission is independent of
the intensity of the illumination cannot be explained on the basis of the
wave theory of light. When the independence of the velocity of emission

1 The classical reference on all phases of photoelectricity is HUGHES, A. L., and
1.1. A. DuBRIDGE, "Photoelectric Phenomena," McGraw-Hill, New York, 1932.

2 An excellent elementary survey of the photoelectric effect is contained in RICHT

UYER, F. K·., and E. H. KENNARD, "Introduction to Modern Physics," 3d. ed.,
McGraw-Hill, New York, 1947.
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and the intensity of illumination was discovel'ed a furor was created
among students of physics. The dilemma encountered in trying to
explain the above-mentioned effect can be circumvented by postulating
the dual nature of light; that is to say, light rays exhibit both a wave and a
particle aspect. TIle wave nature of light cannot, however, be com
pletely discarded on the assumption that light is corpuscular in nature,
for some aspects of light behavior are very difficult to explain on this
basis.

The corpuscular aspect of light rays has its basis in the quantum
theory. The quantum theory had its origin in the study of heat-radia
tion phenomena. The quantum theory has proposed that energy flows,
not continuously, but rather in small packages. The smallest unit of
energy that can be involved in any transfer is called the "quantum."
A quantum of energy has a size that is directly proportional to the cor
responding frequency of radiation as given by

Q = hf (19.4)

where Q is the quantum of energy, h is a universal constant having a value
of 6.624 X 10-34 watt-second per cycle and known as "Planck's con
stant," and f is the frequency of the radiation in cycles per second. Thus
if monochromatic orange light of wave length 6,000 angstrom units is
involved (1 angstrom unit = 10-10 meter), the corresponding frequency
of radiation is 5 X 1016 cycles per sec and the corresponding quantum
of energy for this frequency is 33.12 X 10-18 watt-second. This means
that light of this frequency delivers energy in units of 33.12 X 10--18

\vatt-second and cannot deliver any but an integral multiple of this
amount of energy. Thus, just as the modern theory of matter postulates
the indivisible particle, the electron, so, correspondingly, the quantum
theory says that energy is finally delivered in minute but indivisible units
of quanta.

A quantum of light is known as a photon. Light rays may be con
sidered to be made up of photons, which have many of the characteristics
of small particles in that each carries a discrete quantity of energy but
which also have the characteristics of waves. When the quantum
theory is applied to light rays, all the effects observed in connection with
photoemission are readily explained.

If light rays consist of photons each of which carries a definite quantity
of energy proportional to its frequency, then each photon on striking a
surface may transfer to an electrcn in the surface at most a quantum of
energy. This quantum of -energy may give rise to emission of an elec
tron, and the energy that the emitted electron will have will be at most
the quantum of energy minus the work necess,ary to overcome the surface
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electrostatic forces. Hence the validity of Eq. (19.1), the Einstein
photoelectric equation,

Voe = 72mVm2 = hf - w (19.1)

The work necessary to overcome the surface electrostatic forces, tl),

is the work function of the metal in question.
By applying the quantum theory of light, all the photoelectric effects

observed experimentally are completely explained. The threshold
frequency of photoemission is that frequency at which the energy of the
photon is converted into electron energy enabling the electron to just
barely overcome the surface restraints and thus be emitted with zero
velocity. The threshold frequency is accordingly proportional to the
work function of the metal, as previously noted. The proportionality
bet\veen photoelectric current and intensity of illumination follo\vs from
the fact that the number of photons is proportional to the intensity of the
illumination for a given area.

19.6. Spectral Response Curves of Photoemissive Surfaces. The
photoelectric emission of metal surfaces exhibits two important kinds of
selectivity The first selectivity is a variation in emitted current with
wave length of the exciting radiation. The second sho\vs itself as ~

variation in emitted current with the polarization of the exciting radia~

tion. The response to polarized light is much smaller when the electric
vector of the exciting radiation is parallel to the surface than when the
light is polarized at right angles to the surface. Of the two types of
selectivity the first is by far the more important since ordinary photo
emissive surfaces as used in commercial tubes are so rough that no differ
entiation with respect to polarization can be observed.

Every photoemissive surface exhibits peaks of sensitivity as the
\vave lengths of the exciting radiation are changed. Typical of the
response characteristics of the pure metals are the curves for the alkali
metals sho\vn i·n Fig. 19.6. 1 Observation of these curves shows that, as
the atomic number of the element increases, the maximum sensitivity
decreases; the resonance peak becomes broader, and the wave length of
the maximum sensitivity increases. No completely satisfactory quanti
tative explanation for the above relations seems to be available. The
threshold wave length increases as the work function of the surface
decreases in accordance with Einstein's photoelectric equation. Qualita
tively it is expected that the wave length of maximum sensitivity would
follow somewhat the same relation. An investigation from the point of
view of quantum-mechanical considerations will no doubt some day give

1 SEILER, E. F., Color-sensitiveness of Photo-electric Cells, Astrophys. Jour., vol.
52, pp. 129-153) October, 1920.
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the complete story. It is possible that the mechanism involved is
similar to that which occurs for secondary emission, which yields a
maximum emitted current for a given energy of excitation.

It is possible to make complex emitting surfaces that have lower work
functions than the pure metals. The surface that gives maximum
secondary emission also seems to give maximum photoelectric emission.
Maximum emission is obtained with a surface of the type caesium on
caesium oxide on silver. l Such a surface is prepared by oxidizing silver
and then exposing it to caesium vapor. Photoemissive surfaces may also
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FIG. 19.6.-Photoelectric color sensitivity of the alkali metals.

be prepared by sputtering metals, vaporizing metals, and electrolyzing
metals through a glass envelope.

19.7. Vacuum-phototube Characteristics. Current-voltage Character
istics. Vacuum phototubes exhibit characteristics that depend pri
marily upon the nature of the emissive surface and the transmission
characteristics of the glass envelope. A typical set of vacuum-phototube
characteristics is shown in Fig. 19.7. For a fixed amount of light flux
from the exciting source the curves of current against voltage are similar
to those of a diode. For very low voltages the current follows the three-

1 ZWORYKIN, V. K., and G. A. MORTON, "Television," pp. 22-28, McGraw-Hill,
New York, 1940.
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halves-povver law of variation ,vith voltage. Because the emission cur
rent from a photosensitive surface is so small, this region is extremely
small and most of the curve of current against voltage shows pronounced
emission saturation. As a result, the emission current is almost constant
over nearly the entire operating range. A load line may be constructed
on the current-voltage characteristics of a phototube just as is done on a
Bet of vacuum-tube characteristics. Several such lines are shown in
Fig. 19.7. These lines have a slope that is the negative reciprocal of the
resistance in series with the voltage supply and the phototube. Such
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FIG. 19.7.-Current-voltage characteristics of the RCA 929 phototube
(light from a tungsten filament at 2870 0 K).

load lines ,vill al,vays be straight lines regardless of the current-voltage
characteristics of the device since they a;e simply a graphical representa
tion of Ohm's la,v. The proportionality bet\veen current and light flux is
almost exactly linear for any operating voltage, as shown in Fig. 19.8.

The reaction of a photoemissive surface to illumination is almost
instantaneous. Experiments sho,v that less than 3 X 10-9 sec elapse
from the time the photoemissive surface is illuminated until photo
emission begins. The photoelectric current ceases in less than 10-8 sec
after the illumination is cut off. Hence in a vacuum phototube the
principal time factor involved is the transit time of an electron from
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cathode to anode. The transit time may he calculated from the curves
of Fig. 8.14. This time will generally be very short.

Example: Determine the transit time of a photoelectron emitted from a semi
cylindrical cathode of radius 1 cm and collected at an anode of radius ~~ mm.
The ratio of cathode to anode radius is 20, and the distance between cathode and
anode surfaces is 0.95 cm. From Fig. 8.14, the factor K is 1.344. Let the anode
potential be 200 volts. Then the electron velocity at the anode is 243.5 X 106 cm

per sec. The corresponding transit time from the formula T = Kd is 0.00525
v

microsecond. This means that a vacuum phototube can handle any known type
of light modulation.
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FIG. 19.8.-Current versus light flux of an RCA 929 phototube.

6

5

Spectral Characteristics. Phototubes are available ,,"ith spectral
sensitivities that cover the visible portion of the spectrum and carry well
into the infrared and ultraviolet. In general, the response curves ,vill be
different from that of the eye, which is shaped something like a resonance
curve, with a peak at 5,550 angstrom units (1 angstrom unit = 10-10

meter) and dropping to virtually zero at 4,000 and 7,000 angstrom units.
Some typical spectral response curves of commercial phototubes are
shown in Fig. 19.9. It is seen that th6iG Ci,J:"e tubes available ,vhich
cover the visible spectrum, the short infrared rays, and the lonu: ultra-
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violet rays. The m_aj~rity of phototube applications depend upon a
tungsten filament as a source of illumination. The tungsten filament
has its spectral characteristic centered in the infrared range, with appre
ciable radiation in the visible portion of the spectrum. Light filters may
be used with phototubes ,vhere selective response with respect to color
is desired. Where high sensitivity in the ultraviolet is desired, special
envelopes must be used with the tube, for the ordinary glass does not
transmit ultraviolet rays well. Such special envelopes usually take the
form either of a glass envelope ,vith an extremely thin window in front
of the cathode or of a quartz envelope.

The spectral sensitivities of vacuum phototubes range from about
5 to 50 microamperes per lumen (1 lumen = 0.0016 \vatt for green light).
The number of lumens, L, of light flux falling upon an area A of a surface
a distance d from a point source of light of candle-power strength C is

lumens (19.5)

,vhere any units of length may be used provided only that they are the
same for A and d2•

19.8. Gas-phototube Characteristics. The sensitivity of a phototube
can be increased by utilizing ,,~hat is kno,vn as the gas amplification of
the photoemission current. If a small amount of gas of the right kind
and pressure is admitted into the phototube, then the photoe~ectronsin
their travel from cathode to anode will strike some of the gas molecules,
causing ionization. This ionization splits the gas molecule into a free
electron and a negative ion. The free electron is now available to join
the photoelectron in its travel toward the anode and may itself ionize
other gas molecules, giving rise to more electrons, which can add to
the effective current of the phototube. The positive gas ions formed \vill
move toward the cathode and, in doing so, will constitute a current that
is nearly equal to the electron current. In addition, the positive ions
on impact ,vith the cathode will create some secondary electrons, which
\vill further increase the total current. As a result of the cumulative
action of all the above effects, the net current to the anode of the pboto
tube can be made as much as ten times the photoemission current.

The current-voltage characteristics of a typical gas phototube are
shown in Fig. 19.10. For lo,v anode voltages the characteristics are
about the same as for the vacuum phototube, for at lo,v voltages there
is inappreciable ionization o\ving to the lo\v energies of the photoelectrons.
At higher anode voltages, ionization occurs, and the current increases
rather rapidly with voltage. At sufficiently high voltages a gloVt· dis
charge will be sustained bet,veen electrodes, as sho\vn in Fig. 19.10, ana
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the tube operation is impaired. Some appreciable departures from
current linearity ,vith light intensity are expected in the gas phototube
and are indeed present, as sho\vn in Fig. 19.11. The distortion resulting
from this nonlinearity of the characteristics is, however, no greater than
that encountered in ordinary vacuum tubes and does not prevent gas
phototubes from being used to reproduce the sound recorded on film.

Factors in the Design of Gas Phototubes. There are a number of rather
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FIG. 19.10.-Current-voltage characteristics of a typical gas phototube.

critical factors that must be properly adjusted in the gas photocell to
obtain a good tube. These may be listed as follows:

1. Chemical properties of the gas.
2. Atomic weight of the gas.
3. Pressure.
4. Maximum allowable voltage.

The principal consideration involved in the choice of a gas is that it
must not react with the photoemissive surface. The only gases that can
be depended upon not to react with caesium surfaces are the inert gases
helium, neon, argon, krypton, and xenon.

The atomic weight of the gas used is a factor, for if the gas is too
heavy the transit time of the positive ions formed will be too great and
the high-frequency response of the phototube will be poor. Correspond
ingly, the ionization potential, or potential of a striking electron that
will free an electron from the gas molecule, must be low; otherwise,
the potential across the tube will be so high that the cathode emission
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:'Day be impaired by the bombardment of high-energy positive ions.
The critical physical characteristics of the inert gases are listed below:

Gas
Atomic
weight

Ionization
potential,

volts

Molecular
diameter,

em

Helium .
Neon .
Argon .
Krypton .
Xenon .

4.002
20.183
39.944
82.9

130.2

24.46
21.47
15.68
13.96
12.08

1.9 X 10-8

2.35 X 10-8

2.9 X 10-8

3.2 X 10-8

3.5 X 10-8
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FIG. 19.11.-Current as a function of light flux in a typical gas
phototube.

effected in realizing the requirements of low atomic weight and low
ionization potential. The properties of argon represent a reasonable
compromise, and this gas is the one most commonly used, though other
gases may be and sometimes are used in special applications.

The gas amplification that can be realized in a gas phototube depends

From this tabulation it is seen that as the atomic weight decreases
the ionization potential increases. A compromise must therefore be

12

2

10
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cm

upon the gas pressure and the voltage involved. These factors deter
mine the number of ionizing collisions of a photoelectron. The greater
the pressure, the less the average distance between molecules but cor
respondingly the less energy the electron has at each collision. The
average distance between collisions of molecules or electrons in a gas
is known as the "mean free path." The mean free path of an electron
moving among gas molecules is in turn related to the pressure, or number
of molecules per cubic centimeter, and to the molecular diameter of the
gas molecules by the relation

4
Mean free path = -------'d2 em (19.6)

1r m n

where dm is the molecular diameter in centimeters and n is the number
of molecules per cubic centimeter.! The number of molecules per cubic
oontimeter of a gas depends only upon the pressure and the tempers,ture
and is independent of the gas involved,

n = 7.244 X 1015 ~ (19.7)

where P is pressure in bars or dynes per square centimeter

(1 atmosphere = 106 bars = 760 mm of mercury)

and T is temperature in degrees Kelvin (273 + CO). Combining Eqs.
(19.6) and (19.7) for argon and assuming room temperature to be 290oK,

Mean free path of electron 60.7
among argon molecules = P

where P is in dynes per square centimeter or bars.
A pressure of 0.2 mm of mercury is commonly used in gas phototubes.

This corresponds to a pressure of 263 bars and a mean free path of 0.23
cm. At every ionizing collision a new free electron is created that can
itself produce more electrons by collision. Thus, if the original photo
electron in traveling from cathode to anode experiences n collisions each
of whic~, produces a single free electron, then 2n free electrons reach the
anode for each photoelectron emitted. The potential distribution must
be such that each electron acquires e~ough energy to ionize another
molecule in a distance equal to or slightly less than the mean free path.
From the above figures it is seen that with a linear potential field it would
be necessary to have a cathode-anode spacing of only about 0.8 cm and
a total potential of only about 64 volts to ensure a gas amplification of at
least fifteen times (since for every electron formed a positive ion is
also formed that contributes to the current).

1 Dow, W. G., HFundamentals of Engineering Electronics," pp. 256-260, Wiley,
New York, 1937.
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Frequency Distortion in Gas Phototubes. Owing to the presence of
the high-mass positive ions in the current flo\v of a gas phototube there is
appreciable frequency distortion in such tubes. This arises from the time
involved in the formation of the ions and in their large transit time. A

Anode supply volts = 90
Voltage drop in lo"d-very small
Capacitance effects-made negligible

,; --- r--~~
~~.......

i'

10 1. . 3 4 5 6 1 8 q 100 2 3 4 5 6 1 6 q1000 3 4 S 6 1 8910,000
Frequenc'l. cycles per sec.

FIG. 19.12.-Response of a gas phototube to a constant illumination modulated
at audio frequencies.

typical response curve to a light ray that is sine-\vave-modulated at a
variable frequency is given in Fig. 19.12. Distortion is small enough
so that it is tolerable in the a-f range. It may be equalized by using an
amplifier \vith a characteristic that rises ,vith frequency in such a way
as to offset the distortion introduced by the gas tube. A little har-

L

Time
~

FIG. 19.13.-Rcsponse of a gas phototube to a light ray that is
square-\vave-modulated at a high audio frequency.

monic distortion is involved in the response of a gas phototube; too,
but it is generally small enough so that it is not serious. If the light
source is square-,vave-modulated, the current output of the gas phototub€
will not be a perfect square ,vave but ,vill have the form of the ,vave
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shown in Fig. 19.13. The current does not build up instantaneously to
its maximum value. The principal cause of this time lag is the time
required for the positive ions formed to reach the cathode. When the
light source is cut off the current does not immediately drop to zero, for
there are still positive ions floating about between electrodes. The
time lag here is primarily due to the time required for the positive ions to
diffuse to the electrodes or to disappear by combination with free
electrons.

Summary of Gas-phototube Characteristics. As a result of intro
ducing gas into a phototube, a gain in the luminous sensitivity by about
a factor of 10 may be realized. A price must, however, be paid for this
gain in sensitivity-the fact that the resultant tube characteristics are
slightly nonlinear, introducing some harmonic distortion. Further,
some frequency distortion is encountered, due to the time-lag effects
in the tube.

The gas phototube must operate at much lo,ver voltages than the
vacuum phototube. This effects a considerable simplification of the
power-supply circuit and is an advantage in many applications. How
ever, there is a minimum resistance that can be used with the tube to
avoid a glow discharge. The glo,v discharge is readily avoided by using
a larger load resistance, but then the nonlinear distortion increases.
Further, since the voltages at which the gas phototube are operated are
of the order of one-half to one-fifth of the voltages used with the vacuum
phototube and the load resistances are correspondingly lower, much of the
gain in luminous sensitivity is lost. In general, gas phototubes are more
suitable for low levels of illumination because of the greater luminous
sensitivity, while vacuum phototubes are best suited for applications
in \vhich the amount of light or the size of the voltage supply is not a
factor. Gas phototubes are further not as stable as vacuum phototubes
and have a greater tendency to age rapidly and are more susceptible to
injury from excessive light intensity or voltage.

19..9~ Utilization of Phototube Characteristics. The output current
of a phototube is so low that the phototube must always be used in
conjunction with some other vacuum tuoe that can amplify the phototube
current to a value large enough to operate a relay or other registering
device. Generally this can be achieved with one stage of amplification
of the voltage across the load resistor in series with the photocell and
with the amplified voltage then applied to the grid of a small thyratron
in \vhose plate circuit there is a relay. The amplifier and thyratron may
be operflted with either alternating voltage or direct voltage; in fact,
the former arrangement has the advantage that the relay operation is
generally lJetter. If alternating voltages are used, then either a con-
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denser must be put across the relay or a relay with a shaded pole must
be used. Recently there have been developed some small screen-grid
thyratrons, such as the RCA 2051, which have a sufficiently high control
ratio and a low enough control-grid current so that they may be operated
from either a vacuum or a gas phototube directly. In general, the
electronic circuits associated with phototube control systems are quite
simple and easy to build. 1- 4

19.10. Photomultiplier Tubes. Much attention has been devoted
to the development of phototubes with a secondary-electron multiplier
as part of the tube to increase the minute photoemission current to a
larger value. -9 Early attemyts met ,vith great difficulty in achieving
stable secondary-emission surfaces that had low noise char~cteristics.

Suitable secondary-emission surfaces \vere finally developed, and photo
multiplier tubes are now available commercially.

The principle of the photomultiplier tube is illustrated by the parti
tion type of tube sho\vn in Fig. 19.14. This is a longitudinal section of a
cylindrical structure, i.e., the individual electrodes are noncircular
cylinders generated by moving a line perpendicular to the paper. The
tube contains a photocathode PC, from which electrons are dra\vn
through a hole H in a mica shield to a first electrode 1, ,vhich has an
electrostatic shield S attached. The photoelectrons striking the concave
side of the first electrode, which is more positive than the photocathode
by, say, 100 volts, give rise to secondary electrons, ,vhich are attracted
to the second anode, 2, which is, say, 100 volts more positive than the

1 Phototubes, RCA Tech. Bull. PT-20Rl, pp. 4-41.
2 HENNEY, KEITH, "Electron Tubes in Industry," 2d ed., McGraw-Hill, New

York, 1937.
3 SHEPHARD, F. H., JR., Application of Conventional Vacuum Tubes in Uncon

ventional Circuits, Proc. I.R.E., vol. 24, pp. 1573--1581, December, 1936.
-4 REICH, H. J., "Theory and Application of Electron Tubes," pp. 505-511,

McGraw-Hill, New York, 1939.
5 lAMS, H., and B. SALZBERG, The Secondary Emission Phototube, Proc. I.R.E.,

vol. 23, pp. 55-64, January, 1935.
6 RAJCHMAN, J. A., Le Courant residuel dans les multiplicateurs d'electrons elec

trostatique, Archives sci. phys. nat., [V] vol. 20, September-October and Novemher
December, 1938. The same material is contained in Rajchman's doctor of science
thesis from the Technical Institute of Zurich, 1938.

7 ZWORYKIN, V. K., and J ..A.. RAJCHMAN, The Electrostatic Electron Multiplier,
Proc. I.R.E., voL 27, pp. 558-566, September, 1939.

8 RAJCHMAN, J. A., and R. L. SNYDER, An Electrically Focused Multiplier Photo
tube, Electronics, vol. 13, PP. 20-23, 58,60, December, 1940.

9 GLOVER, A. M., A Review of the Development of Sensitive Phototubes, Proc.
1.R.E., vol. 29, pp. 413-423, August, 1941.



PHOTOELECTRIC TUBES 695

first a,node. The secondary electrons from the first anode are more
numerous than the exciting photoelectrons. Likewise, the secondary
electrons from the first anode on striking the second anode give rise to
still more secondary electrons. Each successive anode is at a higher
potential than its predecessor, and each electron striking one anode
gives rise to several secondary electrons. If the secondary-emission
ratio for anyone electrode is r and the number of electrodes is n, then
the output current is rn

-
1 times the photoelectron current. By this

mechanism, current amplification of the order of 100,000 is possible.
Voltages of the successive anodes are readily obtained from a voltage
divider since the magnitude of the current is small.

A

----E/ecfrons
FIG. 19.14.-Structure of a partition-type photomultiplier tube.

The shape of suitable electrodes may be determined from membrane
model studies. Some typical electrode shapes and electron paths through
the resultant field are shown in Fig. 19.15. For the case sho,vn, the
potential between successive electrodes is taken as 100 volts. The
paths of the electrons are critical only to the extent that the action of
successive electrodes produces a convergent focusing action which pre
vents the electrons from spilling over the edge of some later electrode.
'The focusing action of successive similar electrodes can be checked by
plotting a curve of the striking position'on an electrode as a function of
the position of liberation on the previous electrode. A typical focusing
curve is shown in Fig. 19.16. The liberation point is indicated by the
parameter x in Fig. 19.15, while the corresponding arrival point is 11
(Figs. 19.15 and 19.16 are for similar but slightly different tubes).
The crossover action evident in Fig. 19.15 gives rise to the peaked double
valued focusing curve of Fig. 19.16. The focusing action of the succes
sive electrodes may be studied from the curve of Fig. 19.16 with the aid
of a 45-deg construction line. An electron liberated from x = 10 on
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anode 1 will strike anode 2 at y = 2.8. Using the 45-deg construction
line, an electron liberated from x = 2.8 on anode 2 will strike anode 3 at
y = 9.1. An electron liberated from x = 9.1 on anode 3 will strike
anOC:e 4 at y = 3.6, and so on. The focusing action follows the rec
tangular spiral shown, with eventual convergence on point P. The
electrode will have a convergent focusing action as long as the second
derivative of y with respect to x of Fig. 19.16 is negative. The height
of the focusing curve d is a figure of merit of the electrode shape because it
determines the active portion of the multiplier electrodes. A large
radius of curvature in the vicinity of the point P is desirable to prevent
the electrons from bunching into the middle of an electrode too rapidly.

A~8~-T-"'~' ..
....",

"

In practical commercial tubes the circular structure of Fig. 19.17
is preferred because of its smaller space requirements. The action of
this tube is the same in principle as that of the tube of Fig. 19.14. In
the tube of Fig. 19.17 the same type of emissive surface is used for both
the photocathode and the multiplier electrodes. It was the discovery
of a surface with both good photoemission and good secondary-emission
properties that made the commercial form of this type of tube practical.
The photoemission sensitivity of this surface is about 15 microamperes
per lumen. The secondary-emission multiplication ratio is about 3.5
at 100 volts per stage and about 4.0 at 125 volts per stage. For 10
multiplying anodes, or "dynodes" as they are sometimes called, this
gives a total multiplication of 60,000 at 1,000 volts or 230,000 at 1,250
volts. Since a 25 per cent iI1crease in voltage gives ri8e to a 200 per cent
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increase in current, the voltage must be regulated to 0.1 per cent if the
output current is to be constant to 1.2 per cent. The luminous sensitivity
of the 931 tube is 0.6 ampere per lumen for light from a tungsten fila
ment at 2879°K and a 1,OOO-volt supply. The corresponding background,
or "dark," current is 0.25 ampere. The dark current arises from (1)
leakage resistance between electrodes, (2) secondary emission resulting
from bombardment of the photocathode by positive gas ions, (3) field
emission from all electrodes, and (4) thermal emission from all electrodes.
Contributions to the dark current from all these sources can be reduced
by careful design but can probably never be completely eliminated.

y

12

,
/-.

10
,

8

}JW---+---+--"7!ir---+----t+--t---.......

2t-----I-----".----+----+---+------.~--t--

o X Xo 2 4 6 8 10 12 14
FIG. 19.16.-Focusing curve of photomultiplier electrodes.

The signal-to-noise ratio of the type 931 photomultiplier tube shown
in Fig.. 19.17 is superior to that of an ordinary phototube-resistor
amplifier combination. A comparison of the signal-to-noise charac
teristics of the 931 photomultiplier tub~ and a 929 vacuum phototube
with amplifier is shown in Fig. 19.18. At threshold values of illumina
tion the multiplier phototube is about 45 db superior to the vaCUUffi
tube-resistor-amplifier combination. The signal-to-noise ratio of the
photomultiplier tube increases 10 db for every factor of 10 in current,
while the signal-to-noise ratio of the phototube-resistor-amplifier com
bination increases 20 db for every factor of 10 in current up to a point at
which relatively large currents flow. At this point the signal-to-noise
ratios of the two devices are about the same. The superiority of the
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(19.9)

multiplier phototube lies in the fact that noise is contributed only by
shot effect, whereas in the phototube-resistor-amplifier combination
there is a considerable contribution of noise from the rather large load
resistor that must be used.

The nature of the signal-to-noise characteristics can be better under
stood from a study of the specific formulas involved. For a vaCUUID
phototube-resistor combination, the signal-to-noise ratio has the form

Sout _ FM2Io2R
Nout - 2eBloR + 4kTB

-..:.-.. - --Lighf
shield

~..... Incidcnf
light

0:: Photocafhode
---,-- 10 :: Anode

MIca shield" 1- 9 : Dynodes
FIG. 19.17.-Structure of a circular photomultiplier
tube.

where F is form factor of light modulation \vave
M is percentage modulation of light wave
lois direct photoelectric current, amperes
R is effective load resistance, ohms
e is charge of the electron, coulombs

B is band width, cycles
k is Boltzmann's constant, 1.372 X 10-23 watt-sec per OK
T is temperature, oK

The numerator of Eq. (19.9) represents the signal power. The denomi
nator contains two terms, the first of \vhich represents the shot-noise
power originating in the phototube and the second of which represents
the thermal-agitation noise arising from the load resistor. For lo\v
levels of illumination the first term in the denominator of Eq. (19.9)
will be small, and the equation will reduce to

Sout FM2Io2R (19.10)
Nout = 4kTB
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The signal-to-noise level for low levels of illumination is seen to vary
with the square of the photoemission current (20 db for every factor of
10 in current). At high levels of illumination the second term of the
denominator of Eq. (19.9) will be small compared with the first, and the
equation will redu~e to
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Emitted pho.towrrent from photosurfC'ce, microamperes
FIG. 19.18.-Comparative signal-to-noise ratios of a photomulti
plier tube- and a vacuum phototube with amplifier.

\vhich is seen to be linear ,vith photoemission current (10 db for every
factor of 10 in current). The lo,v and high level rates of variation of
signal-to-noise level with photoemission current exhibited in Fig. 19.18
are thus explained.

It is of interest to examine the conditions under which either the shot
noise or the thermal-agitation noise predominates in the phototube~

resistor-amplifier combination. Noise contributions from the two sources
will be equal when the two terms in the denominator of Eq. (19.9) are
equal, i.e., when

1
0

= 2kT
eR (19.12)
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At room temperature, T = 290oK, this has the approximate value

1
10 = 20R (19.13)

(19.14)

where 10 is in amperes and R is in ohms (or, more conveniently, 10 may
be taken in microamperes when R is in megohms). Thus the shot
noise contribution will equal the thermal-agitation-noise contribution
from the resistor if the current is 1 microampere when the load resist
ance is 1/20 megohms. When the current is less than the value given

by 2~R' the thermal-agitation noise from the resistor will be larger.

When the current is greater than 2~R' the shot noise from the emitted

electrons will predominate.
For the photomultiplier the signal-to-noise ratio is given by

Sout FM2S2nlo2R

N..... 2eB sn(~n: ~ 1) RIo + 4kTB

where the symbols have the significance of Eq. (19.9) and S is the second
ary-emission-current multiplication ratio per stage. The total power
gain of the multiplier is thus S2n. The numerator is evidently the same
as those in the previous equations except for the factor of power gain.
The first term of the denominator represents the photoemission shot
noise multiplied by the noise amplification factor developed in Eq.
(12.44), which includes the noise of subsequent secondary emission.
The second term of the denominator of Eq. (19.14) represents the
thermal-agitation noise in the frequency band B. Because of the rather
considerable noise amplification, the first term in the denominator will
generally be much larger than the second, and accordingly the equation
reduces to

Sout FM2(S - 1)/0

Nout = 2eBS (19.15)

This shows the signaI-to-noise ratio to be linear with the photoemission
current (10 db for every factor of 10 in current). The signal-to-noise
ratio for this case is further seen to be the same as that of the vacuum
phototube-resistor combination as given in Eq. (19.11) except that it is

smaller by the factor S -; 1. Hence the observed behavior of Fig. 19.18,

\vhich shows the signal-to-noise ratio of the vacuum-phototube-resistor
combination to be slightly less than that of the photomultiplier tube at
high levels of illumination.



CHAPTER 20

SPECIAL TUBES

20.1. Introduction. It ,vas inevitable that in the development of
vacuum tubes there should arise the need for various special forms.
Fortunately, tubes are no\v manufactured so easily that it is actually
possible to get a tube tailor-made to suit almost any purpose. Attempts
at standardization have held down the number of special tubes that would
other,vise have come into existence. Also, the fact that tubes are quite
versatile and can be used to give various operating characteristics by
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FIG. 20.1.-Potential profiles in a hexode.
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changing connections and the applied voltages has acted somewhat to
restrict the number. During the Second World War the need for special
tubes was so great that hundreds came into existence, but with time these
will probably be reduced to a relatively small number.

In this chapter there will be discussed the principal special tubes
not treated in the previous chapters. The characteristics of con
ventional tubes operated so as to produce special characteristics will
also be discussed.

701
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20.2. The Hexode. The hexode is a six-electrode tube. It consists
of a cathode, four grids, and an anode. It is generally used as a mixer
tube in superheterodyne receiver circuits. The nonlinear charac
teristics of the tube are used in such a way that when a r-f signal is
applied to one grid and a signal from a local oscillator is applied to another
grid the beat- or difference-frequency component appears in the plate
current. Thus the mixer tube functions as a frequency converter.

For frequency-conversion purposes the hexode is invariably operated
with the relative potentials shown in Fig. 20.1. Let the grids be num
bered consecutively from the cathode to anode, and let the voltages
applied to them be designated by the corresponding numerical subscripts
in all the following discussidn. The function and operating conditions
of the various electrodes may be summarized by the following".tabulation:

Electrode Direct voltage Function

Cathode. . . . . . . . . . .. Zero
Grid No.1 Small negative
Grid No.2. . . . . . . .. Large positive

Grid No.3 Small negative
Grid No.4. . . . . . . .. Large positive

Plate Larger positive

Source of electron current
Injection of local oscillator voltage
Screen grid to reduce electrostatic coupling

between the signal and oscillator grids
Injection of r-f signal voltage
Screen grid to reduce electrostatic COllpiing

between signal and output circuits
Collector of modulated electron current

The complete representation of hexode characteristics involves a
large collection of characteristics, for many voltage combinations are
possible. However, since the No.2 and 4 grids and the plate are usually
held at fixed potentials, the tube is well described by two characteristic
curves. These are the I p-V 1 and the I p-V 3 characteristics. In addition,
the I p-V p characteristics are of some interest.

The I p-VI characteristics of a hexode are similar to the I p-VI curves
of a pentocle for different values of suppressor-grid potential if the cur
rents involved are small. The No. 1 grid under this condition will
control the space current to the subsequent electrodes. This current
,vill divide between these electrodes in a nearly constant fashion. The
I p-VI curves of an actual commercial hexode are shown in Fig. 20.2.
These curves exhibit a maximum of plate current due to the formation
of a virtual cathode in front of the N o. 3 grid. When the virtual cathode
forms, some of the space current will be reflected back to the No.2 grid
and the current transmitted to the plate will actually decrease as the
space current increases. This action is very similar to that which
occurred in the beam-power tube. As the No. 3 grid is made more
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negative, the virtual cathode will form at lower space current. The
formation of the virtual cathode corresponds to the peak of plate current.
In application, this tube must be operated to avoid the region of negative
transconductance.
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FIG. 20.2.-1p- VI characteristics of a hexode.
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The I p-V 3 curves of a hexode will resemble those of a pentode if the
current is smalL Actual characteristics as shown in Fig. 20.3 may
exhibit some crossovers due to the formation of a virtual cathode in front
of the No. 3 grid.

The I p-V p characteristics of a hexode will resemble those of a tetrode
if the current is small. There may be an interchange of secondary
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electrons between the No. 4 grid and plate since there is no shielding
grid between them. Actual curves as shown in Fig. 20.4 will resemble
beam-power-tube characteristics if the current is high enough, for then
a potential minimum will form between the No.3 grid and plate that will
suppress the interchange of secondary electrons.

In addition to the static characteristics, several of the dynamic
constants of the hexode are of interest. As with other multielectrode
tubes, the amplification factor is of no particular significance. It is very
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-28 -24 -16 -12 -8 -4
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FIG. 20.3.-1p-V 3 characteristics of a hexode.

(20.1)

high because of the shielding action of the screen grids. The plate
resistance of the hexode is likewise of no great significance. It will
tend to be high, of the order of the plate resistance in a tetrode but not
as high as the plate resistance of a pentode. The control-grid trans
conductances of a hexode, ho\vever, are of considerable importance. The
first of these transconductances is the first-grid-plate transconductance,
which is defined by

alp (dIp)
glp = - = -aVI dV 1 V2,V3,V4,Vp =const
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This transconductance is equal to the slope of the characteristics shown
in Fig. 20.2. The. other transconductance of interest is the third-grid
plate transconductance. It is defined by

iJlp (dIp)ga =-= -
P aVa dV3 Vl,V2,V4, Vp =-.co1l8t

(20.2)

zoo18040 60 80 100 120 140 160
Plat-e voltQqe, volts

FIG. 20.4.-1p-V p characteristics of a hexode.
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This transconductance is equal to the slope of the characteristics shown
in Fig. 20.3. The transconductance glp will generally be greater than
the transconductance g3p.

7

Another hexode constant that is of particular significance is the
so-called " conversion transconductance. ~ This is the ratio of the
magnitude of the plate current of frequency 11 - 12 to the magnitude
of voltage of frequency 11 applied to one of the control grids (No. 1 or 3
in the case of the hexode) under the condition that a fixed voltage of
frequency 12 is applied to the other control grid and that all the direct
electrode voltages are kept constant. Thus, in contrast with other tube
conductances, the conversion transconductance is the ratio of an alter
nating component of plate current at the difference frequency (f1 - f',t.)
to the alternating component of signal voltage on one control electrode
at a different frequency f1 under the condition that a local oscillator
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voltage at a still different frequency /2 be applied and maintained con
stant on another control electrode. The conversion transconductance
is a function of the magnitude of the local oscillator voltage and passes
through a maximum at a particular value of local oscillator voltage.
In Fig. 20.5 are given some typical curves of conversion transconductance
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FIG. 20.5.-Conversion transconductance of a mixer
tube.

of a hexode in terms of local oscillator grid current, which for a given bias
resistor is proportional to local oscillator voltage.

Frequency conversion in any of the mixer type of tubes can be
considered as a process of modulation of the oscillator frequency by
the signal frequency, the intermediate frequency appearing as one of the
sidebands. The modulation is accomplished through the medium of the
electron stream in the tube. The electron stream will ordinarily experi
ence a large amplitude variation at the oscillator frequency. The com
ponent of tube current at oscillator frequency is modulated in magnitud~
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at the signal frequency. The degree of modulation is ordinarily so low
that higher-order effects can be neglected and the basic relations studied
by simple analysis.

As with an ordinary amplitude-modulated wave of current the ampli
tude of the side bands is smaller than the carrier by half the degree of
modulation. Hence

m
Iii = 2" 108c (20.3)

where Ii! is the component of plate current at the intermediate frequency,
which is the difference between the signal and oscillator frequency; m
is the degree of modulation, or the ratio of the change in the component of
current at oscillator frequency to the magnitude of this component; and
108c is the component of plate current at oscillator frequency. All
values of current are peak rather than effective. The degree of modula
tion is given by

m = AloBc = al08c VSio .-!....
I 08c iJ V,ig lOBc

where V 8io is the peak value of the signal voltage.
Eqs. (20.3) and (20.4),

I 1 iJlollc V
il = 2aV

8ia
Big

Since the conversion transconductance is defined as

IiIgc=-v
Big

then, from Eq. (20.5),
1 aIoBc

gc = 2aV
siq

(20.4)

Hence, combining

(~O.5)

(20.6)

(20.7)

(20.8)

The component of plate current at oscillator frequency is given from the
well-known Fourier integral

1 frI oac = - 11' cos~t d(wt)
1r -r

where I p is the instantaneous value of plate current as a function of time
and w is the oscillator angular frequency. Taking the derivative of
this expression with respect to V sig and substituting into Eq. (20.7),

1 frgc = 21r -r gap cos wt d(wt) (20.9)

results, as may be seen by recalling the definition of g3p given in Eq.
(20.2). The above assumes that the oscillator voltage is applied to the
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No. 1 grid of the hexode and that the signal voltage is applied to the
No.3 grid.

The third-grid-plate transconductance ,vill vary over a large range
of values as the oscillator voltage swings over its range of voltages applied
to the No. 1 grid. The nature of the variation of the third-grid-plate
transconductance with No. 1 grid voltage is shown in Fig. 20.6, curve b.
The conversion transconductance can be evaluated graphically or
numerically from this curve and Eq. (20.9). Also shown in Fig. 20.6 is
the effect of the sinusoidal variation of oscillator voltage upon the plate

a

-Jf

'u3P

o .+Tf

a

t

FIG. 20.6.-Variation of transconductance of a hexode with control-grid
voltage.

current, which is proportional to the third-grid-plate transconductance
for a fixed small signal voltage. The conversion transconductance is by
the definition of Eq. (20.9) equal to half the fundamental component of
the resultant curve of gap as a function of time sho\vn in Fig. 20.6. From
observation of Eq. (20.9) it is seen that the oscillator voltage should
be adjusted so that the tube current is cut off in the interval that cos wt
is negative. Otherwise, there is a negative area under the curve of the
integrand that reduces the conversion transconductance. The maximum
possible conversion transconductance would be obtained if the curve of
third-grid-plate transconductance rose sharply from zero to a maximum
value as shown for curve a of Fig. 20.6. Such a transconductance would
yield the square wave of plate current shown and a conversion trans
conductance of value

g3pmaxge =--
7r

(20.10)
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In other ,vords, the maximum possible value of the conversion trans
conductance is about one-third the maximum value of the third-grid
plate transconductance. Actually, the curve of g3p against VI has the
form sho,vn at b, \vhich is an s-shaped curve that is almost straight.
This s-shaped curve is closely approximated by the straight-line curve
sho\vn as c, \vhich yields the triangular wave of plate current given.
The Fourier integral of Eq. (20.9) for this case yields the value

g3pmax
gc = -4- (20.11)

The actual value for the curve b \vill lie some\vhere bet\veen the values
given by Eqs. (20.10) and (20.11) but much closer to the latter. Hence,
in general it may be expected that the conversion transconductance will have
a value approximately equal to one-fourth the maximum value of signal
grid-plate transconductance of any mixer-type tube.

Hexoole (Mixer]plafe...... f!exode grid No.~
Hexode (Siqnal)grid NoJ,," "" (MIxer .screen section)

-,J----f ,Internalshield
Infernal shield--· ,'r==:----.:.:..) ~Shell

~-------

f!exode gr,-dNo: 2 ..-' ,. :,:/~~, , -- Triode rOse.)plafe
(Mlxerscreensecflon) ,.~ -I •

/ "--"'-Tr/ouefOsc.)grid

Hexode (Mixer)qriclNo~I "'-.., eel/hade

FIG. 20.7.-Electrode structure of the 6K8 triode-hexode.

The form of Eq. (20.9) indicates that there is generally an optimum
value of oscillator voltage. If the oscillator voltage is too large, the
plate current ,vill not flow for a sufficiently large fraction of a cycle. If
it is too small, the current will flow for more than a half cycle and the
conversion transconductance will be reduced.

An example of a commercially available hexode is the 6K8, \vhich
contains a triode and a hexode in the same envelope. This tube is
specifically designed to be operated as a mixer tube in a superheterodyne
receiver. .' The tube is built so that the No.1 grid is common to the hexode
and the triode. The No. 2 and 4 grids, are tied together internally.
'rhe triode is built on one side of a strip cathode, and the hexode is built
on the other. A cross section of the tube electrode structure is shown
in Fig. 20.7. As a result of this structure, the local oscillator voltage
appears on the No. 1 grid of the hexode, and the r-f signal must be applied
to the No. 3 grid.

The hexode ,vas one of the first mixer-type tubes developed. More
recently developed types exhibit better operating characteristics.
Hexodes in general suffer from some interaction between the two input
circuits, a relatively low conversion transconductance, and a relatively
low plate resistance.
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20.3. The Heptode. The heptode is a seven-electrode mixer tube
with five grids. It has the construction shown in Fig. 20.8. The
potential variation within the tube is shown in Fig. 20.9. The function
and operating conditions of the various electrodes may be summarized
in the following tabulation:

Electrode Direct voltage Function

Cathode. . . . . . . . . . .. Zero
Grid No.1. . . . . . . .. Small negative

Grid No.2 Large positjve

Grid No.3 Small negative
Grid No.4 Large positive

Grid No.5 Zero

Plate Large positive

Source of electron current
Injection of signal voltage, source of bias for
automatic volume control

Screen grid to reduce electrostatic coupling
between signal and oscillator grids

Injection of local oscillator voltage
Screen grid to reduce electrostatic coupling
between oscillator and output circuits

Suppressor grid to .improve pIate-current
characteristics and further reduce electro
static coupling between oscillator and out
put circuits

Collector of modulated electron current

Since the No.2, 4, and 5 grids of the heptode are generally held at
fixed voltages, the static characteristics of the heptode may be repre
sented by the I p-VI, I p-V 3, and I p-Vp characteristics.

The I p-V 1 characteristics of a 6L7, which is a typical heptode, are
shown in Fig. 20.10. These are similar to the I p-VI curves of a variable

mu pentode for various suppressor-grid volt
ages. The No. 1 grid has the principal influ
ence in determining the magnitude of the
space current that is passed on to the sub-

p sequent electrodes.
The I p-V 3 characteristics of a 6L7 heptode

are shown in Fig. 20.11. These curves are
similar to the plate-current-suppressor-grid
voltage characteristics of an ordinary pentode.

FIG. 20.8.-Structure of the The potential of the No.3 grid determines the
heptode. fraction of the space current that is passed on

to the plate.
The Ip-Vp characteristics of a 6L7 heptode are shown in Fig. 20.12.

These curves are similar to the I p-V p characteristics of an ordinary
pentode. They resemble pentocle rather than screen-grid-tube charac
teristics because of the presence of a suppressor grid between the last
screen grid and the plate.



SPECIAL TUBES 711

Heptode characteristics are in general superior to hexode charac
teristics. I In the first place it is possible to use the No. 3 instead of the

c l?, 64-
I ,
I
I
I
I

1:51
~I
~I
0.1

I,
I

I I
FIG. 20.9.-Potential profiles of the heptode.
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FIG. 20.10.-1p-V 1 characteristics of the heptode.

No. 1 grid for local-oscillator-voltage injection because of the extra
shielding between the No.3 grid and plate introduced by the presence of
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1 NESSLAGE, C. F., E. W. HEROLD, and W. A. HARRIS, A New Tube for Use in
Superheterodyne Frequency Conversion Systems, Proc. I.R.E., vol. 24, pp. 207-218,
February, 1936.
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the No. 5 suppressor grid. This arrangement allows the No. 1 grid to
be used for signal injection and makes it possible to obtain a variable-mu
action from this grid, which in turn makes good automatic volume con
trol possible. In general, it is very difficult to design a tube with a
variable-mu characteristic on any but the first grid. This is because
the subsequent control grids are necessarily coarse in order to pass a
sufficient fraction of the space current, and being coarse do not allow a
large enough range of amplification factor. The addition of the No. 5
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FIG. 20. 13.-g1p - V 3 characteristics of the
heptode.

suppressor grid also raises the plate resistance and thus allows higher
screen-grid voltages, which in turn increases the No. 1 grid-plate trans
conductance and so raises the obtainable conversion transconductance.
The increase in plate resistance improves the selectivity and gain of the
tube.

Aside from the above factors the Inixer operation of the heptode is
like that of the hexode. In Fig. 20.13 are shown the glp-V 3 characteristics
of the 6L7 heptode. These transconductance curves are similar to the
limiting curve c of Fig. 20.6. The resultant gc-VI characteristics are
shown in Fig. 20.14. Excellent automatic-volume-control characteristics
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are exhibited here. It should also be noted that the maximum conversion
transconductance obtained is approximately one-fourth of the maximum
No. 1 grid-plate transconductance.
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20.4. The Pentagrid Converter. The pentagrid converter is a heptode
as far as its static characteristics are concerned but is used as a mixer
by connecting the cathode and first two grids as a triode oscillator. With
this arrangement, the No. 2 grid acts as the triode plate, and the cathode
cannot be operated at zero potential but must be allowed to have oscil
lator voltage on it. Furthermore, the local oscillator voltage is effec
tively introduced on the No. 1 grid, and the signal is introduced on the
No. 3 grid. As with the heptode, the N o. 4 grid is a screen grid, and the
No.5 grid functions as a suppressor. This arrangement has the advan
tage that it requires one less tube but has the disadvantage that bias
for the automatic-volume-control action is more difficult to apply.

Typical potential profiles for a pentagrid-converter connection of a
heptode are shown in Figs. 20.15 and 20.9. Two types of operation are
possible. In Fig. 20.15 the No.3 and 5 grids are operated as screen grids.
This arrangement has the advantage that the reaction between the signal
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and oscillator circuits is reduced because the No. 2 and 3 grids exert a
shielding action but has the disadvantage that the plate resistance is
relatively low, with attendant loss of gain and selectivity. In the
arrangement of Fig. 20.9 the No. 2 grid acts as triode plate and screen
grid, the No. 3 grid is signal-injection grid, the No. 4 grid is a screen
grid, and the No. 5 grid is a suppressor grid. This arrangement has
better plate-resistance characteristics than the previous one but shows
more interaction between the signal and oscillator circuits unless specially
designed tubes are used.

In addition to the electrostatic coupling between the signal and
oscillator circuits in mixer tubes there may be an electronic interaction.
This occurs because with moderately large signal voltages the No. 3

c ~ 0 ~

I I I

ts
:..t=
c
Q)....
o

CL

FIG. 20.15.-Potential profiles of a pentagrid converter.

signal grid may become negative enough on the negative half of the signal
voltage cycle to repel low-velocity electrons approaching it from the
oscillator section of the tube. These electrons will be thrown back
into the os,cillator section and constitute an electronic loading that may
change the local oscillator frequency appre,ciably.l,2

The electronic interaction between the signal and oscillator circuits
may be reduced by using a heptode with the special electrode structure
shown in Fig. 20.16. This structure, typified in the 6SA7, differs from
that shown in Fig. 20.8 by the addition of some curved collector plates
which partly enclose the No.2 grid and are connected to it. In addition,
the No. 3 signal grid has a supporting wire opposite the opening in the

,1 STRUTT, M. J. 0., "Moderne Mehrgitter-Elektronenrohren," Vol. II, pp. 94-102,
112-114, Springer, Berlin, 1938.

2 RCA Manufacturing Co., Operation of the 6SA7, Application Note, 100, 1938.
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Co/lecfor ./
plates
(Connected SIgnal-grId side rod
fo 62)

FIG. 20.16.-Structure of the 6SA7 special pentagrid
converter.

collector plates. This causes the potential opposite the collector-plate
opening to be more negative than on either side of the supporting rod, and
as a result electrons are deflected to one side. By virtue of this special
electrode structure, electrons that are repelled from the No. 3 signal
grid are deflected so that they are caught by the collector plates and
prevented from returning into the active electron stream of the oscillator
section. The collector plates further increase the electrostatic shielding
between the signal and oscillator circuits, with attendant improvement
of operation. The resulting operating characteristics are appreciably
superior to those of the ordinary pentagrid tube.
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20.5. The Octode. The octode is an eight-electrode mixer tube with
six grids. As ordinarily used, the cathode and first two grids are con
nected as a triode oscillator. The No.3 and 5 grids act as screen grids.
Signal is injected into the No. 4 grid. The No. 6 grid is used as a sup
pressor grid. This arrangement achieves the desired effects of lo,v
electrostatic coupling between the signal and oscillator circuits while
at the same time giving good plate-circuit characteristics. The 7A8
is an example of a typical octode. In addition, the electrodes may have
the special structure described in the previous section, ,vith the differenr-e
that the collector plates form the No. 3 electrode and are not connected
to the No.2 grid. The No.3 grid is operated as a screen grid, and inas
much as it has a separate connection the repelled electrons that are caugh~
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by it do not flow through the triode oscillator or No.2 grid circuit. The
Philips EK3 is an example of such a tube. 1

20.6. Space-charge-grid Tubes. In all multielectrode tubes having
signal grids operated at small negative potentials there is the possibility
of the formation of a virtual cathode before the control grid if the space
current is high enough. This virtual cathode acts like an ordinary
cathode and has the advantage that it has a large area and so may give
rise to a relatively high transconductance. An ordinary screen-grid
tetrode can be operated as a space-charge-grid triode by connecting
the No. 1 grid at a positive potential and using the No.2 grid as a control
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FIG. 20.17.-Potential profiles in thespace-charge-
grid triode.

grid. This gives rise to the potential distribution shown in Fig. 20.17.
The No. 1 grid in this case is called the "space-charge grid" because it
draws a high enough current from the cathode to form the virtual cathode
in front of the No. 2 grid. Typical current-voltage characteristics are
shown in Fig. 20.18. The I p-V 2 characteristics are similar to those of a
triode except that they exhibit greater cur~ture and hence more distor
tion in amplifier applications.

The space-charge-grid principle may be applied to pentodes and other
multielectrode tubes as well as to tetrodes. The space-charge principle
finds its chief application where tube operation is restricted to lo,v
voltages, as with certain types of battery-operated circuits. When
the voltages available are of the order of 50 volts or less, appreciably
higher effective transconductances can be obtained than can be had with

1 See STRUTT, op. cit.
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conventional tube connections. For voltages above 50 volts there is no
gain, and the space-charge-grid principle finds little application.

20.7. Negative-resistance
Tubes. Many applications in

3 d electron-tube circuits require the
t---1----+-+---+--+-+---+--+----III~__t E existence of a negative resistance.

~-+---,#--t2l By a negative resistance is meant
1-

a a circuit which is such that an
1 ~ increase in current through it pro

Q.. duces a decrease rather than an
increase in voltage across it. Any
device having a current-voltage
characteristic that exhibit:s a nega-
tive slope has a negative resist

S~. ance in the region of the negative
c slope. In general, circuits will

4 ta have a negative resistance over
3! only a part of their operating
2 t characteristic. Just as a positive
I ~ resistance consumes power, so,

c.>o~ correspondingly, a negative-resist-
-3 -2 -I 0 ance element delivers power.

Grid voltOlge, volts
This means that negative-resist

FIG. 20.18.-Current-voltage characteris-
tics of the space-charge-grid triode. ance devices must always have a

source of power associated with
them.

Means of obtaining negative-resistance characteristics from tubes are
almost too numerous to mention. 1 A few of the devices are fundamental
and important enough to deserve mention.

Glow-discharge Tubes. In an arc or glow-discharge tube an increase
in current produces an increase in ionization so that a smaller voltage
is required to maintain the discharge. Almost every two-element glow
tube exhibits a negative resistance somewhere in its operating charac
teristic. The usefulness of this type of negative resistance is limited
by the fact that the magnitude of the resistance changes with temperature
and life of the tube. Also, the time lag associated with the positive ions
present limits the frequencies at which the negative-resistance charac
teristic is available to low audio values..

The Dynatron. The negative resistance that is available over part
of the plate-current-plate-voltage characteristic of an ordinary screen-

1 HEROLD, E. W., Negative Resistance and Devices for Obtaining It, Proc. I.R.E.,
vol. 23, pp. 1201-1223, October1 1935. Contains extensive bibliography.
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grid tube as shown in Fig. 10.2 is kno,vn as a "dynatron characteristic."
The negative-resistance characteristic results from the transfer of
secondary electrons from plate to screen grid. When the screen grid is
more positive than the plate, an increase in plate voltage will attract
more primary electrons to the plate but relatively more secondary
electrons are lost to the screen grid so that the net plate current decreases
rather than increases. If a parallel resonant circuit is placed in the plate
circuit of a screen-grid tube and the tube operated at voltages that will
give a negative-resistance characteristic, oscillations will occur in the
plate circuit provided that the magnitude of the resistance of the parallel
resonant circuit is greater than the magnitude of the negative resistance
of the tube plate circuit. Oscillations will in general build up to the point
where the magnitude of the negative resistance as averaged over the
cycle of oscillation equals the positive resistance of the parallel resonant
circuit.

The negative-resistance characteristic obtainable from a screen-grid
tube is subject to change as the tube ages and as the secondary-emission
characteristics of the plate change from any of a number of causes. For
this reason this type of negative resistance is not extensively used.

Direct-coupled Negative-resistance Devices. The most interesting and
stable types of negative resistances are those which are obtained from
judicious interconnections of standard vacuum tubes. Such devices are
dependent not upon gas or secondary-emission characteristics but rather
upon current division between electrodes, space-charge effects, or a
feedback action, all of which are quite stable and are capable of giving
lower magnitudes of negative resistance and a wider range of operating
voltages t.han are available by other methods.

Negative Screen-grid Remstance of a Pentode. The screen grid of an
ordinary pentode exhibits a negative-resistance characteristic if it is
connected to the suppressor grid in such a way that an increase in screen
grid voltage is accompanied by an equal increase in suppressor-grid
voltage. This is evident from the curves of Fig. 20.19. This family of
curves shows the 12- V 2 characteristics of a pentode for various values of
V3, where the numerical subscripts refer io the grid number in order
from the cathode to plate.. The solid curves show the 12- V 2 charac-
teristics. As the No. 3 (suppressor) grid is made more negative, the
No.2 (screen) grid current decreases. If the No.2 and 3 grids are con
nected so that there is a constant difference of potential between them,
the dotted curves shown in Fig. 20.19 result. The screen current
decreases as the suppressor grid is made more positive; for the latter
then transmits a greater fraction of the space current that approaches
it, and as a result less current is returned to the screen grid. This
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decrease in reflected current more than offsets the increase in directly
intercepted space current that is taken on by the screen grid as a result.
of its more positive potential. The two dotted curves of Fig. 20.19
are for differences of No.2 and No.3 potential of 54 and 90 volts, respec
tively. The magnitude of the negative resistance made available by
this m.eans is of the order of 3,500 ohms, which is considerably less than
that obtainable from a dynatron, which is usually of the order of 10,000
ohms. The region of negative resistance is limited at low voltages by
the condition that the suppressor grid is returning all the electrons which
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approach it and beyond this condition the suppressor grid has virtually
no influence. Correspondingly, the region of negative resistance is
limited at high voltages by the condition that the suppressor grid is
passing all the current which approaches it and so again loses control.

In actual applications the screen and suppressor grids are separately
biased and fed through separate resistors but are coupled by a large
capacity connected directly across the tube leads. This means that the
No. 2 and 3 grids are connected together as far as voltage variations are
concerned over a large band of frequencies. The negative-resistance
characteristic is available from low audio frequencies, dependent upon
the size of the coupling condenser compared with the size of the resistors
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(20.12)

in series with the electrodes, to frequencies of the order of 60 me, at which
transit-time effects disturb the relations.

With proper connections the negative screen resistance of a pentode
can be made to furnish either sinusoidal or square waves. 1.2 Likewise,
trigger and flip-flop characteristics can be made available.

Push-pull Negative-resistance Circuit. It is possible to connect two
triodes or two pentodes in a push-pull arrangement by which a very
good negative-resistance characteristic is made available. The circuit
and resultant characteristics are sho,vn in Fig. 20.20. The current which
flows through the input terminals shown consists of two components,

- VC=o I 0.5 (f)

, t
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FIG. 20.20.-Current-voltage characteristics of the push-pull circuit.

that produced by the applied voltage, which is in one direction, and that
produced by the tubes, which will be in the opposite direction because
of the cross connection of the grids. The latter component of current
can be made much larger than the former by tapping sufficiently high
on the plate resistor of the other tube, usually across the entire resistor.
The negative-resistance characteristic shown results. The resistance
available has the approximate value of

R = 2rp

Tb + Tp -'p.k
Tb

for sroan values of impressed voltage, where R is the effective value of
the resistance at the input termina!3, rp is the dynamic plate resistance
of the tubes, Tb is the value of the plate resistor, Jl. is ~he amplification

1 REICH, H. J., "Theory and Application of Electron Tubes," 2d ed., Chap. X,
McGraw-Hill, New York, 1944.

t BRUNETTI, C., The Transitron Oscillator, Proc. I.R.E., vol. 27, pp. 88--94,
February. 1939.
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factor of the tubes, and k is the fraction of the voltage developed across
the plate resistors that is applied to the other tube. If k is sufficiently
large, the effective resistance will usually be negative. 1

In application, the cross connection between grids is made through
a large capacity. By proper connection either sinusoidal or square waves
may be obtained. The negative-resistance characteristic is available
from low audio frequencies to frequencies of the order of megacycles.
This is the basic circuit of the Eccles-Jordan trigger circuit and
multivibrator.

Feedback Circuits. The push-pull tube connection just described
may be thought of as a fee:Iback circuit composed of a t,vo-stage direct--

6

coupled amplifier that has its output connected to its input. More
complicated arrangements can be used as ,veIl to give negative reactances
as well as resistances. 2 In principle, these methods use a feedback
connection so that an increase in voltage between two terminals causes
a current to flow in the opposite direction and thus gives rise to a negative
impedance characteristic.

Special Negative-resistance Tubes. It is possible to design special
tubes so that they will have particularly good negative-resistance eharac
teristics. Such tubes will in general make use of rather well-known
electronic action. Already mentioned has been a negative resistance that

1 See REICH, op. cit.
2 GINZTON, E. L., Stabilized Negative Impedances, Electronics, vol. 18, pp. 14(}

150, 138-148, 140-144, July, August, September, 1945.



SPECIAL TUBES 723

depends upon reflection of electrons from a grid. Such action can be
enhanced by making the electrons approach the grid at a small angle.
In addition, it is possible to get a negative resistance by deflection of an
electron beam. Sho\vn in Fig. 20.21 is a special electron tube that
obtains its negative-resistance characteristic from the change of focal
length of an electron beam. 1 Maximum current will be intercepted by
the No.4 wire electrode ,vhen the voltage on it is just right to focus on it
the electron beam produced by the other electrodes. For higher or lower
voltages the current \viII drop off, thus giving rise to a negative-resistance
characteristic for voltages higher than that required for a focus on the
'VIreo

20.8. Negative-transconductance Tubes. T,vo instances in which
negative transconductances appear in tubes have already been mentioned.
One case is that of the beam-po,ver tube in ,vhich as sho,vn in Fig. 10.13
the curve of plate current versus current injected into the screen-grid
plate region exhibits a negative slope over a portion of its characteristics.
Since the space current in a beam tube increases as control-grid voltage
increases, it will be true that over an appreciable portion of the available
characteristics the plate current can be made to decrease as the control
grid voltage increases provided only that the space current is high enough
so that a virtual cathode forms between the screen grid and plate. This
gives rise to a negative control-grid~platetransconductance but with an
ordinary 6L6 requires that the tube be operated at its maximum
dissipation.

A negative suppressor-screen-grid transconductance also exists in
the ordinary pentode, as is evident from the characteristics of Fig. 20.19.
As suppressor-grid voltage is raised from a negative value, the screen-grid
current decreases; for a greater fraction of the space current is passed
on to the plate, and hence a smaller current is reflected back to the screen
grid. The negative transconductance here is available only in the range
of suppressor-grid voltages between which the suppressor grid reflects all
current an~ passes all current.

20.9. Electron-ray Indicator Tubes.. The electron-ray tube is an
indicator tube designed originally as a tuning indicator for radio receivers
but capable of a wide range of applications. It is something of a cross
between a triode and a cathode-ray tube. Basically, in its commonest
form, it is a triode ,vith one grid wire. The cathode is cylindrical, the
grid is of the form of a narrow metal strip, and the plate is of the form
of a wide-angle cone, which is coated with a fluorescent material and
faces the end of the glass envelope of the tube so that the observer looks

1 THOMPSON, H. C., Electron Beams and Their Application in Low Voltage Devices,
Proc. I.R.E., vol. 24, pp. 1276-1297, October, 1936.
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Plate

I
Illuminated'

area

in toward the apex of the cone. The arrangement of the electrodes is
shown in Fig. 20.22.

When the grid, or control electrode, of the electron-ray tube described
is sufficiently positive relative to cathode potential, electrons will move
in all directions, giving a complete circle of illumination from the fluo
rescent material on the plate. As the control electrode is made negative,
it will repel electrons from its immediate vicinity and cause a sectorlike
shadow on the plate. As the control-electrode potential is made more
negative, the shadow angle increases. It is possible to make a tube in
which the shadow angle can be varied from 0 to 100 deg as the control
electrode potential is varied from a suitable positive value to zero.

Characteristics of the 6AF6-G, which is an
electron-ray tube with two identical and sepa
rate control electrodes, are shown in Fig.

..Oarkor
shadow 20.23. Because of the relatively large varia-
area tion in control-electrode potential required to

give an appreciable change in shadow angle,
the commonest types of electron-ray tubes
contain a directly connected triode in the
same envelope as the indicator electrodes.
Examples of such tubes are the 6E5 and the
6G5. The characteristics of the 6E5 are
shown in Fig. 20.24. These characteristics
represent the combination effect of the triode
amplifier and indicating device. The charac-

Catho~e . e'rid teristics of the 6G5 are similar except that the
FIG. 20.22.-Construction of sensitivity is about half as great. Many other
the electron-ray tube.

electrode structures exhibit the property of
having an electron ray whose position or width varies with the electrode
potentials. 1

20.10. Directed-ray Electron Tubes. In this class fall all the tubes
in which the direction as well as the magnitude of the electron current is
important. Several tubes in this category have already been mentioned.
An example is the beam-power tube, in which the electron current is
formed into parallel sheets by means of aligned control and screen grids.
Likewise, the orbital beam tube, the 6SA7 special mixer heptode, and
the electron-ray indicator tubes make use of electron rays directed in a
specific manner to obtain the desired characteristics.

The directed-ray tubes fall into several classes according to the function
that the directed ray is intended to perform. The possible functions
include obtaining high current densities, a selective action bet\veen

1 Ibid.
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electrodes by a focusIng action, a variable electrode current by ch~nging

beam width, a discrimination between electrons of different velocities,
a high or low fractional electron-current discrimination with respect to
any particular electrode, and negative-resistance and negative-trans
conductance characteristics. This list is by no means complete.

It is a relatively simple matter to form electrons into definite beams
of either sheet or circular form. In the ordinary triode the action of
the control grid is such that the electrons leaving it tend to form into
sheets. By proper use of grid wires and specially shaped electrodes a
rather wide variety of beam patterns can be had. In Fig. 20.25 are sho\vn
a number of structures that can be used to produce specific electron-ray

fa)

(~)
CJ

(b)

(d) (e)
FIG. 20.25.-Directed-ray electron-tube structures.

patterns. With all such devices, the angle of the electron beam will be a.
function of the electrode potentials, and the rate of change of angle or
electrode current with any electrode voltage will be relatively slo\v
because of the low amplification factors associated with a lo\v number
of grid wires. 1

Of particular interest are arrangements by which current to a set of
grid wires may be kept lo,v. In Fig. 20.26 are sho\vn two such arrange
ments. The arrangement of Fig. 20.26a makes use of a cathode surface
the cross section of which is scalloped in shape and against the points of
which the grid wires are aligned. The curved equipotentials associated

1 KNOLL, M., and J. SCHLOEMILCH, Elektronoptische Stromverteilung in gitter
gesteureen Elektronenrohren, Arch. Elektrotech. vol. 28, pp. 507-516, August, 1934.
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~rith the scallops of the cathode surface focus the electrons so that they
pass mostly between the grid \vires even when the control grid is positive. 1

In the arrangement of Fig. 20.26b the emitting material is painted on a
cylinder in a helical trace. The grid is likewise a helix of the same pitch
as the emitting helix and positioned so that the wire lies opposite a non··
emitting portion of the cathode cylinder. By these arrangements the
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o
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o
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Em/fling·'
faJ material (6)

FIG. 20.26.-Electrode arrangements for reducing
control-grid current.

control-grid current can be kept to less than 1 per cent of the space cur
rent when the control grid is as positive as the plate for a triode structure!
In spite of this remarkable operating characteristic the difficulties of
constructing such cathodes are great enough so that they have not found
commercial application. In Fig. 20.27 is shown a low-screen-current
tetrode. The low screen current is obtained
by using squirrel-cage control and screen grids
of the same number of wires and simply aligning
the grids. With this arrangement the screen
grid current can be kept to a value as low as
0.2 per cent of the plate current. 2

20.11. Deflection Tubes. Most ele9tron
tubes make use of the variation of magnitude of
electron current with electrode potentials to
obtain their control characteristics. It would, FIG. 20.27. -Low-screen

ho\vever, be entirely feasible to obtain control current tetrode.

characteristics from deflection of an electron beam rather than from

1 KNOLL, M., Verstarker und Senderohren als elektronenoptisches Problem, Zeit.
fur Tech. Phys., vol. 15, pp. 584-591, December, 1934.

2 THOMPSON, op. cit.
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change in magnitude of an electron current}·2 In Fig. 20.28 are shown
t,vo forms of deflection tubes. In the tube of Fig. 20.28a a cylindrical
cathode and t,vo four-wire grids are used to form a four-lobed electron
current pattern The resultant lobes are then deflected by the trough
shaped external-corner electrodes so that the electron-beam lobes are
effectively switched bet,veen the sections of the plate. In the arrange
ment of Fig. 20.28b a plane cathode and a parallel-\vire control grid are
used to form sheet electron beams, ,vhich are then deflected by an
interleaved double screen grid so that the ele<1tron sheets are switched
between the sections of an interleaved plate in the form of a double-strip
grid. Alternate sections of the screen grid and plate are connected to
opposite ends of the driving and output circuits, respectively.

+ +
o I
@ ':3'-1]

-~-==:::::..-~

: =~[
(a) (bJ

FIG. 20.28.-Deflection tubes.

It might be thought that it would be possible to make a deflection
tube ,vhich would exhibit a nearly infinite transconductance by creating a
beam \vith a sharp edge and then deflecting this past the edge of a
collector electrode. This property does not seem realizable in practice,
for t\VO reasons. (1) Thermal velocities place a limit upon the maximum
current density that can be achieved in a beam and upon the sharpness
of the edge, as discussed in Sec. 15.5. (2) To realize a high effective
mutual conductance it is necessary to place a large resistance in series
,vith the collector electrode, and current flow through this resistance
develops a voltage change that is in the direction to repel the electron
beam being directed toward the electrode.

20.12. Television Camera Tubes. In a class by themselves are the
television camera tubes. These tubes are means of electronically
scanning a visual picture. They tax the tube designer's and the ~ube

maker's art to the utmost, for they represent the most complicated

J HAZEJ.'J'IN~, A" Deflection Control Tubes, Electronics, vol. 9, pp. 14-16, March,
1936.

2 ROTHE, H., and W. KLEEN, Die Bedeutung cler Elektronenoptik in der Technik
{ler Verstarkerrohren, Zeit. tur Tech, Phl/s., vol. 17 (No. 12), pp. 635-642, 1936.
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assemblage of purely electronic components in existence. They involve
the preparation of sensitive photoelectric and secondary-emissive sur
faces. They involve beam formation and deflection, invoking all the
tricks of combination electrostatic and magnetic manipulation.. They are
probably the most difficult of any tubes to make, and their successful
development is a triumph of the application of. fundamental electronic
principles.

The I mage-dissector Tube. One of the earliest purely electronic
television viewing tubes developed was the so-called image-dissector tube, 1

a diagram of which is shown in Fig. 20.29. This tube contains a large

Lens

Infer/or
nickel
coating-" ~""

{MagnetIc focusing COIl

,," Photocathode

Siqnal
output

FIG. 20.29.-The Farnsworth image-dissector tube.

photoelectric cathode upon which the picture to be imaged is focused.
The photoelectrons liberated from the photocathode are attracted to,vard
an anode in the form of a nickel ,vall coating designed so that the electrons
from the photocathode are brought to a focus in a plane at the other end
of the tube. In this way the electrons reproduce the current-density
pattern corresponding to the original pIcture. In early tubes of this
type the focusing was achieved by means of an axial magnetic field, but in
later tubes by purely electrostatic means. In the plane of the focus of
the photoelectrons there is located a pickup electrode shielded by an
aperture so that this electrode picks up only the current corresponding
to a small element of cathode area. The pickup electrode is follo,ved
by a secondary-electron multiplier to increase the sensitivity. Picture

1 FARNSWORTH, P. T., Television by Electron Image Scanning, Jour. Franklin
Inst.~ vol. 218, pp. 411-444, October, 1934.
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scanning is achieved by deflecting the entire field stream of electrons from
the photocathode so that the aperture in front of the collector electrode
successively collects electrons from every portion of the picture-activated
photocathode. Deflection is satisfactorily achieved by two pairs of
magnetic coils external to the tube and producing fields at right angles
to each other. The light image is projected upon the photocathode
through the collector end of the tube, the obstruction caused by the
collector structure and associated electron multiplier being negligible.

While the linearity of response of the image-dissector tube is virtually
perfect, its sensitivity is very low, of the order of 50 microvolts per
millilumen per cm2 of cathode area. As a result, the tube is suitable only
for outdoor televising and reproduction of motion pictures where the
brightness of the objects to be viewed is quite high.

The I conoscope. The iconoscope was the first of a series of television
camera tubes developed to make use of a charge-storage principle. 1-4

The tube derives its name from the Greek derivatives "icon," meaning
image, and "scope," signifying to view. The primary element of the
tube is a mosaic of photoactive silver particles. These are deposited
on a mica sheet and insulated from each other and from the sheet but
are capacitively coupled to a metal backing on the other side of the
mica sheet. The picture to be viewed is focused on this mosaic. The
mosaic is scanned by an electron beam injected from an electron gun
mounted at an angle with the mosaic. There is also a collector electrode
in the same envelope. The video signal is obtained between the electron
gun anode and the conducting sheet backing the mosaic. The structure
of the iconoscope and the associated electrical connections are shown in
Fig. 20.30.

As the light image falls upon the mosaic screen, the various elements
of the screen will emit photoelectrons in proportion to the intensity of
the light falling upon them. The mosaic elements will thus become
positively charged as they lose photoelectrons to the collector electrode.
The mosaic elements act like a number of individual photoelectric cells
all connected by capacity to the common signal plate, which is the con
ductive backing to the mica support. The elements of the mosaic are

1 ZWORYKIN, V. K., The Iconoscope, Proc. I.R.E., vol. 22, pp. 16-32, January,
1934.

2 ZWORYKIN, V. K., Television, Jour. Franklin Inst., vol. 217, pp. 1-37, January,
1934.

I ZWORYKIN, V. K., IconoslJopes and Kinescopes in Television, RCA Rev., vol. 1,
pp. 60-84, Jllly, 1936.

4 ZWORYKIN, V. K., G. A. MORTON, and L. E. FLORY, Theory and Performance of
the Iconoscope, Proc. I.R.E., vol. 25, pp. 1071-1092, August, 1937.
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successively struck by the scanning beam. This process restores to them
the charge that they have lost by photoemission and releases a correspond
ing charge to the signal backing plate to the mosaic. There thus flows
through the signal-plate lead a current that is proportional to the light

.......
...........

,, ,

./1' IIIIII ! '
~--+-I:' 11111111 11111111'--\\':"--\+----+----+1

Electron De~~~:;nq
gun -

FIG. 20.30.-Iconoscope structure and circuit; C, cathode; G, control electrode;
A, accelerating electrode; P a, collector ; Pc, photocathodes; R j load resistor.

intensity of the areas scanned by the electron beam. A considerable
gain in sensitivity is achieved by this arrangement by virtue of the fact
that each of the picture elements is storing up charge continuously and
so ideally the signal current is amplified by the number of picture ele
ments over that obtained from

di ~
{/~~.J.such a tube as the image ·ssec- .7'/r

tor. Actually, the process is only .signal
about 5 instead of 100 per cent .......--..........~ t-....-tt---....--~.

efficient because of various detri- f
mental effects to be described, but ~

even at that the sensitivity of the ~_
tube is about 200 times as great as
that of the image-dissector tube.

The equivalent circuit of a
mosaic picture element made up
of many globules is given in Fig. FIG. 20.31.-Equivalent circuit of a mosaic

picture element.20.31. In effect, the mosaic glob-
ules in any picture element are equivalent to a photoelectric cell that is
capacitively connected to an output resistor. As light falls upon the
cell, electrons are passed slowly by the cell but gradually build up an
appreciable charge and corresponding voltage upon the coupling con-
"~D.8€'~ Tbp action of the beam is that of a separate circuit which dis-
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charges the condenser periodically and thus releases a peaked current
pulse through the output resistor.

Several effects enter into the action of the iconoscope that prevent
it from being perfect in its operation. For one thing, the photoelectric
emission from the mosaic elements is space-charge limited. Also, the
charge built up by the photoelectric emission is partially neutralized by a
rain of secondary electrons all over the mosaic, originating from the impact
of the beam primary electrons. Further, there is some loss of charge
by surface leakage. All these effects combine to make the efficiency
about 5 to 10 per cent of the theoretical maximum. The average
brightness of field builds up the mosaic potential to a level such that the
change in potential ,vhich the beam can effect is not the maximum value.
As a result, the sensitivity of the tube is nonlinear and is only about
one-fourth as much for high levels of illumination as for threshold values.

The potential behavior of the mosaic elements described earlier
applies only if the secondary emission from the globules is negligible,
,vhich requires that the scanning electrons have only a fe,v volts of energy.
Ordinarily, the scanning electrons ,vill have enough energy to produce five
to seven secondary electrons for every primary electron, and the action
of the mosaic screen ,vill be quite different from that previously described. I

Since there are more electrons leaving than arriving on any mosaic
element, ,vhen the scanning-beam potential is appreciable, the potential
of the picture element being scanned will become positive instead of
negative. Further, under the conditions of appreciable voltage of the
scanning beam, the rain of secondary electrons falling upon elements
of the mosaic not being scanned ,vill exceed the number of photoelectrons
being emitted, and the unscanned portions of the picture "\vill assume a
negative rather than a positive potential. The iconoscope still \vorks
under these conditions because the level of the negative potential assumed
by the unscanned portions of the mosaic depends upon the picture illumi-'
nation being relatively more positive (though still negative) in the
illuminated areas than in the unilluminated areas.

The action described above is sho,vn in Fig. 20.32 Figure 20.32a
sho,vs the potential response of an unilluminated portion of mosaic to
the scanning beam. The rain of secondary electrons depresses the
potential of such portions of the mosaic to about 1.5 volts negative
relative to the collector. At this point a stable potential condition
exists, for any further depression of potential ,vould cause the mosaic to
repel the secondary electrons. Thus in front of the scanning beam a
potential of - 1.5 volts exists. The mosaic elements under the beam
become charged to about 3 volts positive, relative to the collector, by
the emission of secondary electrons. This is also a stable potential,
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for if the element became more positive than this there would be a nega
tive gradient of potential at the mosaic surface, ,vhich would prevent
secondary-electron emission. The line behind the scanning beam rapidly
becomes negative in potential again because of the acquisition of second
ary electrons. Figure 20.32b sho,vs the response of an illuminated
section of mosaic to the scanning beam. Because of the emission of
photoelectrons the potential of an unscanned portion of illuminated
mosaic is less negative than for no illumination. The potential will,
ho,vever, not become positive ho,vever much the mosaic is illuminated,

D/recf/on
of'scan

I )
I
+

DISlance
~

(aJ
Unlliumincxted screen

43

Dark level

Direcf/on
of scan

I
I
+

V)

:t: +2
o
~~+1 !
.~ 0 Llqhf level

Q) -I
-0 -- - ------ ---- Darkt level
0.. -2

~~
(bJ §~

Illumin~tecl screen cc~
FIG. 20.32.-Potential reaction of mosaic to scanning.

for then a ·negative gradient of potential ,vould exist, ,vhich ,vould prevent
photoemission. The portions of the illuminated mosaic under the
scanning beam rise to the same maximum, about 3 volts positive, as was
the case for the unilluminated portions. Hence the signal is derived
from the difference bet,veen the change in potential that exists between
unscanned portions of illuminated and unilluminated portions of mosaic.
For the figures quoted, it is seen that the maximum change in potential
,vhich can be achieved by illumination is 1.5 volts out of 4.5 volts, \vith
the added condition that the change in potential level is nonlinear \\Tith
illumination. From this factor alone, there is a loss of 67 per cent in
efficiency. For ordinary levels of illumination restricted to the region
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of linear response the loss is about 80 per cent. Leakage and other factors
bring the efficiency down to 5 to 10 per cent.

The structure of the mosaic is sho,vn in Fig. 20.33. It consists of
silver globules on a mica sheet of about 0.001 to 0.003 in. in thickness.
The globules are formed by s fting a finely ground silver oxide powder
onto the mica sheet and then reducing the silver by heating. The silver
particles form into little globules ranging in size from 0.0005 em in diam
eter down to particles microscopic in size. There are thus hundreds of
mosaic particles scanned at anyone instant by a beam of, say, 0.02 em
diameter, and a~ far as the beam action is concerned the mosaic may be
considered as continuous. The conducting signal plate on the back
side of the mica is formed by vaporizing or sputtering silver on that side
of the mica. The globules on the front side of the mica are ~ctivated

Photosensifized
silver globules~.

i"

M/CQ sheef

Mica backing cSheef

FIG. 20.33.-Structure of the iconoscope mosaic.

by much the same process as is used in making photoelectric surfaces.
The silver globules are first oxidized and then exposed to caesium vapor
to give a photoemissive surface. The signal plate is made just thick
enough to become reasonably conducting and is usually backed by a heavy
sheet of mica to prevent buckling or warping of the mosaic. The
capacity of the mosaic to the signal plate ranges from 50 to 300 micro
microfarads per cm2, and a value of 100 micromicrofarads per cm2 is
generally assumed in calculations. The photoelectric sensitivity of the
emissive surfaces is of the order of 7 to 10 microamperes per lumen.
The activated surface of the globules exhibits secondary emission as well
as photoemission, the ratio of secondary to primary electrons ranging
from five to seven for the usual conditions of operation. If the globules
are activated with care, the insulation between them is very good, though
some loss of charge is experienced from the fact that the resistance is
not infinite.
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The Image Iconoscope. Various arrangements have been tested
in the attempt to improve the efficiency of the iconoscope. One of these
arrar3ements is found in the image iconoscope. 1,2 The structure of
the image iconoscope is indicated in Fig. 20.34. This tube makes use of a
mosaic screen as in the iconoscope but charges it by secondary-electron
action. The mosaic is excited not ,vith a light field but with a field of
electrons of which the intensity pattern corresponds to that of the picture
to be vie\ved. This field is generated by a transparent photocathode that
is excited by the picture. This tube uses an electron lens, which is rather
difficult to design, to focus the output of the photocathode upon the
mosaic. 3 The charge on the mosaic is derived from secondary-electron
emission, which exceeds the primary-electron current and also exceeds
the photoelectric current in the ordinary iconoscope. Such tubes are
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FIG. 20.34.-Structure of the image iconoscope.

capable of giving sensitivities as high as 5 millivolts per millilumen per
cm2• These tubes have not found great use because of the difficulty
in constructing an electron lens that will reproduce the light image
upon the mosaic without distortion.

The Orthicon. Another arrangement by which the lo\v efficiency
of the iconoscope is increased is the orthoiconoscope, usually abbreviated
to orthicon.4 The name is derived frgm the Greek prefix "ortho,"
meaning straight, which has reference to the linearity of characteristic.
The orthicon overcomes some of the limitations of the iconoscope by

1 Ibid.
2 lAMS, H., and A. ROSE, Television Pickup Tubes with Cathode-ray Beam Scan

ning, Proc. I.R.E., vol. 25, pp. 1048-1070, August, 1937.
3 MORTON, G. A., and E. G. RAMBERG, Electron Optics of the Image Tube, Physics,

vol. 7, pp. 451-459, December, 1936.
4ROSE, AI, and H. A. lAMS, The Orthicon, RCA Rev., vol. 4, pp. 186-199, October,

1939.



736 V ACUlJM TUBES

scanning the mosaic ,vith electrons of such lo,v velocity that secondary
electrons are not created and hence do not neutralize the mosaic charge.
A diagram of the orthicon is given in Fig. 20.35. The picture to be
vie\ved is focused upon the mosaic, ,,,here it causes a variation in charge,
as in the iconoscope. The scanning beam is generated by a flying spot
of light upon a photocathode, \vhich releases lo\v-velocity electrons.
Focusing of lo,v-velocity electrons is difficult but is achieved in the
orthicon by making use of the fact that lo,v-velocity electrons will move
in a tightly \vrapped spiral around a strong magnetic-flux line. The
scanning electrons generated by the light spot on the photocathode are
guided to the mosaic by a strong curved magnetic field. When the

Flyinq__.~~'"
spot

To
amplifier' 1

Mosaic ... -"

Cathode-ray
lube

Lens

Lens Object
,-~--J1------·-~··t
'~-'V------'~---J

Electromagnef

FIG. 20.35.-Structure of the orthicon.

scanning electrons approach a brightly illuminated spot on the mosaic,
they are confronted ,,,ith a positive potential, ,vhich dra,vs them in and
neutralizes the positive charge. When they approach a dark spot on
the mosaic, they are repelled and return to the photocathode. Sensitivi
ties of the order of 2 millivolts per millilumen per cm2 have been attained
\vith the orthicon. The conversion of the photoelectric scanning current
into signal is believed to be nearly 100 per cent.

The Image Orthicon. Still greater sensitivity can be obtained with a
tube kno\vn as the "image orthicon," a diagram of which is given in Fig.
20.36. This tube combines features of the image iconoscope and orthicon.
The light image is focused upon a transparent photocathode. The
emitted current from the photocathode carries current-density variations,
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corresponding to the light-intensity variations in the picture to be viewed.
The current field from the photocathode is focused upon a t\vo-sided
target by means of a suitable electron lens. The target surface is
charged up according to the density of the exciting current by secondary
electron emission. The target is scanned ,vith a lo,v-velocity beam,
\vrnch is deflected by magnetic means. The velocity of the scanning
electrons is low enough so that no secondary electrons are created in the
scanning process. The relative potentials of the mosaic and beam
electrons are adjusted so that the scanning electrons ,viII be attracted
to neutralize the charge of the brightly illuminateu areas but ,vill be
reflected from the dark areas. The signal is derived from the reflected
electrons ,vhose number will be an inverse function of the original picture
illumination. In addition, the reflected electrons are multiplied by an
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electron multiplier, ,vhich helps increase the sensitivity and reduce the
noise figure of the device. This tube is so sensitive that it can be used
to vie,v scenes illuminated ,vith as little brightness as 0.01 candle per
ft 2• The characteristics of the photocathode also make it possible to
observe objects from their infrared radiation alone. 1•2

The M onoscope. The monoscope is ~ot a camera tube but simply a
standard picture-signal-generating tube. It is similar to the iconoscope
in construction except that instead of the mosaic it has a fixed pattern
printed on the oxide coating of an aluminum sheet. The secondary
emission of the unprinted portions of the oxide coating is fairly high,
while that of the printed portions is lo,v. The printed pattern is scanned
,vith an electron beam and gives rise to a variable secondary-electron

1 Sensitive Television Camera Tube, Electronics, vol. 18, p. 330, December, 1945.
2 ROSE, A., P. K. WEIMER, and H. B. LAW, The Image Orthicon, Proc. I.R.E.~

vol. 34, pp. 424-432, July, 1946. -
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current to the collector electrode which corresponds to the printed signal.
The signal from the collector electrode has the same polarity as that from
the backing plate in an iconoscope. A negative picture signal may be
obtained from the backing plate of the monoscope. The tube is used
exclusively as a picture-signal generator for circuit-testing purposes.

20.13. The Electron Microscope. The electron microscope is not
really a vaCdum tube in the sense that it is available in sealed-off form
that can be plugged into a circuit, but it is of sufficient importance to
deserve a brief comment. The electron microscope extends the electron
optical analogy to the logical limit by actually using electrons to obtain
an expanded image of an object. Use is made of the fact that electrons
exhibit a wave as well as ~ particle behavior. Since electrons have
appreciable path lengths only in a vacuum, it is necessary that the speci
men be placed in a vacuum and the specimen is viewed by shooting
electrons through it P

Structure of the Electron Microscope. In its usual form the electron
microscope consists of a source of electrons, a condensing lens for the
electron beam, and a specimen holder followed by two magnifying
lenses. The lenses may be either electrostatic or magnetic. The electron
source is usually a tungsten filament shielded by a cathode electrode so
that emission occurs from only a small area of the filament. The elec
trons are accelerated by a unipotential gun structure constructed so that
the angle of the electron ray is small. Since the magnetic type of electron
microscope is thus far that most extensively used, the remainder of the
remarks of this section will apply to it. A separate section will be
devoted to the electrostatic type of microscope.

A magnetic condensing lens of the type shown in Fig. 14.8e is used
to focus the electron beam upon the specimen. Just beyond the speci
men to be vie,ved is placed an objective lens, also magnetic and of the
same form as the condensing lens. Another magnetic lens, called the
"projecting lens," is used to focus the image formed by the objective lens
upon either a fluorescent screen or a photographic plate, both in vacuum.
An intermediate image can be obtained before the projecting lens. The
general structure involved is shown in Fig. 20.37.

The specimen is applied to a thin film of collodion, which is supported

1 The literature on electron microscopes runs into hundreds of articles and a score of
books. The reader is referred to bibliographies on the subject by C. Marton and
S. Sass, published in the Journal of Applied Physics, which list articles and books since
the development of the electron microscope and are periodically extended.

See MARTON, CLAIRE, and SAMUEL SASS, A Bibliography of Electron Microscopy,
Jour. Appl. Phys., I, vol. 14, pp. 522-531, October, 1943; II, vol. 15, pp. 575-579,
August, 1944; III, vol. 16, pp. 373-378, July, 1945.
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upon a fine mesh screen, of 100 to 400 wires per inch. The collodion
film is prepared by placing a drop of the material in liquid form on the
surface of a dish of water, then raising the supporting screen through
the film that forms from below so that a single layer of the film becomes
attached to the screen, and then cutting away the excess collodion. The
specimen to be observed is then deposited upon the collodion film. The
specimen is admitted into the microscope through a rather intricate
arrangement in the form of a vacuum lock with attendant manipulating
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FIG. 20.37.-Structure of the electron microscope.

levers. The microscope is left on a vacuum pump at all times, and when
the specimen is removed a door is first' opened into a small vacuum
chamber and the specimen put into this chamber. The door between
the chamber and the main body of the microscope is then' closed, and
another door opening to the outside is opened and the specimen removed.
By this arrangement the entire microscope does not have to be evacuated
every time a specimen is admitted or removed; rather, the vacuum
pumps need remove only the small volume of the air admitted from the
intermediate chamber. Photographic plates are admitted and removed
by the same general scheme.
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Eq4ivalent Wave Length of Electrons. One of the revelations of
modern physics is that there is a dual aspect of matter and energy.
This applies to light rays, ,vhich may exhibit the 'properties of either
waves or particles. Likewise, particles in motion exhibit the properties
of light rays. It is the wave aspect of the electron that is utilized in
the electron microscope. One of the teachings of quantum mechanics
is that a particle in motion exhibits an equivalent wave length, kno,vn
as the" De Broglie wave length," given by

h
A=

mv
(20.13)

where A is the equivalent wave length in meters, h is Planck's constant
whose value is 6.624 X 10-34 watt-sec2, rn is the mass of the particle in kg,
and v is the velocity in meters per sec. For an electron at low velocities,
the mass is constant, and the velocity is proportional to the square root
of the potential through ,vhich it has been accelerated. Invoking the
physical constants and Eq. (6.7a), the equivalent wave length of Bin

electron that has been accelerated through a potential V is

angstrom units (20.14)

angstrom units (20.15)

1vhere V is in volts and 1 angstrom unit equals 10-10 meters. This
expression is accurate within 1 per cent for voltages up to 20,000 volts.
For higher voltages the relativity change of mass and the departure of
velocity from the dependence upon the square root of potential must be
considered. From Eq. (6.40a), the mass of an electron is seen to increase
linearly with the potential through ,vhich it has been accelerated. Figure
(6.3) and Eq. (6.39) give the dependence of electron velocity upon
potential. Upon combining these last t,vo relations with Eq. (20.13)
there results the general equation for equivalent wave length of an
electron that has been accelerated through V volts,

A = 12.26
-Vv VI + 0.9788 X 10-6V

This expression reduces to that of Eq. (20.14) for low voltages. A
curve of equivalent ,vave length as a function of voltage is given in Fig.
20.38.

Theoretical Resolving Power of the Electron Microscope. The maximum
useful magnification that can be obtained from a microscope is limited by
the so-called "resolving po,ver" and the lens defects. The resolving
power of a microscope is measured by the least distance bet\veen t,vo
points that can just be distinguished and is determined by diffraction
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(20.16)

laws, which in turn depend upon the wave length of the light used.
The least resolved distance of a microscope is usually given in terms of
the Abbe formula, which has the form

d = O.~A
n SIn a

where d is the minimum distance separating two points which can be
resolved, A is the wave length of the light used, n is the index of refraction
of the medium in which the object is situated, and a is the maximum
angle ,vhich a ray leaving the central point of the object and entering the
objective lens makes with the optical axis of the system. The quantity
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n sin a is known as the "numerical aperture" of the lens. From the
Abbe formula it is seen that the least resolved distance d is decreased as
the wave length is decreased. This is supported experimentally by the
fact that the highest resolution with opti~al microscopes is obtained with
ultraviolet radiations. With ultraviolet wave lengths of the order of
2,500 angstrom units, refractive media with indices of refraction of a
maximum value of about 1.6, and a maximum value of sin a, it is seen
that the best that can be hoped for in the way of optical resolution is
of the order of 1,000 angstrom units.

It may be noted from Fig. 20.38 that the equivalent wave length of
even low-voltage electrons is much less than the wave length of the
shortest usable near-visible radiations. Hence the electron microscope
has a tremendous opportunity of increasing resolution and mag;nification.
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This it does, though as yet the maximum resolution is limllJed by the
small apertures involved. The maximum useful magnification obtainable
with an optical microscope is about 3,000 diameters. Electron micro
scopes have given useful magnifications as high as 100,000 diameters.

That the resolving po,ver of an electron microscope is given by the
Abbe formula may be demonstrated from a simple consideration of the
Heisenberg principle of uncertainty. The principle of uncertainty states
that the product of the error in determination of position and the error
of determination of velocity of a particle is a constant. In other words,
the more accurately the position is known, the less accurately the velocity
can be known, and vice versa. Specifically, the principle of uncertainty
states '

ax ap = h (20.17)

where Ax is the uncertainty of position, t1p is uncertainty of momentum
mv, and h is Planck's constant. Upon applying this to a particle that is
struck by an electron moving at an angle a with the axis of an electron
microscope it is expected that the product of the indeterminancy of x
of the particle by the indeterminancy of the x component of momentum
\vill equal Planck's constant. If it is assumed that the point of contact
of the electron with the particle is such that the tangent through this
point is parallel to the optical axis, then the x component of momentum
imparted to the particle is 2mv sin a, where m is the electron mass and v
is the electron velocity, and hence

Llx Llpx = ax2mv sin a = h (20.18)

Substituting the value of the De Broglie wave length from Eq. (20.13),

A
Ax = -.- (20.19)

2 SIn a

which is the same as the Abbe formula of Eq. (20.16).1 As an example,
suppose that the numerical aperture of a lens is 0.0025 and that a 50,000
volt electron beam is involved. Then the De Broglie wave length, from
Fig. 20.38, is about 0.05 angstrom unit and the corresponding theoretical
least resolved distance is 10 angstrom units. The least resolved distance
v{ould be of the order of atomic dimensions if it were not for the lens
defects. Actual least resolved distances of electron microscopes are of
the order of 20 angstrom units.

Operating Principle of the Electron M icr08cope. The electron micro
scope produces an image because certain of the electrons in the beam
on passing through the specimen have been scattered rather than refracted
or absorbed. The scattering mechanism is entirely a dynamical one

1 This derivation is attributed by Marton to Henriot.
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resulting fronl the reaction of the electron charge with the electrostatic
fields of the atoms and molecules that the electron approaches. Some
of the scattered electrons are intercepted by the apertures. Others
undergo single or plural scattering and remain in the field. Variations
in density of the resultant picture occur because of the scattering process,
which shifts some of the electrons from the portions of the picture cor-

FIG. 20.39a.-80ap-curd fibers. Picture taken with the electron
microscope. Magnification is about 10,000 times: lp = 1
micron = 10--6 meters. (Courtesy ojJ. lV. M cRain.)

responding to dense parts of the specimen. Thus the electron-microscope
picture resembles an X-ray picture more than an optical picture. Some
photographs of soap-curd fibers obtained with the electron microscope
are shown in Fig. 20.39.

Limits of Resolving Power. A number of factors conspire to make the
resolving power of the electron microscope less than the theoretical value.
In the first place all the voltages and currents of the microscope are sub
ject to some variation, which introduces a fuzziness in the pictures.
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This can, ho\vever, be virtually eliminated by stabilizing the voltages and
currents to a sufficient degree. The degree of stability required for a
least resolved distance of 10 angstrom units is rather large, being of the
follo\ving order:

Voltage stability 1 part in 7,000
Current stability

Condenser lens 1 part in 1,000
Objective lens 1 part in 14,000
Projection lens. .• . . • • . . . • • • • . . . . . . . . • . . • • . .. 1 part in 1,500

FIG. 20.39b.-Soap-curd fibers. Picture taken with the
electron microscope. l\lagnification is about 100,000
times. (Courtesy of J. lV. llfcBain.)

Furthermore, any stray magnetic fields must be reduced by shielding
so that components normal to the axis are ,veaker than 5 X 10-6 gauss.

In addition to the above there are all the various lens aberrations to
be coped ,vith.! Most of these are extraaxial so that they can be reduced

1 An excellent discussion of the limitations of the resolving power of electron
microscopes is given by MARTON, L., and R. G. E. HUTTER, The Transmission Type of
Electron lVIicroscope and Its Optics, Proc. I.R.E., vol. 32, pp. 3-12, January, 1944.
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by using a small beam angle, with attendant loss of resolving po\vera
Whereas beam angles in optical microscopes may be quite large, values
of a for electron microscopes are of the order of 10-2 to 10-5 radian.
Some lens errors are axial and cannot be eliminated. These are spherical
and chromatic aberration and also the diffraction defectsa Scattering
also imposes some irremediable limitations.

Chromatic aberration is proportional to the beam angle and thus may
be reduced by keeping the beam angle IOWa It is principally due to
changes in velocity incurred \vhen the electrons pass through the speci
men. It may be reduced by using thin specimens and supporting films
and materials of low atomic number.

Spherical aberration increases as the cube of the beam angle and ,vith
the beam voltage because the minimum focal lengths of the magnetic
lenses increase with beam voltage, o,ving to saturation effects.

Diffraction errors are proportional to the equivalent wave length and
inversely proportional to the beam angle. Since the diffraction error
decreases with beam angle, while the spherical aberration increases "\vith
beam angle, there is an optimum resolution which occurs at the angle at
,vhich the two errors are approximately equal.

Because the De Broglie wave length decreases with increasing
electron energy, it might be thought that increasing improvement in
resolution could be achieved by simply going to higher voltages. This is
not realized in practice, largely because the magnetic lenses lose strength
through saturation, as a result of which spherical aberration and diffrac
tion actually increase. A reduction of chromatic aberration and an
increase in penetration power are realized; but, in spite of this, pictures
obtained \Vith beam voltages greater than 100 kv are not noticeably
superior to those taken ,vith beam voltages between 50 and 100 kv except
for the greater penetrating po\ver evidenced. 1

Electrostatic Electron M icrosr-opes. The structure of an electrostatic
electron microscope is also shown in Fig. 20.37. 2 A shielded tungsten
filament .. and a unipotential cathode gun are used to produce and acceler
ate the electrons. Three lenses are used, and these have the same func
tion as the corresponding lenses in the magnetic type. The electrostatic
lenses are of the Einzel lens type and are dimensioned so that the center
electrode of each lens is operated at cathode potential.. This makes the
lens action independent of the voltage used, for the focal length depends
only on the shape of the field. As a result, the lens voltage supply

1 ZWORYKIN, V. K., J. HILLIER, and A. W. VANCE, Preliminary Report on the
Development of a 300 Kilovolt Magnetic Electron Microscope, Jour. Appl. Phys.,
vol. 12, pp. 738-742, October, 1941.

2 BACHMAN, C. H., and SIMON RAMO, Electrostatic Electron Microscopy, Jour.
Appl. Phys., vol. 14, pp. 8--18, 69-72,155-160, January, February, April, 1943.
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does not hava to be as carefully stabilized as is the case with the magnetic
type of electron microscope. Focusing is achieved in the General Electric
model by moving the specimen physically without changing the lens
characteristics. All the lens defects encountered in the magnetic type
of microscope appear in the electrostatic typ0 and are distinctly greater
in magnitude. As a result, the least resolved distance as yet obtained
with an electrostatic microscope is about 80 angstrom units. Hence
the electrostatic types developed thus far are inferior in magnification
to magnetic types by about a factor of 4. This limitation is offset by an
appreciable reduction in cost and size.



CHAPTER 21

HIGH-VACUUM PRACTICE

21.1. Introduction. The construction of vacuum tubes requires a
high degree of skill and a great knowledge of the techniques associated
with obtaining and maintaining a high vacuum. It may be said \vithout
exaggeration that the problem of producing a good vacuum tube depends
about 90 per cent upon the knowledge of high-vacuum techniques. With
out a knowledge of these techniques a kno\vledge of the theory of
vacuum-tube design is useless. Much has been written on the subject of
high-vacuum techniques, but probably as much kno,vledge exists that has
never been recorded. This brief chapter cannot do more than collect
the most important relations and facts concerning high-vacuum practice.!

In answer to the question as to what is meant by high vacuum it is
first necessary to define the units in which vacuums are measured. There
are a number of systems of units that are commonly used to represent the
degree of vacuum. Vacuums may be described in terms of a fraction
of atmospheric pressure, 760 mm of mercury column. They may be
described in terms of the absolute gas pressure in units of bars, 1 bar being
nearly equal to 1 dyne per cm 2 and 1,000,000 bars being nearly equal to
atmospheric pressure, actually 750 mm of mercury column. Vacuums
may also be measured in terms of the height to which the gas whose
pressure is being measured will raise a column of mercury. This height
is 760 mm at atmospheric pressure and will be proportionately less for
gases whose pressure is less than atmospheric. This method of repre
senting pressure of vacuum has a definite physical significance in that
it is possil?le to devise an apparatus which will give direct measurements in
terms of a mercury column for heights of the mercury column as lo,v as
10-4 mID. Sometimes the height of the mercury column is expressed in

1 The most useful books devoted entirely to high-vacuum practice are
DUSHMAN, S., "The Production and Measurement of High Vacuum," General

Electric Review, Schenectady, New York, 1922.
DUNOYER, L., "Vacuum Practice," Van Nostrand 7 New York, 1926.
ESPE, W., and M. KNOLL, "WerkstofIkunde der Hochvakuumtechnik," Springer,

Berlin, 1936.
YARDWOOD, J., "High Vacuum Technique," Chapman & Hall, Ltd., Londoll,

1943.
747
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~nits of microns, 1· b . 1 This has the virtuemIcron elng 1 000 000 meter., ,
that the numbers are a little easier to write for low vacuums. In Fig.
21.1 is given a chart comparing the different scales for measuring vacuums.

Bars.
Atmospheres dynes per sq. em. mm.of Hg microns of Hq

I 106 160 1.6x lOs

10-1 IDs 100 lOs

10-2 104 10 10·

10-3 IOJ 101

10-4 t02 10-1 IO'l

10-5 10
10-2 10

f-------- 10-3 ------ 1---

10-7 10-1 10-4 10-1

10-8 10-2 10-5 10-2

10-9 10-3
10-6 10-3

10-10 10-4 10-7 10-4

FIG. 21.1.-Comparison of pressure scales.

The values along any horizontal line correspond to the same gas pres
sure. Thus 1 micron equals 10-3 mm of mercury and corresponds to
1.333 bars or 1.318 X 10-6 atmosphere.
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Pressures of 10-4 mm of mercury or less are referred to as "high
vacuums." A pressure of 10-7 mm of mercury is referred to as a "hard
vacuum." One of 10-3 mm of mercury or less is referred to as a "soft" or
"lo,Y vacuum." An idea of the scale of vacuums encountered in elec
tronic devices is given by the follo,ving tabulation:

Pressure, Mm of Mercury
760
100
10
1

10-1

10-2

10-3

10-4

10-5

10-6

10-1

10-8

Characteristic or Device
Atmospheric pressure
Gas-filled Lamps

Spark streamers in electrical discharge
Glow discharge, neon lamps
Lower limit of glow discharge
Glass fluoresces under electron bombardment
Bad receiving tube
Old receiving tube, operating
New receiving tube, operating
Old transmitting tube, operating
New transmitting tube, operating
New tube, cold

21.2. Fundamental Gas Laws. Since all vacuum processes are
merely operations upon gases at pressures less than atmospheric, it is
important to revie\y the la,vs governing the behavior of gases. There
,vill also be included in this section comments upon the behavior of
molecules in a gas and of electrons in a gas.

Boyle's Law. Boyle's la,v states that the volume ,vhich a given mass
of gas at a fixed temperature occupies varies inversely as the pressure
to which the gas is subjected. Mathematically this is stated by

PlV! = P 2V 2 = const (21.1)

Charles's, or Gay-Lussac's Law. Charles's, or Gay-Lussac's, law
states that the volume \vhich any mass of gas occupies at a given pres
sure varies directly with the temperature. Mathematically this is stated

VI V 2
- = - = const (21.2)T1 T2

Avogadro's Law~ Avogadro's la,v stat~s that the number of molecule~
in equal volumes of gases at the same temperature and pressure are equaL
More specifically, the number of molecules in a mole or in a mass in
grams of substance numerically equal to its molecular weight is always the
same regardless of the kind of gas. The number of molecules in a mole
is kno,vn as Avogadro's number and is equal to 6.023 X 1023 •

General Gas-expansion Law. Boyle's, Charles's, and Avogadro's
laws can be combined into a single law,

PV = RmT (21.3)
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where P is pressure in bars or dynes per square centimeter, V is volume
in cubic centimeters, R is a universal gas constant having a value of
8.314 X 107 ergs per deg per mole, m is the mass of the gas in moles,
i.e., the mass in grams divided by the molecular weight, and T is the
temperature on the absolute scale, which is 2730 plus the number of
degrees centigrade. From this equation and Avogadro's number it is
readily calculated that the number of molecules in 1 cm3 at a pressure
of 106 bars (750 mm of mercury, nearly atmospheric) and O°C is
2.654 X 10 19• Even at the very low pressure of 10-7 mm of mercury,
about 10-10 atmosphere, the number of molecules per cubic centimeter
of a gas is about 3,000,000,000. In general, the number of molecules per
cubic centimeter of a gas is given by

p
n = 7.244 X 1015 T molecules per cm3 (21.4)

where P is pressure in bars and T is absolute temperature.
Distribution of Velocities in a Gas. The heat energy that a body of

gas contains exists in the kinetic energy of motion of the gas molecules.
As the temperature is increased, the heat energy increases and the velocity
of the molecules increases. The molecules will have velocities in all
directions and with all magnitudes, but most of them will have velocities
grouped around a most probable velocity. Maxwell has shown from
application of the theory of probability that the distribution of velocities
of molecules in a gas is given by

4
y = - X 2f-Z

2 (21.5)
Vi

where x is the ratio of velocity to the most probable velocity and y is
the corresponding probability that a molecule will have a velocity x. A
plot of Eq. (21.5) is given in Fig. 21.2. The area under the curve between
any two values of x, say Xl and X2, divided by the total area under the
curve gives the fraction of the total number of molecules that have
velocities in the interval between Xl and X2. The coefficient of Eq. (21.5)
is chosen so that the total area under the distribution curve is unity.
This causes the maximum ordinate to be other than unity but makes
the estimate of the fraction of the total number of molecules having
velocities in any given velocity interval very simple. Thus the area under
the curve between values of velocity Xl and X2 gives the fraction directly
and may be estimated by simply counting squares, each square representing
1 per cent of the total number for the scale divisions given. Thus only
about 5 per cent of the total number of molecules have velocities greater
than twice the most probable velocity.
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The distribution curve of Fig. 21.2 holds for all temperatures, the
only difference being that the most probable velocity increases with the
square root of the absolute temperature.

IT
Vp = 12,900 \1M em per sec (21.6)

where T is the absolute temperature and M is the molecular weight of
the gas. Also of interest is the average velocity, which is 1.124 times
the most probable velocity,

Va = 1.124vp (21.7)

\vhere Va is the average velocity and Vp is the most probable velocity.
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FIG. 21.2.-Maxwell'g law of distribution of molecular velocities in a gas.

The rIDS velocity is involved in energy calculations and has the value of
1.224 times the most probable velocity,

Vm = 1.224vp (21.8)

where Vm is the rros velocity and Vp is the most probable velocity. All
the velocities cited above are independent of the pressure involved. A
curve showing average velocities at room temperature of various gases
as determined by their molecular weight is given in Fig. 21.3.

Mean Free Path oj a Gas Molecule. Although it is true that the
molecules of a gas have rather high velocities, it is a common observation
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that gases diffuse together very slowly. This is undoubtedly due to the
fact that the molecules collide frequently ,vith one another and so move
in zigzag paths made up of rather short straight-line segments. The
term mean free path is used to indicate the average length of path of a
molecule bet,veen collisions. The collisions themselves are of an elastic
nature and tend to leave the magnitude of the velocities involved
unchanged on the average.

An estimate of the mean free path of a gas molecule among other gas
molecules can be had by considering the total area of molecules in a
volume of cross-sectional area A and thickness t. The number of

I
,

~2

" "
T=20°C

" .......

f'....... "aU
~" Jeo

H?O--";'r:..:JA'2
A0~4o

A ~'"
r""o.

~"-
nU'~

~,

100
Molecular weight

FIG. 21.3.-Average velocity of ga.ses at room temperature.

1000

molecules in such a volume is n.L4t, ,,"here n is the molecular density.
Let the volume be vie\ved from the surface of area A, and assume that
the molecules are uniformly distributed throughout the volume in such
a way that their projections upon the surface of area A are also uni
formly distributed. When the number and arrangement of the projec
tions of the molecules upon the surface of area A have the form indicated
in Fig. 21.4, then it ,vill be impossible for a molecule to travel a distance
t perpendicular to the surface of area A ,vithout making contact ,vith
another molecule. The equilateral triangle sho\vn in Fig. 21.4 has an

altitude of 1.5 molecular diameters and so has an area of 3 VI dm
2

and

contains effectively one~half of a molecule. The density of the molecules

as projected on the surface of area A is therefore ~ ,where dm

3 3 dm
2

is the molecular diameter. Equating the number of molecules projected



HIGH-VACUUM PRACTICE 753

On the surface for this d~nsity to the number of molecules contained in
the volume,

(21.9)

(21.10)

from which

t = 1
2.60ndm

2

'fhere is a 100 per cent probability that a molecule will collide ,vith
another molecule in a distance t, or roughly a 50 per cent probability that a.

8

o 0
o
o

(21.11)

(21.12)

FIG. 21.4.-Arrangement of molecules in a gas to illustrate the
concept of the mean free path of a gas molecule.

molecule will collide wTith another in a distance 4which will be called

the" mean free path" of a molecule. Accordingly,

A · f h f 1 1 0.1923pproXlmate mean ree pat 0 gas rno ecu e = nd
m

2

This formula is only approximate, for it'does not consider the random
distribution of molecular velocities. l\1ax,vell has considered this prob
lem and proposed the follo,ving formula:

1 0.225
Mean frfe path of gas molecule = --

V27rndm 2 - ndm
2

Some further refinements on this formula give the coefficient as 0.315, but
for ordinary purposes Max,vell's form as given in Eq. (21.12) is generally
used. The mean free path of a molecule of a gas is seen to be an inverse



754 VACUUM TUBES

function of the molecular density and also an inverse function of the
equivalent molecular cross-sectional area or diameter squared.

The molecular diameter is a convenient fiction useful in many gas
relations. The agreement between the values of molecular diameter as
determined from various considerations is fairly good.! Values of the
molecular diameter of various gases are given in the following table.
Values are given only to two significant figures since the agreement
between various determinations is no greater than this.

TABLE XIII
MOLECULAR DIAMETER OF THE GASES

Gas Molecular Diameter, Cm
A 2.9 X 10-8

CO 3.2 X 10-8

CO2 3.3 X 10-8

H 2 2.4 X 10-8

He 1.9 X 10-8

Kr 3.2 X 10-8

N 2 3.1 X 10-8

Ne 2.35 X 10-8

NH3 3.0 X 10-8

O2 3.0 X 10-8

Xe 3.5 X 10-8

Since the molecular density as given by Eq. (21.4) is directly propor,
tional to pressure, it follows that the mean free path of a molecule is
inversely proportional to pressure. Upon combining Eqs. (21.4) and
(21.12) the mean free path is given by

3.107T
Mean free path of gas molecule = Pd

m
2 X 10-17 em (21.13)

where T is temperature in degrees absolute, P is pressure in bars, and dm

is molecular diameter in centimeters. A curve of the mean free path of
nitrogen, the principal ingredient of air, as a function of pressure is given
in Fig. 21.5. It is convenient to remember that the mean free path of
nitrogen at room temperature and a pressure of 1 bar (about 10-3 mm of
mercury) is approximately 10 em and varies inversely with the pressure.

The average number of collisions of a gas molecule per centimeter of
travel is the reciprocal of the lhean free path and is given by

Collisions per em = 3.219 X 1016 P~m2

in \\"hich the units are the same as for Eq_ (21 13).

, Dushman, Ope cit., p. 27.

(21.14)
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Mean Free Path of an Electron among Gas Molecules. The reasoning
that was used in the previous subsection to get an estimate of the mean
free path of an electron may be used to get an estimate of the mean free
path of an electron moving among gas molecules. 'Since the electron

Gas pres5ure,mm. of Hg.
1O~6 10.5 10-4 10-3 lo~1 10-1 1 10 100 1000

105

104

103

· m?
E
ulO
.£
&.1
~ 10-1

ct-

'; 10-2
Q)

:E 10-3

10-4

10-5
10-4 10-3 1000l IO~' I 10 102 103 104 1()5 106

6as pressure, bars

FIG. 21.5.-Mean free path of a nitrogen
molecule as a function of pressure.

has a negligible cross-sectional area compared with a molecule, if we aga~n

consider a volume of surface area A and thickness t, then the molecules
must be sufficient in number and must arrange themselves as shown in
Fig. 21.6 to ensure that there will be a collision of an electron with a gas
molecule in a distance t. For the
arrangement of molecules shown,
each equilateral triangle of altitude

3dmh £3 V3dm2 dT as an area 0 16 an ~on-

tains eff~ctively half a molecule.
Accordingly, the density of the mol
ecules as projected upon the surface

of area A is ~ ,or just four
3 3dm

2
FIG. 21.6.-Arrangement of molecules

times the density required to ensure in a gas to illustrate the concept of
a molecule collision in a distance t. mean free path of an electron.
One may therefore expect that the
mean free path of an electron among gas molecules is four times that of
the gas molecules themselves. Needless to say, this is a very rough
estimate and applies only to electrons having velocities corresponding
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to a few volts. Even at velocities corresponding to about 10 volts the
above estimate will not hold, for the exchange of energy between electrons
and molecules is extremely complex in the vicinity of the ionization
potential of the gas. 1

10.
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FIG. 21.7.-Nomographic chart of the number of ions formed per centimeter of
electron beam per second as a function of current, voltage, and pressure.

The concept of the mean free path of an electron among gas molecules
needs revision ,vhen the electron velocity becomes appreciable. As the
electron acquires a higher voltage, it may approach closer to a molecule
before it will be deflected or before it ,vill produce ionization. This is
because there is less time for the electrostatic forces to effect a transfer of
energy as the electron velocity increases. Of more interest than the mean

1 BRODE, R. B., Quantitative Study of the Collisions of Electrons with Atoms,
Rev. Modern Phys., vol. 5, pp. 257-279, Octob~r) 1933.
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free path of an electron, which is difficult to define, is the distance between
ionizing collisions. Above a velocity corresponding to about 500 volts
for heavy molecules such as mercury and above a fe,v hundred volts for
the molecular constituents of air, it is found that the number of ions
formed per centimeter per second by an electron beam is proportional to
the current and the gas pressure and inversely proportional to the beam
voltage. A satisfactory empirical form 1 of this relation for air is

N = 3.75 X lO 23Ip ions formed per sec (21.15)
V per em of length

(21.16)

where I is current in amperes, V is voltage through which the electrons
have been accelerated in volts, and p is gas pressure in millimeters of
mercury. A nomographic chart of the number of ions formed per centi
meter of path per second is given in Fig. 21.7. Since current is the prod
uct of the number of electrons passing a reference plane per second
multiplied by the charge, the number of ions formed by each electron
per centimeter of travel is

Number of ions formed by 1 _ 6 X 104p
electron per cm of travel - V

where p is in millimeters of mercury and V is in volts. The distance
between ionizing collisions of an electron is the reciprocal of Eq. (21.16),
or

(21.17)em
Distance between ionizing _ V kv

collisions of an electron - 60p

where V kv is the potential through which the electrons have been acceler
ated, in kilovolts, and p is pressure in millimeters of mercury. Thus an
electron with a velocity corresponding to 6,000 volts, moving in a vacuum
of 10-6 rom of mercury, experiences an ionizing collision every 100,000
em. At 10-4 mm of mercury the distance between ionizing collisions is
only 1,000 cm. A nomographic chart showing the distance between ioniz
ing collisions, as a function of gas pressure and voltage through which
the electron has been accelerated, is given in Fig. 21.8.

21.3. Measurement of Vacuum. Tn.e range of pressures over which
vacuum devices operate is so large that no one pressure-measuring device
can cover it. Accordingly, it is necessary to use a number of devices
to handle the entire range of pressures from atmospheric do,vn to the best
vacuums producible. The number of types of vacuum gauges runs into
the dozens, but of these there are about half a dozen that have shown more

1 BENNETT, W. H., Magnetically Self-focusing Streams, Phys. Rev., vol. 45, pp.
890-897, June 15, 1934. Equation (21.15) is given originally as N = 200pljVe,
with p in millimeters of mercury and electrical quantities in esu.
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tvtercury

To vacuum
~

ruggedness and versatility than the others. These will now be described
briefly. In Fig. 21.9 is shown the range of
the most commonly used types of vacuum
gauges. Where the range line is solid, the
range of pressures indicated can be covered
with a single instrument. Where the range
line is dotted, several instruments of the
same type are required to cover the range
indicated.

Manometers. The simplest type of
vacuum gauge is the mercury manometer,
or U tube, shown in Fig. 21.10. One sur-
face of the mercury column is exposed to FIG. 21.10.-Mercury manom ..
atmospheric pressure, and the other is eter.
exposed to the low pressure to be measured.
The mercury column thus experiences a difference of pressure on the tWQ
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surfaces and adjusts the height of these surfaces until the forces are in
equilibrium around the column. The difference in height of the two
surfaces is a measure of the vacuum relative to atmospheric in that
atmospheric pressure alone will support a mercury column of height
760 mm. The U-tube manometer is suitable for measuring only relatively
poor vacuums of the order of 10-1 mm of mercury or less.

The McLeod Gauge. The McLeod gauge is a special type of mercury
manometer. It works on the principle of compressing a sample of the

Referenc~
/eve~

f
Toh/gh
Vt:lClJum

Valve

OUl1drPft/c ~..
scale

Linellr
$CfA/e

f
70high
vacuum

Low ~~~""-_--"""'_"""IIIZllI"'= Atmospheric
Vtlcuum ~ pressure

Displace
piston

FIG. 21.11.-Long and short form of the McLeod gauge.

gas of which the pressure is to be measured by a known volume ratio and
thus increasing the pressure in inverse ratio to an amount which is large
enough to measure by direct observation. The McLeod gauge is one of
the few gauges that give an absolute pressure indication. Most of the
other types of vacuum gauge have to be calibrated against the McLeod
gauge, which serves as a standard of measurement.

The general form of the McLeod gauge and the means by which a
sample of gas is trapped and compressed are shown in Fig. 21.11. All
McLeod gauges have in common a large volume V in which a sample of
gas can be trapped by raising a column of mercury. The volume V has a



HIGH-VACUUM PRACTICE 761

sealed-off capillary tube C sealed into its top. By raising the mercury
until its surface is well up in the capillary the volume of gas trapped can
be compressed by a factor of many hundred times. The pressure of the
compressed sample of gas can be measured by comparing the height of
the mercury column in a parallel capillary of the same diameter-pref
erably from the same specimen of tubing as the compression capillary
in which the gas is uncompressed. The structure of the McLeod gauge
requires that it always be made of glass.

The various McLeod gauges differ only in the means of raising the
mercury column and of reading the gauge. In Fig. 21.11 are shown two
of the commonest methods of raising the mercury column. The arrange
ment at the left shows a design, known as the "long form," in which
the mercury column is raised by means of a displacement piston. The
piston can be arranged ,vith a clamp and screw thread so that fine adjust
ments of level can be obtained by turning the piston ,vhen it is clamped in
one position. This arrangement has the advantage that the use of rubbel'
tubing can be avoided since the displacement piston can be made of metal.
l'he structure is of necessity quite high since a difference of elevation of
760 mm must exist between the level of mercury in the gauge and that
in the displacement-piston reservoir. This form of the McLeod gauge
requires mounting on a vertical rack rising from floor level to a height of
about 5 ft. A somewhat shorter vertical height can be achieved with the
arrangement at the right, kno,vn as the "short form." With this
arrangement the mercury level may be raised and lowered by gas pressure
through a combination of valves. The mercury is raised by opening the
valve to the high vacuum to be measured. Too rapid a rise is offset by
partly evacuating the mercury reservoir by opening the valve connected
to a source of low vacuum such as a mechanical pump. If the pressure in
the mercury reservoir is made too lo\v, the mercury will fall but this can
be offset by admitting air through another valve attached to the reservoir.
This form of the McLeod gauge requires extremely careful handling.
Another form of the McLeod gauge, not illustrated, carries the com
pression volume, the compression capillary, and the comparison capillary
on a framework that can be tilted to achieve an effective raising or lower
ing of the mercury relative to the measuring tubes.

The McLeod gauge can be used in two ways as a pressure indicator.
In the first method there is determined a point on the compression capil
lary such that when the mercury is raised to this level the compression
volume is compressed by some convenient factor such as 100 or 1,000.
The height of the mercury in the free capillary above this reference point
will be a linear function of the gas pressure. Specifically, the difference
in height will be the original pressure in millimeters of mercury times the



762 VACUUM TUBES

(21.18)

compression ratio. By using capillaries of equal diameter, surface ten ..
sian forces are equal in the two tubes. Thus

P = hI ~

where P is the pressure of the gas in millimeters of mercury; hI is the dif
ference in level between the mercury in the free and in the compression
capillaries, in millimeters, when the mercury is raised to a point a dis
tance ho from the top of the compression capillary at which point the
compressed volume of gas is V o; and V is the original trapped volume of
gas. Since

V
o

= 7rd2ho

4
(21.19)

(21.20)

where d is the diameter of the capillary

P = (1r:~O) hI

The other method of using the McLeod gauge raises the mercury level
in the free capillary to a height the same as that of the top of the com
pression capillary each time a measurement is made and reads the differ
ence in height h2 between the mercury levels in the free and compression
capillary. With this method there is a different compression ratio with
each gas pressure, but the basic relation of Eq. (21.19) holds in the form

V 2
P = h2 V (21.21)

where V2 is the volume of the gas in the compression capillary to a height
h2• Accordingly,

(21.22)

Hence

(21.23)

and it is seen that the difference in mercury levels by this method is a
quadratic function of the gas pressure. The gas pressure is conveniently
read by attaching a suitable quadratic scale upside down to the com
pression capillary, lined up so that the zero of the quadratic scale cor
responds to the top of the compression capillary. The quadratic and
linear methods of measuring pre~sure may be used with either the long
or the short form of the gauge.

The sensitivity of the McLeod gauge may be increased by increasing
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the size of the compressible volume or by decreasing the diameter of the
compression capillary. There are definite limits beyond which neither of
these quantitie~ can be carried. If the compression volume is made too
large, the weight of the mercury needed to fill it becomes a limitation.
The weight of 330 cm3 of mercury is 10 lb, and the problems involved in
making the gauge strong enough to support this weight are considerable.
If the compression capillary is made too small, there is trouble with the
mercury sticking. This imposes a practical limit of about 72 mm at the
smallest diameter capillary. The reference heights used on the cali
brated scales can be reduced to increase the sensitivity, but there are
limits here, too. The reference heights have to be more than a few
diameters of the capillary because of the difficulty of estimating the vol
ume of the rounded end of the capillary.

As a rough guide to the design of McLeod gauges let it be assumed that
for linear-scale operation the reference height ho is nine times the diameter
of the capillary and that the smallest measurable difference in height hI
is equal to the diameter of the capillary. With these assumptions, Eq.
(21.20) reduces to

p = 7.06d4

m V (21.24)

where Pm is the minimum pressure that can be read with ease and accur
acy where all quantities are expressed in terms of millimeters. Likewise,
for quadratic-scale operation let it be assumed that the lowest practical
height difference h2 is three times the diameter of the capillary. Substitu
tion of this value into Eq. (21.23) again yields Eq. (21.24), which may be
used as a design equation. A nomographic chart showing the relations
bet\veen the variables in Eq. (21.24) is given in Fig. 21.12. The sample
construction line dra\vn sho,vs that a sensitivity of 10-4 rom of mercury
can be realized with a compression volume of 100 cm3 and a capillary
of diameter 1.091 mm.

McLeod gauges are frequently made with two capillaries attached in
series on ·'top of the compression volume. The large-diameter capillary
is sealed directly to the volume, and the'small capillary is connected to
the large one and sealed off at its end. Two free parallel capillaries of
the same diameter are used. With this arrangement the use of linear
scales over a wide range of pressures is facilitated.

The McLeod gauge does not indicate the presence of water vapor,
carbon dioxide, ammonia, pump oil vapors, and condensable vapors in
generaL When used with an oil-diffusion pump a cold trap should be
placed bet\veen the pump and the gauge; otherwise, the latter will simply
indicate the vapor pressure of mercury, which is 2.777 X 10-3 mm at
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room temperatures. The tendency of the mercury to stick in the com
pression capillary can be reduced by warming and thus degassing the
capillary with a soft flame. Mercury that has stuck can be evaporated by
heating. The McLeod gauge is considered reliable to 10-4 rom of mer
cury and is useful to 10-5• Qualitative indications may be had for pres
sures as low as 10-6 mm of mercury.
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The Spark-discharge Tube. A convenient device for monitoring low
pressures is a spark-discharge tube about 1 in. in diameter and about 8
in. in length, with disk electrodes supported on tungsten ,vires sealed
through the glass, as sho,vn in Fig. 21.13. The tube has a T joint to
the vacuum system and has a d-c potential of about 15 kv applied in
~eries, with a resistance large enough to limit the current to about 2 rna.
1;he series resistance is necessary because the resistance of the discharge
tube between electrodes changes greatly with pressure. The nature of
the discharge serves as a rather good index of pressure in the range of 50
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to 10-3 mm. The glow generally has these distinctive parts: Immediately
surrounding the cathode, or negative electrode, and assuming its contour
is the cathode glow. Beyond the cathode glo'v is the Crookes dark space.
Beyond the Crookes dark space is the negative glow. Extending from the
positive anode, or electrode, is the positive glow, which will be continuous

ITO vacuum

Circular dIsc
elecfrode

_____O_f_f-.u79sfen

)!

FIG. 21.13.-Structure of the gas-discharge
tube.

or striated depending upon the pressure. The characteristics of the dis
charge are roughly as follows:

Mm of Mercury
20-50

10
6

4
0.4
0.2

0.15

0.10

0.05
0.03

0.03-0.001

Appearance
Narrow streamers
Broad streamers
Cathode and negative glow forms, positive glow is small tuft at

positive electrode
Positive glow elongates
Elongated positive glow breaks into a row of tufts (very pretty)
Number of tufts in positive glow decreases, and tufts become larger

and more widely separated
Limit of tuft structure of positive glow-two large tufts close to

anode
Negative glow, which has been a small tuft at all higher pressures,

elongates, Positive glow is a single tuft
Negative glow extends nearly to anode, positive glow disappears
Glow diffuses the whole tube, no definite structure
Glow disappears and glass fluoresces from electron bombardment

In add~tion to the glow discharge changing its structure, it also
changes its color. At high pressures the predominating color for air is
pink. At lower pressures the pink changes to a blue as the oxygen and
nitrogen, which have higher molecular mobility, are removed and carbon
dioxide remains. The color of the glass fluorescence depends upon the
glass being a yellowish blue in all cases, but more yellow than blue for the
soft glasses and more blue than yellow for the hard glasses. The
presence of water vapor is indicated by a whitish glow.

In ordinary vacuum setups a spark coil that can be applied to an
insulated electrode of the system can be used as a rough pressure indi
cator at low vacuums. The voltage will set up a glow in the entire
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system. The nature of the glow is roughly as follows for different
pressures:

Mm of Mercury
100--40
40-4

4--0.4
0.4-0.04

0.04-0.004

Appearance
Bluish-white filamentlike discharge
Purple filament
Wide, stringy pink discharge
Full glow-pink changing to gray to pale gray
Discharge disappears, glass fluorescence appears. Predominant

color is pale gray. Glass fluorescence disappears at lower limit

A high-frequency Tesla coil can be used instead of a spark coil. This
has the advantage that it is safer and will not puncture the glass. Leaks
in glass can be detected with- a spark coil since a spark will tend to jump
from the coil electrode to any leak in the glass.

The Pirani Gauge. The Pirani gauge is simply a temperature-sensitive
resistance element to which a small amount of power is supplied and
\vhich is cooled by the conduction away of energy by molecules of the gas
\vhich have collided with it. Thus if the power to the temperature-sensi
tive resistance element is kept constant, the cooling of the element ,viII
be a function of the pressure and will produce a variation in the tem
perature of the element that can be detected as a change in resistance.

A fine tungsten wire can be used as the temperature-sensitive ele
ment. In fact, the filament of a 10-watt light bulb works quite well;
a gauge may be made by sealing a piece of glass tubing to such a bulb
and attaching it to the vacuum system. The resistance of the filament
increases rather rapidly with the power consumed by it. If the filament
structure is not coiled but consists of straight wire, it will make a better
gauge. In general, the higher the thermal efficiency of the filament as a
light-producing element, the lo\ver its effectiveness as a vacuum-measur
ing gauge, and vice versa. This is because, the higher the thermal effi
ciency, the less effective the cooling by molecular impact. In operation,
the Pirani gauge is conveniently used at a temperature of 100 to 500°C
above room temperature, just belo'v the temperature of appreciable
radiation. This is the temperature range of greatest sensitivity, for
the cooling of the filament is then mostly by conduction rather than by
radiation.

In principle, the Pirani gauge can be operated in three fundamental
\vays.

1. Maintain the voltage across the filament constant, and measure the
resistance as a function of pressure.

2. Maintain the current through the filament constant, and measure
the resistance as a function of pressure.

3. Maintain the resistance of the filament constant, and measure thp
power supplied as a function of pressure.
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Ivlethod 3 has been tested by Campbell, who found that the power
JO!quired to keep the filament resistance constant was a linear function of
pressure, becoming less as the pressure became less. This is in accord
ance \vith the expectation that the conduction cooling by molecules of
the gas is proportional to the number striking the filament per second,
which is proportional to the pressure. The direct proportionality has
an upper limit at the pressure at which the mean free path of the molecules
is of the order of the bulb dimensions. Below this pressure the heat is
conducted by the molecules directly from
the filament to the bulb walls. Above
this pressure the heat is conducted from
layer to layer of gas surrounding the fil
ament; and since the heat conductivity
of a gas according to the predictions of
the kinetic theory of gases is constant
under these conditions, there is no fur
ther change in heat loss with pressure.
Since the mean free path of nitrogen is
about 1 cm at 10-2 mm of mercury
pressure, this will ordinarily be the
upper limit of linearity between power
and pressure for a constant filament
resistance, though indications can be
obtained up to 10-1 mm of mercury. It is convenient in obtaining

V 2
- Vo2

pressure data by method 3 to plot the ratio V
0

2 as a function of

pressure. In this ratio, V is the voltage required to produce a given
resistance at a pressure p, and V o is the voltage required to produce the
same resistance at pressures less than 10-4 mm of mercury. The low
pressure voltage V o across the filament represents heat loss primarily
by metallic conduction, though there will be some by radiation. For
pressures.1ess than this value there are so few molecules present that there
is virtually no molecular cooling action. Accordingly, the range of the
Pirani gauge is about 10-1 to 10-4 mm of mercury when an ordinary light
bulb filament is used. It is possible to extend the upper limit of pressure
wIth specially designed tubes of small dimensions.

The simplest circuit by which pressure may be measured by the con
stant resistance method is shown in Fig. 21.14. Filament resistance is
determined by the bridge balance as sho,vn by the galvanometer. The
bridge is first balanced at very low pressures, and the bridge resistances
are then left unchanged. Bridge voltage is chosen to impart a suitable
temperature, well below color, to the filament. As pressure rises, the
cooling of the filament will increase and lower the temperature, in turr
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lowering the resistance. Bridge balance is restored by increasing the
bridge voltage.

The Pirani gauge can be incorporated into an automatically self
balancing bridge by means of the circuit of Fig. 21.15. The gauge
bridge circuit is in the feedback circuit of an audio amplifier tuned to
about 1,000 cycles. The amplifier ,viII oscillate at an output-power level
that nearly balances the bridge. Thus, if the amplifier gain between
input and output terminals is 100, the output power will rise until the

TUNED AMPLIFIER

o
10

ohms
1000
ohms

~
To vacuum TlJermo-

/0,000 ~ IOOohms couple
ohms ~ mi/hilmeler

Evacuated&0-.-______ comparist!.n./
lamp -

FIG. 21.15.-Automatically self-balancing bridge circuit for use with the
Pirani gauge.

ratio of the input and output voltage of the bridge is 7100, ,vhich is nearly
a condition of balance. Under the conditions stated the gauge resistance
,viII be maintained constant 'Yithin about 1 per cent, ,vhich is close
enough for pressure measurements. As pressure rises and the gauge
filament resistance tends to fall, the amplifier will supply more power to
keep the resistance constant. The po,ver supplied by the amplifier is
conveniently indicated by a thermocouple milliammeter, properly
shunted, in the output circuit. Since the deflection of a thermocouple
meter is proportional to current squared, the deflection is directly pro
portional to po,ver. Hence the meter can be engraved ,vith a scale that
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will be linear with pressure but have zero pressure slightly upscale. This
may be corrected by adjusting the zero setting of the needle so that it is
negative by the proper amount. When this is done, the indication of
the meter will be linear ,vith pres-
sure. The shunt may be adjusted To ~

vacuum
to give different ranges of pressure.
The power supplied by the ampli-
fier to the bridge ,vin divide in
constant ratio bet'veen the bridge
arms. If the ratio of the bridge
resistances is as indicated in the
figure, the power consumed by the
gauge filament will be nearly ten-
elevenths of the output power. 111111..----------

The simplest of all possible FIG. 21.16.-Pirani gauge with bridge
methods of using the Pirani gauge unbalance indicator.
consists in putting the filament in a
bridge circuit to which a constant direct voltage is applied and calibrating
the unbalance current against pressure. The circuit of Fig. 21.16 shows
how this may be done. The use of identIcal filaments one of which is
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Pressure, mm. of Hq

FIG. 21.17.-Bridge unbalance current of a Pirani gauge as a function of pressure.

sealed off at high vacuum compensates for external-temperature varia
tions. A typical curve of bridge unbalance current as a function of
pressure is shown in Fig. 21.17.
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uum gauge.

The Pirani gauge will respond to compressible gases and thus may be
used to check the preBence of components not revealed by the McLeod
gauge. The calibration curves of different gases are slightly different.
In general, the more mobile gases will conduct heat away from the fila
ment more readily. In calibrating the Pirani gauge against the McLeod
gauge a cold trap should be placed between the gauges to keep mercury
vapor out of the former.

The Thermocouple Gauge. The thermocouple gauge works on the
same principle as the Pirani gauge. A thermojunction is attached to a
heater wire as sho",'"n in Fig. 21.18. The heater wire is usually of tungsten
and is heated with a current of 10 to 100 rna. The thermojunction can

be made of any of the standard combi
nations such as platinum--p I a tin u m
rhodium; chromel P-alumel; copper
constantan (advance); iron-constantan
(advance); ni c h r orne - cons t an tan
(advance). It is connected directly to
a sensitive d-c microammeter. 1,2 The
cooling of the resistance wire is a func
tion of the pressure, which is recorded
by the microammeter, which is acti
vated by the thermal emf generated by
the junction on the wire. The range of

UH
FIG. 21.18.-Thermocouple vac- the thermocouple is from 10-1 to 10-4

mm of mercury, and it must be cali-
brated against some standard pressure

gauge such as the McLeod gauge.
The specific dimensions of a thermocouple that is excellent for routine

pressure indications are as follows: Couple of 3-mil nichrome and 4-miI
advance wire, each 1~~ in. long. Heater of 4-mil platinum wire 2% in.
long. The ,vire lengths are long enough to eliminate thermal end effects.
Heating current is 150 rna to give a junction current of 200 microamperes
in a perfect vacuum. 3

Triode Ionization Gauge. All the gauges mentioned thus far have
been limited in their range to relatively low vacuums. The triode
ionization gauge is the most extensively used high-vacuum gauge. The

1 "Handbook of Chemistry and Physics," 26th ed., pp. 187&-1878, Chemical
Rubber Co., Cleveland, Ohio, 1942.

2 WEBER, R. L., "Temperature Measurement and Control," Chap. IV, Blakiston,
Philadelphia, 1941.

3 DUNLAP, F. C., and J. G. TRUMP, Thermocouple Gage for Vacuum Measure
ments, Rev. Sci. lnstr., vol. 8, ?p. 37-38, January, 1937.
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gauge itself has the form of (or may actually be) an ordinary triode tube
sealed into the vacuum system. The most sensitive electrode connection
is, however, not the usual triode connection. The grid is operated at a
relatively high positive voltage, while the plate is operated at a relatively
low negative voltage. With this arrangement the filament has to be
operated at considerably belo'v its normal rating, i.e., the temperature of
the filament must be low enough so that the emission is temperature
limited. The basic circuit arrangement involved is shown in Fig. 21.19.

ITO vacuum

'Triode gage

Ie
FIG. 21.19.-Basic circuit of the triode ionization
gauge.

The function of the positive grid is to attract a stream of electrons into
the space between the positive grid and negative plate. In their initial
flight from the filament most of the electrons will miss the grid, and their
momentum will carry them toward the plate, where the negative potential
will repel them and return them to the grid. Some of the electrons will
make several oscillations about the grid before they fall into it. While
in flight the electrons may ionize some of the gas molecules present, by
impact. When this occurs the positive ions created in the grid-plate
space will· be attracted to the negative plate. The positive-ion current
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in the plate circuit is therefore a measure of the number of ionizing
collisions, which, in turn, is a measure of the pressure. Thus for any
emission current Ie the positive-ion current in the plate circuit, 1+, is a
linear function of the pressure.

The range of the triode ionization gauge is about 10-3 to 10-9 mm of
mercury. The upper limit of pressure occurs when a glo\v discharge
exists. The lower limit of pressure is fixed by the smallest positive-ion
current that can be measured, which in turn depends upon the leakage
resistance of the gauge between electrodes. The positive-ion plate cur
rent of a type 45 triode used \vith an emission current of 5 rna, a grid
voltage of +120 volts, and a plate voltage of -15 volts is of the order of
3 microamperes at a pressure of 10-4 mm of mercury. The positive-ion
current is linear with pressure \vithin the range indicated, i~e., the posi
tive-ion current will be 0.3 microampere at 10-5 mm of mercury and 0.03
microampere at 10-6 mm of mercury for the operating conditions given.
Positive-ion current is linear ,vith electron-emission current up to about
20 rna for the type 45. The positive-ion current \vill also increase with
positive grid voltage, but not in a linear fashion. The increase of posi
tive-ion current to the plate ,vith positive grid voltage is most rapid at first
and then relatively less rapid. The grid may be operated as high as +200
volts relative to filament. The limit to ,vhich the emission current and
positive grid voltage can be raised is the dissipation capacity of the grid,
which is of the order of 1 \vatt. For reliable readings both the grid and
plate should be degassed by heating to a dull red heat either by r-f induc
tion coil or by direct electron bombardment. To keep the emission do,vn
to the level of 5 to 10 rna it is necessary to keep the filament voltage quite
lo,v, for the type 45 used as a gauge about 1 volt instead of the rated 2.5.
Oxide-coated filaments are fairly satisfactory for triode ionization gauges.
They have the advantage th.at they ,vili not burn out if the vacuum sys
tem accidentally springs a leak. On the other hand, the emission is easily
poisoned by pressures lo,ver than 10-3 mm. When this occurs, it is
frequently possible to restore emission by heating the filament to emission
temperatures in the presence of a glo\v discharge at pressures of the order
of 3 X 10-2 mm of mercury. The restoration of emission results from
positive-ion bombardment of the filament. Some gauges use tungsten or
tantalum emitters. These are very rugged but may give rise to false
readings at low pressures, for the filament itself ,vill collect the molecules
that strike it and so tend to reduce the pressure in the gauge. The
characteristics of such a triode ionization gauge are given in Fig. 21.20.

Since the positive-ion current is so small, it is necessary to have either
a sensitive galvanometer or a vacuum-tube amplifier. When a gal
vanometer is used, it is well to protect it against gas bursts or leaks by
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placing an inductance of 7~ henry or so in series with it and shunting the
galvanometer with a neon bulb and a condenser of about >2 microfarad.
Any pulse of positive-ion current ,viII tend to be by-passed around the
meter by the neon tube and condenser. Since high-sensitivity galvanom
eters are expensive, it is common practice to use some sort of amplifier
that ,vill give an indication on a low-sensitivity instrument. One simple
arrangement is sho,vn in Fig. 21.21. This circuit makes use of a cathode
follower to measure the voltage across large resistors placed in series
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with the plate of the ion gauge. The resistors are large, ranging from
10 megohms on do\vn in steps of 10. One-tenth microampere through the
IO-megohm resistor produces a voltage drop of 1 volt, \vhich the cathode
follower triode reproduces almost exactly in its cathode circuit in the
form of 1 rna through 1,000 ohms. A zero adjustment of the output
meter is provided in the form of a potentiometer. With the plate load
resistance of the triode gauge set to zero the potentiometer is adjusted to
give zero current in the cathode circuit of the cathode follower tube.
Resistance is now switched into the plate circuit of the triode gauge;
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and as positive-ion current flows, a positive voltage will appear on the
grid of the cathode follower tube and current will flow in its cathode lead.
The cathode voltage "follows" the grid voltage almost linearly and so
gives suitable indication. Almost any high-rou high-current triode can

200 v +
FIG. 21.21.-Cathode-follower metering circuit for use
with triode ionization gauge.

be used in the cathode follower circuit. The tube characteristics should
be such that about 5 rna of plate current will flow when the grid is at
cathode potential.

FIG. 21.22.-Circeit for regulating the emission of a triode
ionization gauge.

Variations and refinements of the basic circuit shown in Fig. 21.21
are numerous. If exten~lve vacuum work is done, it is sometimes con
venient to have a circuit that will maintain the emission current at a
fixed value. Such a circuit is shown in Fig. 21.22. This circuit inserts a
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variable resistance in series with the fil&ment in the form of the trans
formed plate resistance of a pair of triodes, one of which conducts for
each half of the alternating-voltage cycle. The magnitude of the plate
resistance is controlled by a grid voltage derived from a resistor through
which the emission current flows. If the emission current tends to
increase, the triodes are biased negatively, with the result that their plate
resistance and hence the resistance in series with the filament circuit is
increased, thus decreasing the filament current and offsetting the increase
in emission.! It is also possible to construct a circuit using a "magic
eye" electron-ray tube as an indicator and thus save the cost of sensitive
meters. 2,3

21.4. Pumping Speed. Before talking about means of producing low
pressures it is well to define the terms in which the characteristics of
such devices will be described. In talking about vacuum pumps we are
concerned with the laws related to the movement of gases through tubes
~nd orifices.

Speed of an Aperture. Consider the case of a large volume of gas in a
chamber closed except for a small aperture opening into a perfect vacuum ..
Gas will move out of the volume at a rate given by

dV rT29
di = 10.08 \)293 M A liters per sec (21.25)

where A is the area of the aperture in square centimeters, T is temperature
in degrees absolute, and M is molecular weight of the gas involved (29
for air). It is seen that at room temperature of 20°C the flow through an
aperture of area 1 cm2 is 10.08 liters per sec. At a temperature of 27°C it
is 10.2 liters per sec. The volume flow is independent of the pressure!
This occurs because, although the number of molecules passing through
the aperture is proportional to pressure, the volume of gas cocresponding
to a given number of molecules is inversely proportional to pressure.

Definition ofPump Speed. By analogy with an aperture the speed of a
pump is measured in volume flow, usually in units of liters per second.
Pumps are similar to apertures in that tlleir speeds are nearly constant
over a wide range of pressure and that their speeds are comparable
with those of pump output apertures. Pumps will, however, have a
limiting pressure, subsequently referred to as Po. Accordingly, the

1 RIDENOUR, L. N., and C. W. LAMSON, Thermionic Control of an Ionization Gage,
Rev. Sci. [mtr., vol. 8, pp. 162-164, May, 1937.

2 RIDENOUR, L. N., Magic Eye Ionization Gage, Rev. Sci. Instr., vol. 12, pp. 134
136J March, 1941.

'P~RKINS, W. E., and H. A. HIGGINBOTHAM, An Ionization Gage Circuit, Rev. Sci.
Instr., vol. 12, pp. 366-367, July, 1941.
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removable volume of gas of any nominal volume in terms of any preSSure
we wish to use as reference is proportional to the difference bet\veen the
existing and ultimate pressure,

v = k(P - Po)

Speed is defined as the volume flow

dV dP V dP
S = (jj = kd] = P - Po d1

(21.26)

(21.27)

Integration of this equation from a pressure Plat time zero to pressure P 2

at time t yields

t = !: In (P 2
- Po)

S PI - Po
(21.28)

(21.29)

The above is useful in estimating the time required to reduce pressure to a
given level. When the ultimate pressure is low compared with the other
l>ressures concerned, then Eq. (21.28) reduces to

V (P2)
t = S In PI

Speed of Tubing. At low pressures the flow of gases through tubing
is molecular rather than hydrodynamic in nature. The flow involves
frequent collisions with the walls and relatively few collisions between
molecules. On the assumption that the mean free path of the molecules
is large compared with the diameter of the tubing involved, that Lam
bert's cosine law holds for reflection from any impact with the ,valls, that
the velocity distribution is Maxwellian, and that the number of molecules
striking any area is proportional to the pressure, the flow through a piece
of tubing has been calculated to be

r 3 1 I T 29
G = T ( 8r) ~300 M liters per sec (21.30)

1 + 3l

where rand l are radius and length of the tubing in millimeters, respec
tively, T is temperature in degrees absolute, and M is the molecular
weight of the gas involved~l For air at 27°C the radical has the value of
unity. The symbol G is used because the quantity is analogous to elec
trical conductance. A nomographic chart of tube conductance as a
function of radius and length is given in Fig. 21. 23. The above equation
is accurate to within a few per cent, provided that the diameter of the tub-

1 KNUDSEN, M., Die Molekularstromung der Gase durch Offnungen und die
Effusion, Ann. Physik, vol. 28, pp. 999-1016, 1908.
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ing is less than the mean free path of the gas molecules. The quantity
in parentheses in Eq. (21.30) is a correction factor for shortness of tub
ing. When the tubing is long compared with the radius, this quantity
approaches unity very closely. Hence for long tubing containing air at
room temperature the conductance in liters per second is given approximately
by the radius in millimeters cubed divided by the length in millimeters. The
importance of using large-diameter tubing is evident from the dependence
of the conductance upon the cube of the diameter. Reduction of diam
eter by a factor of 3 reduces conductance by a factor of 27. The speed
of flow of gases in a vacuum system cannot be greater than that given by
the lowest tubing conductance in the system.

When a number of pieces of tubing are connected in series, the recipro
cal of the resultant conductance is equal to the sum of the reciprocals of
the individual conductances.

1 1 1 1 1-=-+-+-+ ... +
Geq G1 G2 G3 G"

(21.31)

sec per liter (21.32)
1 lR=-=-G r3

where land r are the length and radius
of the tubing in millimeters, respec
tively. Then the resultant resistance
is simply the sum of the individual

Pump

Equivalent S d6::f. Pte~..f

1

...--_
2

: Con~7'I.r~
~. -- ~

Tubing \J
Volume being
evtlcuRfed

where Geq is the equivalent conductance and G1, G2 • • • Gf! are the con
ductances of the different portions of
tubing. If the resistance of a long
piece of tubing is defined as the recip
rocal of the conductance, then, for air
at 27°C,

1. _.1 +.1
Sz - 8J G

FIG. 2124.-Diagram illustrating
equivalent pumping speed.

resistances,

(21.33)

Only the length and diameter of a tubing are of importance in calculating
the gas flow. Bends and corners have little effect. It must al,vays be
remembered that such computations as are indicated above are restricted
to the range where the diameter of the tubing is less than the mean free
path of the gas molecules.

Effect of Tubing upon Pumping Speed. The speed of a pump has the
same units of conductance, i.e, liters per second. Hence a pump may be
considered as a piece of tubing, of conductance equal to its speed, feeding
into an infinite reservoir of gas at the ultimate pressure of the pump.
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The reciprocal of the equivalent pumping speed of a pump with associ-·
ated tubing is found by adding the reciprocal speed of the pump and the
reciprocal conductance of the tubing. Thus for the arrangement of
Fig. 21.24, where the speed of the pump is 8 1 and the conductance of
the tubing is G, the equivalent speed at the volume being evacuated, 8 2,

is given by

(21.34)1 1 1 *
8 2 = G + 8 1

It is seen that the resultant speed is lower than both the tubing and the
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FIG. 21.25.-Nomographic chart of equivalent pump speed.

pump speed. The importance of using large-diameter high-speed tubing
is again evident. A nomographic chart of Eq. (21.34) giving the result
ant speed of a pump and tube in terms of the pump speed and tube con
ductance is shown in Fig. 21.25.

* Proof of Eq. (21.34) may be found by equating the mass of flow at different
points in the system as Q = G(P2 - PI) = SIP1 = SJ>2. When pressures are
eliminated from these relations, Eq. (21.34) for the equivalent speed results.
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21.5. Production of Low Vacuum. Numerous applications require the
production of vacuums of 10-4 mm of mercury or less. In addition:
high-vacuum pumps will not operate if required to exhaust directly into
air but must exhaust into a low vacuum to be efficient. As a result, the
subject of production of low vacuum falls into a class by itself.

Low vacuums are most easily obtained by meanb of a mechanical
pump. Numerous designs for such pumps have been suggested, but the

PIG. 21.26.-Diagram and picture of Cenco Hyvac
pump.

successful pumps that are used in large quantities all embody the same
principle. An example of a ,videly used mechanical pump is the Cenco
Hyvac. A diagram of the internal structure of this pump is given in Fig.
21.26. Essential features of this pump are an eccentric rotor A, a valve
K, which divides the space between the rotor and stator into two vol
umes, and an output valve L. As the rotor turns in the direction indi
cated in Fig. 21.26, there is presented to the space being evacuated a
volume H, which expands, allowing gas to enter, and is then sealed off
by the rotor surface. The trapped volume of gas is then compressed
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against the output valve L through which it is expelled. By ganging
such rotors and running up the speed, very good evacuation properties
may be had. In Fig. 21.27 are shown the speed-pressure curves of some
well-known mechanical pumps. Ultimate pressures are of the order of
10-3 to 10-6 mm of mercury, the average being 10-4 mm of mercury.
Speeds of mechanical pumps are usually from thre,e- to five-tenths of the
speed of the input aperture except in the immediate vicinity of the
ultimate pressure, where the speed is much lower. Limiting pressures
are determined largely by the excellence of the mechanical tolerance in
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FIG. 21.27.-Speed-pressure curves of mechanical vacuum pumps.

the rotor and valve construction. Pumps are usually immersed in oil to
improve the valve action.

21.6. Production of High Vacuum. For the production of pressures
lower than those which can be obtained with mechanical pumps, vapor
diffusion pumps are invariably used. 1 Roughly speaking, the diffusion

1 Some information on this subject is given in the general references cited earlier
(p. 747). For more recent information see HICKMAN, K. C. D., and C. R. SANFORD,

A Study of Condensation Pumps, Rev. Sci. Instr., vol. 1, pp. 140-163, March, 1930;
Ho, T. L., Multiple Nozzle Diffusion Pumps, Rev. Sci. Imtr., vol. 3, pp. 133-135,
March, 1932; Ho, T. L., Speed, Speed Factor and Power Input of Different Designs of
Diffusion Pumps, and Remarks on the Measurement of Speed, Physics, vol. 2" pp.
386-395, May, 1932. See also the excellent summary given in STRONG, J., and
others, "Procedures in Experimental Physics," pp~ 111-124, Prentice-Hall, New
York, 1941.
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pump works on the principle of creating a gas flow of a condensabl~

vapor that draws along with it all the molecules from the system being
evacuated that get into the flow. The vapor wind so formed is termi
nated by condensation, and the liquid so formed is returned to a Yapor
izing unit, where it is again used to form part of a vapor flow. The
operation of this principle is best seen by considering specific vapor
diffusion pumps.

The Mercury-diffusion Pump.-One commonly used type of vapor
diffusion pump makes use of mercury as the circulating vapor. A dia
grs,m of an early metal pump used by Langmuir is shown in Fig. 21.28.
Mercury is heated in the bot...tom of the unit at D, and the resultant vapor
rises up tJhe chimney F, where it is deflected downward by t~e umbrella-

Hi vacuum

LEGEND

Hg vapor --.... :
Air -
Wafer

;T To mech•
., pump

shaped cup E placed over the end of the chimney. The mercury vapor
moves down bet'ween the outside of the chimney and the outer wall of
the pump A, which is cooled by a water jacket J. The principle of
counterflow in cooling is purposely avoided, for the back vapor pressure
will be least if the condenser temperature is lowest at the high-vacuum end
of the pump. As the mercury vapor moves down, it is cooled to the point
of condensation and then runs back down into the reservoir at the bottom,
where it is again vaporized and recirculated. The probability that any
gas molecule that gets into the mercury-vapor stream will experience a
collision that will force it to move in the direction of the exhaust is
extremely strong. As long as the input pressure exceeds the exhaust
pressure by a factor of 100, the forces driving molecules toward the
exhaust will predominate over those acting in the opposite direction.
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Diffusion pumps of the type described require a low output pressure
to give an effective condensation action. As a result, vapor-diffusion
pumps are always operated into a mechanical pump. Diffusion pumps
will operate into exhaust pressures, or "fore pressures," as high as 10-1 mm
of mercury but in general should not be operated into fore pressures of
more than 10-2 mm of mercury for any length of time. This is about the
pressure at which a spark coil will fail to produce a discharge through a
gas, and therefore in practice the diffusion pump is not turned on until
the mechanical pump has reduced the pressure to the point \vhere a glow
discharge can no longer be observed upon application of a sparlr coil.

Vocuum--+ "",

---+~Pl/mp

. L/qut'd a/r
ortSolidCOz
in alcohol

FIG. 21.29.-Freezing trap for collecting condensable
vapors.

When mercury is used as the pump vapor, it is necessary to place 3

freezing trap between the pump and the system being evacuated to catch
such mercury molecules as diffuse out from the pump. If this is not done,
the minimum pressure that can be obtained with the system is the vapor
pressure of mercury, which is about 10-3 mm of mercury at room tem
perature. A commonly used type of cold trap is shown in Fig. 21.29.
Cold traps may be cooled with liquid air or with a slush formed by adding
alcohol to carbon dioxide snow. The temperature of the trap must be
such that the vapor pressure of the mercury is reduced to a value below
~ level corresponding to the lowest pressure desired. A curve of the
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FIG. 21.30.-Vapor pressure of mer
cury as a function of temperature.

vapor pressure of mercury as a function of temperature is given in Fig.
21.30.

With vapor pumps, in general, it is necessary to use two pumps in
series to get a very good vacuum.
This is because there is a maximum
ratio of input and output pressures
of about 100 that oan be achieved
by a single stage.

Oil Pumps. Pumps using oil as
a diffusion-pump liquid have
become more popular than mer
cury-vapor pumps as oils were
developed that had 'successively
lower and lower vapor pressures. 1-4

The various oils now in use and
their corresponding vapor pressures
are shown in Fig. 21.31. Other
properties of the principal oils are
given in Table XIV. Oils have the
advantage over mercury vapor that
a freezing trap is not needed. Fur
thermore, the speed factors of
pumps using oils will tend to be
about ten times as great as of those
using mercury vapor. Relative to
the equivalent aperture oil-vapor
pumps are about 50 per cent effec
tive. In oil pumps a baffle or char
coal trap must be used to prevent
oil vapor from diffusing into the
chamber being evacuated, with

some resulting reduction in speed. Care must also be taken not to
1 BURCH, C. R., Oils, Greases and High Vacua, Nature, vol. 122, p. 729, Nov. 10,

1928.
2 VON BRANDENSTEIN, M., and H. KLUMP, Ueber die Verwendun organischer

Substanzen in der Hochvakuumtechnik, inbesondere bei dem Betrieb von Hoch
vakuum Pumpen, Physik. Zeit., vol. 33, pp. 88-93, Jan. 15, 1932.

3 KLUMB, H., and H. D. GLIMM, Ueber die Sauggeschwindigkeit von Diffusion
pumpen die mit organischen Substanzen betrieben werden, Physik. Zeit., vol. 34, pp.

64-65, Jan. 15, 1933.
-4 HICKMAN, K. C. D., Vacuum Pumps and Pump Oils, Jour. Franklin Inst., voL

221, Part I, Some Fractionating Pumps, pp. 215-235, February, 1936; Part II, A
Comparison of Oils, pp. 383--402, March, 1936.
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expose the oil while hot to air at pressures greater than 10-2 mm of mer
cury. Likewise, the oil must not be overheated even at extremely low
pressure, for then decomposition will be accelerated.. All the oils listed
in Table XIV are formed by fractional distillation, ending with the com
ponent having the lowest product of vapor pressure and rate of chemical
breakdown.

10-3

10-4 ~ Apiezon A

~ Butyl phthalate

~Butyl sebClicate
....... Amoil

.-Amyl sebacate (Amoil-SJ

..... Apiewn B. Litton A

+- 2. Ethyl hexyl pMhalate (Octoi I)

10-7 +- Litton C

....... 2 Ethyl hexyl sebOlcate (Oetoil.. 5)

10-8

FIG. 21.31.-0ils and their vapor pres
sures at operating temperature.

In addition to oils, extensive use is now being made of silicones.
Most prominent among these are the Dow-Corning silicones DC702 and
DC703. These are as good as the best oils:. with an ultimate pressure of
5 X 10-1 mm of mercury for the DC703 and 1 X 10-6 mm of mercury
for the DC702. The great advantage of the silicones over oils is their
resistance to oxidation; the silicones do not burn. However, there is a loss
of ultimate vacuum due to absorbed gases, but the recovery time to
ultimate vacuum is about the same as for the best oils. The disadvan
tage of the silicones lies in their present high cost. They also exhibit the
same undesirable back diffusion as the high-grade oils. Poisoning of
oxide cathodes is about the same as for oils without traps or baffles.
Both silicones and the highly refined natural oils from which sulphur



TABLE XIV
CHARACTERISTICS OF PUMP OILS*

Re-
Boil-

Viscosity, sec§

Sp.gr.
frac-

Pour
Vit.

ingpt., ConductivityMoL tive vacuumt Temp., II
Name Formula wt. at indext pt., at °C, at G, mhos, °C

25°C N, at
of

25°C
10-2 at 27°C \ 80°F 100°F 130°F

40°C mm

---- ----
Butyl phthalate. C 6H 4 (COOC 4H g)2 278.1 1.0465 1.4851 -96 4 X 10-5 80 1.7 X 10-10 79 58 45 94
Butyl sebacate .. CgH16(COOC4Hg)2 314.3 0.933 1.4362 4 2 X 10-6 90 1.6 X 10-11 65 46 43 103
Amoil .......... C6H4(COOC5Hll)2 306.2 1.0190 1.4802 -61 7 X 10-6 100 1.7 X 10-11 100 81 52 96
Amoil-S ........ C8H16(COOCcHl1)2 343.3 0.9251 1.4395 24 2 X 10-6 111 2.9 X 10-13 71 65 50 118
Octoil. ......... C6H 4 (COOC8H 17)2 390.3 0.9796 1.4795 -61 2 X 10-7 122 2.6 X 10-10 178 171 75 125
Octoil-S ........ C8H16(COOC8H17)2 426.3 0.9103 1.4440 -69 5 X 10-8 143 6.7 X 10-11 83 81 57 140

* From data supplied by Distillation Products, Inc.
t For white light.
i With fractionating pump.
§ Saybolt viscosimeter (approximate).
II Maximum safe temperature for exposure to atmospheric pressure.
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compounds have been removed have a chemical stability higher than the
synthetic oils, and fractionation is less important. l

A typical diffusion pump using oil as the liquid is sho,vn in Fig. 21.32.
The arrangement of the parts is evident. From the boiler, vapor rises

High vacuum
f

Rod
$upporfs

Charcoal in
ppenpan

I
I
I
+

~Tomech.
pump

f
I
I

•t
FIG. 21.33.-Charcoal trap with
electric heater.

A/r ---~

Ol/vapor~

Wafer ~

BO/~er
wifh

electric
heater

FIG. 21.32.-Typical glass, water-cooled, oil-diffusion pump.

into the nozzle, where it is blown down a water-cooled section of tubing,
at the bottom of which the condensed oil is collected and returned to the
boiler. In general, the action of oil pumps is more positive when water
cooled than when not, though air-cooled
pumps are quite common. Two such
pumps in series using a good oil can
achieve a pumping speed of 30 liters per
sec at 10-5 mm of mercury and have
an ultimate pressure of better than 10-7 Insulated ......

mm of mercury if a charcoal trap is Z:n1:'drJed ~
used. The fore pressure required is in charcoal

generally of the order of 10-3 mm of
mercury for positive action. The char-
coal trap serves to collect molecules of
oil vapor that tend to stray into the
chamber being evacuated. 2 One com
mon form of charcoal trap is shown in
Fig. 21.33. This trap consists simply of
a pan of charcoal powder located so that no oil-vapor molecules may move
directly into the chamber being evacuated without coming in contact

1 The above information on silicones was privately communicated to the author by
C. V. Litton.

2 BECKER, J. A., and E. N. JAYCOX, A New High Vacuum System, Rev. Sci. [nsir.,
vol. 2, pp. 773-784, December, 1931.
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with the- charcoal. Oil molecules will stick to the charcoal. Provision
must be made for degassing the charcoal. This usually takes the form
of an electric heater embedded in the charcoal. When the charcoal is
heated to a temperature of several hundred degrees, the absorbed oil
molecules are decomposed into gases that may be removed by the pump.

COexlNC
AIR Q

OlrrusrON

HIGH

PRESSURE
RECION

BOILING OIL

HEATING
ElEMENT

FROM HrGH VACUUM
MANIFOLD

JJ

OIL VAPOR It
GAS MOLECULES :::.:

}

LOW

PRESSURE

REGION

~ COOUNG
<:3 AIR

Oil. RING
VISIBLE HERE
WHEN PRESSURE.
IS HIGH IN
BOTTOM or PUMP

TO MECHANICAL
-F'OREPUMP-

FIG. 21.34.-Air-cooled oil-vapor pump. (Eimac BVl.)

A charcoal trap can absorb several thousand times its own volume of
oil vapor. Ultimate pressures of 10-8 mm of mercury have been recorded
with charcoal traps and a good pump oil. Other means of keeping oil
vapors out of the vacuum system are baffles of some metal, such as alu
minum, that will not react with the oil and yet that has a good heat
conductivity so that oil vapor will condense on it.
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A popular form of air-cooled oil-vapor pump is shown- schematically
in Fig. 21.34. This pump achieves a three-stage action by suitable
bleeding of vapor from a chimney over a single boiler. Throat areas and
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FIG. 21.35.-0perating characteristics of a triple-jet air
cooled oil-vapor pump.

vapor speeds are adjusted to give maximum effectiveness at the different'
pressures encountered in the system. Operating characteristics typical
of such pumps are shown in Fig. 21.35. Pumping speeds in the range of
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20 to 30 liters per sec at 10~4mm of mercury and ultimate pressures of 10-5

to 10-6 mm of mercury may be obtained with this type of pump. Pump
ing speed drops quite sharply if the fore pressure becomes too low. The
operating range of such a pump may be shifted toward low pressure by
decreasing heater power. In some pumps of this type the output tubing
leading to the mechanical pump contains a series of trapping ridges or
alembics that prevent substances of high volatility from returning to
the pumping-fluid reservoir.

Fractionating Pumps. In order to obtain extremely low pressures it is
necessary that the pump oils be uncontaminated with materials of lo\ver
vapor pressure. One means of ensuring this is to use a type of pump
incorporating a fractional 'distillation still that continuously refines

Hivt1fcuum--

~Tomech.
pump

FIG. 21.36.-Diagram of two-stage fractionating
pump.

the oils used. 1 A diagram of a two-stage fractionating pump is given in
Fig. 21.36. In operation the alembics in the output chimney collect
the extreme volatiles, which if left in the system cause turbulence in
the vapor flow. The boiler A at the low-pressure end of the pump
operates at the highest temperature and utilizes mainly the more volatile
low-vapor-pressure components of the oil. Less volatile components flo\v
through the connecting tube to the middle boiler B, where they are more
effective at the lower pressure because of their lower vapor pressure.
The third boiler C serves to collect relatively nonvolatile residue and
redistill the volatile components back into the other two boilers. Operat
ing characteristics of a three-stage fractionating pump are shown in
Fig. 21.37. Ultimate pressures of 10-9 mm of mercury may be obtained
with pumps of this design, though pumping speeds are only of the order

1 HICKMAN, K. C. D., Trends in the Design of Fractionating Pumps, Jour. Appl.
Phys., vol. 11, pp. 303-313, May, 1940.
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of 30 liters per sec. The operation of this type of pump is quite critical
with respect to temperature.
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FIG. 21.37.-0perating characteristics of a three-stage

'fractionating pump.

21.7. Glass and Its Properties. AI~ost every vacuum system 01

vacuum tube contains some glass in it. Early systems and tubes were
entirely of glass, though the trend at present is to use more metal and less
glass. Nevertheless, glass is still an indispensable item in vacuum-tube
research and construction.

The usefulness of glass is derived from its excellent working character
istics. It can be shaped or molded into almost any form.. The varieties
of glass which are available are so numerous that a glass can be found
suitable for almost any purpose. The greatest disadvantage of glass is
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the ease with \vhich it breaks, but even this can be minimized \vith proper
design.

Composition of Glass. Glass is a fused mixture of silica, Si02, and
various metallic oxides. The silica is the predominant component,
being from 60 to 80 per cent of the total \veight. The characteristics of
the glasses are determined by the percentages of the metallic oxides.
Pyrex glass is made up of 81 per cent Si02, 12 per cent B20 3, 4 percent
Na20, and a fe\v per cent of other oxides. Lead glass is made up of 61.5
per cent Si02, 23 per cent PbO, and sodium and potassium oxide. These
two glasses lie near the extremes of a scale of glasses, pyrex being at the
so-called "hard" end and lead glass being at the so-called "soft" end.
Other glasses lie bet\veen these extremes both in composition and in
physical characteristics. Of considerable interest in transmitting-tube
manufacture is nonex glass, which is a hard glass but not as hard as pyrex.
Nonex glass contains 73 per cent Si02, 16.5 per cent B 20 3, and 6 per cent
PbO. N onex is not inactive enough chemically to· make it useful for
chemical glassware though it is extensively used in transmitting-tube
manufacture.

Physical Properties of Glass. Loosely speaking, any material that is
hard, brittle, and transparent is referred to as a glass. More properly,
glass is an amorphous material that is hard and transparent at room
temperatures. As it is heated it softens gradually, becoming softer and
softer. Because of this gradual change, it has no definite melting tem
perature. The transition from a solid to a viscous state is usually defined
in terms of the follo\ving arbitrary reference temperatures:

Strain point. An arbItrary point on the temperature-viscosity curve,
representing a viscosity of 1014. 6 poises! where rapid cooling will
not produce permanent strain.

A nneal point. Arbitrary point; viscosity 1013. 4 poises, corresponding
to relief of strain in p,~ in. plate in 15 min.

Softening point. Arbitrary point; viscosity 107. 66 poises, correspond
ing to unit elongation of glass rod in given time interval.

Working temperature. Arbitrary point; viscosity 104 poises. Close
to maximum temperatures for glass\vorking-in general, higher
than temperatures used for metal seals by 150 to 200°C.

The transition between the various physical states of glass is shown
in Fig. 21.38. The temperature scale will be different for each kind of

1 The poise unit of viscosity is the force in dynes required to impart a relative
velocity of 1 cm per sec to two parallel surfaces each having an area of 1 cm 2 and spaced
~'em apart with the viscous material between them. The viscosity of pitch at 15°C is
J01opois¢a. The viscosity of G~stQr oil at room temperature is 2 poises.



HtGH- VACUUM PRACTICE 793

glass, but the general characteristics of the curve will be the same. The
softening temperatures of the various glasses depend upon the composi
tion, being higher for the higher percentages of silica. Glass must be
\vorked above the softening point. If the glass is maintained at a tem
perature near the softening point too long, it ,vill be devitrified and
possibly oxidized, with the result that its physical characteristics will be
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FIG. 21.38.-Viscosity of glass as a function of tempera
ture.

impaired. The critical temperatures for the commonest types of glasses
are listed in Table XV.

The expansion characteristics of glasses are different for the different
grades of glass and are nonuniform \vith temperature, unlike those of the
pure metals. 1 Hence different types of glass cannot be joined together
without cracking upon cooling unless their expansion coefficients are

1 PETERS, C. G., and C. H. CRAGOE, Measurement of the Thermal Dilatation of
Glass at High Temperatures, U.S. Bur. Standards Sci. Paper 393.
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nearly alike. In general, all glasses have a lower rate of expansion at the
low temperatures than at the high. Soft glasses have higher coefficients
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FIG. 21.39.-Expansion-temperature characteristics of the common
metals and glasses used in vacuum-tube construction.

of expansion than hard glasses. The expansion-temperature character
istics of the principal glasses and metals used in vacuum tubes are shown
in Fig. 21.39.
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Working of Glass. The working of glass requires a high degree of
physical coordination and skill. Simple operations can be learned in a
short time, but a professional touch is slowly acquired P

21.8. Sealing of Glass to Other Materials. Very few vacuum tubes
have been built with no glass in them. Even in the so-called "metal
tubes" the leads are brought into the tube through a glass bead sealed
into an eyelet. In experimental and developmental ,york, glass is used
even more extensively and glass-to-metal sealing assumes even greater
importance.

Sealing of Small Leads into Glass. The problem of bringing leads into
vacuum tubes is ever present. The principal problem involved is that
of finding a metal of which the expansion coefficient matches that of the
glass quite closely. Since the expansion coefficient of metals is nearly
constant with temperature while that of glass generally increases ,vith
temperature, the perfect combination is seldom found. Ho,vever, if the
diameter of the lead is small, a considerable mismatch in expansion can be
tolerated. Thus with tungsten, of which the expansion coefficient is
4 ppm (parts per million) per °C, leads of diameter 0.020 in. or less can be
sealed into pyrex glass, of which the expansion coefficient is 3.3 ppm per
°C, whereas leads of diameter as great as 0.125 in. can be sealed into
nonex glass, of which the expansion coefficient is 3.6 ppm per °C, ,vithout
cracking. Because the coefficient of expansion of platinum, 9 ppm per
°C, is very nearly the same as that of G-12 soft lime glass, 8.7 ppm per °C,
lead size of this glass-metal combination is limited only by the budget.
Platinum leads can also he sealed into G-12 soft cobalt lead glass, of
,vhich jth-e. coefficient of expansion is 8.7 ppm per °e. In all cases the
glass a-hd metal must be heated to a red heat together, bringing the glass
to a soft state so that it will ,vet the metal. This generally requires that
the metal be coated ,vith an adherent coating of oxide and that the glass
and metal be heated together so that the oxide partly dissolves in the
glass, though perfect seals can be made with no oxide on copper, tungsten,
or Kovar.

Metal-glass combinations other than those mentioned above may also

1 For further information the reader is referred to FRARY, F. C., C. s. TAYLOR, and.

J. D. EDWARDS, "Laboratory Glass Blowing," 2d ed., McGraw-Hill, New York, 1928,
and also the excellent illustrated treatment of STRONG, J., and others, U Procedures in
Experimelltal Physics," Chap. I, Prentice-Hall, New York, 1941; PERCIVAL, G. A.,
The Technique of Glass Manipulation, Electronic Eng., April, 1944, pp. 453-457;
BREODUER, R. L., and C. H. SIMMS, Planning a Glassworking Department, Jour.
Sci. Instr., vol. 21, pp. 169-173, October, 1944; HOLDMAN, J. D., uTechniquesof Glass
Manipulation," Prentice-Hall, New York, 1946.
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be used for sealing small leads into glass. Dumet, which is a copper-clad
iron alloy, is extensively used in receiving-tube stems of soft glass_ 1

The expansion coefficient of dumet is close enough to that of the soft
glasses so that it can be used in diameters under 0.040 in. Molybdenum
can be sealed into pyrex and nonex in small diameters. Corning G-71,
softest of the hard glasses, matches the expansion of molybdenum very'
closely and can be used to fairly large sizes. Some of the stainless steels
have expansion coefficients lo,v enough to be used with this same glass.
Chrome-iron alloys containing 26 to 28 per cent chromium match G-6
glass quite ,veIl at lo,v temperatures.

Copper-to-glas8 Seals. Copper may be joined to almost any type of
glass if the edge of the metal that is being joined to the glass is made
extremely thin. This is possible in spite of the fact that the coefficient of
expansion of copper is much greater than that of any of the glasses. A
thin piece of copper ,viII give to high stresses because of its high ductility
and its low yield point. The technique of joining copper to glass was
perfected by Housekeeper, and such seals are often referred to as "House
keeper seals."2 Copper-to-glass seals are invariably used in transmitting
tubes for any seals requiring conductors larger than ~-g in. in diameter.

Copper is prepared for sealing by cutting or rolling the edge of copper
tubing so that the edge is 1.5 ± 0.5 thousandths of an inch thick and
tapered back at about a 2.5-deg angle to about 40 thousandths thickness.
The joining of glass to the copper requires a high degree of skill and is
probably the most difficult of all the glass,vorking operations to perform.
Small seals, up to >~ in. in diameter, are commonly made ,vith the glass
applied only to the inside of the copper edge. This is done because the
expansion of copper is greater than that of glass and the differential
expansion is therefore in the right direction to maintain the bond. For
seals larger than ~'2 in .. in diameter it is common to coat both the inside
and the outside of the copper edge ,vith glass. This is done primarily to
prevent overoxidation of the thin copper at the seal. Copper must be
heated with an oxidizing flame. The black oxide is formed, and seal
temperature must be maintained constant throughout the operation.
The glass is bound to the black oxide. On further heating the excess
oxygen of the black oxide combines "rith more copper, changing it to the
red oxide. Simultaneously some of the black oxide dissolves in the glass.

1 Dumet cores are 42 per cent nickel, and the copper coating is 20 to 25 per cent of
the total volume.

2 HOUSEKEEPER, W. G., Glass to Metal Seals, Jour. Amer. Inst. Elec. Eng., vol. 42,
pp. 954-960, September, 1923. Earliest seals were made by Kruh and Kraus.
Housekeeper introduced the featheredge.
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As a result, the final interface between the red oxide and the copper lies
at a new depth, created after the glass was fused to the outside. Mechan
ically a rim of glass is first attached to the outside of the copper edge from
a piece of glass tubing and then detached from the glass tubing, leaving a
little glass projecting over the edge of the copper, which is then folded
over to cover the inner side. The glass tubing is then joined to this
"bead" of glass on the copper edge. The color of a properly fashioned
copper-glass seal is a bright red and will stand heating up to the softening
temperature of the glass. Seals are commonly made up to 6 in. in diam
eter, and some as large as 10 in. in diameter have been made. The same
procedure is used in joining copper to all types of glass. Joining of copper
to pyrex is the most difficult, for there is a temperature interval of only a
couple of hundred degrees between the temperature at which'the glass
softens and that at which the copper melts. The only disadvantages of
copper-glass seals are that they are relatively difficult to make and that
they have a relatively low mechanical strength because of the thinness of
the copper next to the glass.

In addition to the Housekeeper seal it is possible to make disk seals to
copper. This was anticipated by Housekeeper but only recently put
into extensive commercial use. Disk seals are used in tubes of the light
house type and in reflex-klystron-oscillator tubes designed to \vork with
external cavities. 1,2 The general method of construction consists in
stacking a circular copper disk with a circular hole in its center bet\veen
two equal-diameter pieces of glass and then heating the metal by torch or
preferably by r-f eddy currents until the copper disk becomes hot enough
to melt the glass, which forms a bond ,vith the metal. The glass does not
cover the edges of the copper. If the copper disk is thin enough, 15
thousandths of an inch or less, then no intermediate materials are needed
between the glass and copper. As ,vith the Housekeeper featheredge
seal, the difference between the expansions of the glass and copper is
taken up by the copper. Copper disks are frequently given a circular
crimp to weaken them to radial forces and allo\v radial contraction without
having to stretch the whole metal area. The surfaces of thick disks are
often coated with a layer of copper borate, which ensures maximum
bonding strength.

Kovar and Fernico. Kovar and Fernico are trade names used by the
Westinghouse and General Electric Company, respectively, for some
nickel-cobalt alloys of iron having nonuniform expansion characteristics

1 Disc Seal Tubes, Gen. Elec. Rev., voL 48, pp. 50-51, January, 1945.
2 McARTHUR, E. D., Disc Seal Tubes... Electronics, vol. 18, pp. 98-102, Februar~r

1945.
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that match very closely the expansion of some commercial glasses. 1- 3

Pure metals have expansion coefficients that are virtually independent of
temperature. Ferromagnetic alloys, however, experience an increase in
their expansion characteristics at the temperature at which the alloy
becomes hot enough to lose its magnetic properties. The action is per
fectly reversible, i.e., the magnetism is restored and the coefficient of
expansion reduced as the alloy is cooled. The composition of Kovar and
Fernico is as follows:

Alloy
Iron, Nickel, Cobalt, Matching

per cent per cent per cent glass

Kovar A ........................... 53.8 29 17 705AO, 705FN
Fernico ............. " ............. 54 28 18 705AO, 705FN
Fernichrome ........................ 30 25 8 GS

The difference in contraction of the principal sealing glasses and metals
when cooled at a slow rate is shown in Fig. 21.40. It is seen that the iron
alloys match the glass characteristics quite closely over the entire tem
perature range. As a result, the sealing of these metals to their corre
sponding glasses is a relatively simple matter. No featheredges are
needed; in fact, edges as thick as J,-i in. can be joined directly. Seals as
large as 4 in. in diameter can be made. Leads of Fernico \vire in match
ing glass set in a Fernico eyelet that is welded to a metal base are used
in the mass production of metal receiving tubes. As may also be seen
from Fig. 21.40, the reason \vhy nonex seals fairly successfully to tungsten
is that the differential expansion is nearly zero in the annealing range.
D ranium nonex gives a better match and is sometimes used as an inter
mediary between tungsten and pyrex glass.

Glass-lo-porcelain Seals. The expansion characteristics of nonex glass
and some porcelains are close enough so that nonex can be sealed directly
to porcelain. Where a porcelain-pyrex joint is desired, nonex should be
used as·' an intermediary materiaL

Glass-lo-mica Seals. Mica can be sealed to a special high-expansion
lead borosilicate glass having an expansion of coefficient of about 9.8

1 BURGER, E. E., Expansion Characteristics of Some Common Glasses and Metals,
Gen. Elee. Rev., vol. 37, pp. 93-99, February, 1934.

2 HULL, A. W., and E. E. BURGER, Glass to Metal Seals, Part I, Physics, vol. 5,
pp. 384-405, December, 1934.

3 HULL, A. W., E. E. BURGER, and L. NAVAIS, Glass to Metal Seals) Part II,
Jour. Appl. Phys., vol. 12, pp. 698-707, September, 1941.
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ppm per °C. 1 Mica-to-metal joints are more difficult to form, for the
metal invariably has a higher expansion coefficient than the mica, ,vhich
results in the mica becoming bo,ved on cooling. With proper inter
mediary oxides and glass, mica can be sealed to copper \vith very little
resultant bowing. Window thicknesses may range from five to t\venty
thousandths of an inch in thickness and be as large as two inches in
diameter.

Metal-to-metal Sealing. Metals can be joined by suitable solders.
For demountable systems kept on a pump and not involving high tem
peratures, brass can be used, joined by ordinary soft solder, the eutectic
proportions (lo\vest melting temperature) of tin and lead giving the best
results. Brass and soft solder cannot be used in tubes that are to be
sealed off, for brass is some\vhat porous, evolves great quantities of gas,
and tends to vaporize its zinc at high temperatures. For tubes that are
to be sealed off, oxygen-free copper, most iron alloys, aluminum, and
beryllium can be used as vacuum-tight containers. Joining is most
satisfactorily effected by means of high-melting-temperature silver
copper alloys melted in a hydrogen (reducing) atmosphere by means of a
tungsten filament or induction heater. This involves heating the metals
to a red heat, at which temperature the silver-copper alloys flo,v freely
and wet clean metal surf9Jces. For high-temperature work, gold-copper
alloys are also used. Gold has a lower vapor pressure than silver.

21.9. Metals Useful in Tube Construction. The properties required
of metals for use in vacuum-tube construction are rather numerous. In
general, no one metal meets all the requirements, but each metal in turn
has its distinctive advantages. 2,3

Mechanically, a metal to be useful in vacuum-tube construction
should have a strength and ductility that permit easy forming of electrode
shapes. The strength must be retained at high temperature ,vithout
excessive crystallization to avoid deformation during degassing and sub
sequent use. The stiffness and damping factor of the metal should be
high, to.reduce vibration effects.

Thermally, the coefficient of expansion should be relatively low and,

t DONAL, J. S., JR., Sealing Mica to Glass or Metal to Form a Vacuum Tight Joint,
Rev. Sci. Instr., vol. 13, pp. 266-267, June, 1942.

2 See WISE, R. lVI., Nickel in the Radio Industry, Proc. I.R.E., vol. 25, pp. 714-752,
June, 1937, for a detailed treatment of this subject with special reference to nickel.
This paper contains an extensive bibliography on the general subject of metals in
tubes.

3 ESPE and KNOLL, "Werkstoffkunde der Hochvakuumtechnik," op. cit., pp.
1-110. Obtainable from Edwards Bros., Ann Arbor, Mich. A classic source con
taining the most extensive information available in book form.
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except for special applications, quite constant. Good thermal con
ductivity is generally sought. Depending upon the application, metals
should have either a high reflectivity or a high thermal emissivity.
The vapor pressure at degassing temperatures should he low, while the
melting temperature itself should be well above the highest degassing
or operating temperature.

Electrically, a moderate conductivity is desired. Too Iowa conduc
tivity introduces appreciable resistance and attendant losses, while too
high a conductivity makes spot welding difficult. Except for cathodes,
the primary and secondary emission should be low. Except for shielding
applications, the magnetic permeability should be low, and the metal
should be one that is readily demagnetized by a magnetic field.

Chemical freedom from oxidation at high temperatures- simplifies
construction processes immensely. Resistance to corrosion by various
cleaning agents should be low. Most important of all, the metal should
absorb only a small amount of gas and give this up easily when heated
in vacuum.

In addition, materials should be relatively inexpensive and generally
available. Alloys having a wide range of physical characteristics as
determined by their chemical content are especially useful.

Nickel. Nickel is the metal that is most extensively used in forming
receiving-tube electrodes. It is easily drawn and formed. It stretches
easily and does not exhibit any sharp break at its yield point. Its
hardness and strength at high temperatures are good. It has thirteen
times the mechanical damping factor of iron and molybdenum. It
spot-welds well to almost all metals. Its expansion coefficient is nearly
constant with temperature, and its thermal and electrical conductivity
are good. When polished, nickel has an emissivity which ranges from
5 to 20 per cent of that of a black body, i.e., it makes a good reflector.
When carbon-coated, the thermal emissivity ranges from 80 to 94 per
cent of that of a black body, i.e., it makes a good radiator. Anodes
formed of nickel are usually carbon-coated to increase their radiation.
Vapor pressure is low at all but very high temperatures, 10-6 mm of
mercury at a red heat. The work function of nickel is high, 5 volts,
but commercial nickel may have appreciable thermionic emission due
to barium contamination. Alloying about 4.5 per cent manganese
reduces both primary and secondary emission. Others of the desirable
properties are likewise present. As a result, nickel is an ideal metal
for tube construction in all applications except those where a high tem
perature is involved.

Copper. The outstanding physical characteristics of copper are its
high thermal and electrical conductivity. As has also been mentioned,
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it can be sealed to all glasses by the Housekeeper technique. It is
extensively used as an anode material in water- and air-cooled tubes.
It is moderately porous and requires a thick wall to withstand atmos
pheric pressure when hot. Likewise, it oxidizes readily and so cannot be
allowed to assume temperatures above a few hundred degrees centigrade.
It must be used in the oxygen-free form in all applications that involve
heating for red heat. Even within a vacuum, copper must be protected
from high temperatures, for it softens and vaporizes at relatively low
temperatures. Its high ductility and low yield point make it easy to
draw, form, and spin.

Aluminum. Aluminum is easy to work and is fairly noncorrosive to
other materials encountered in vacuum-tube construction. One valuable
property is that it does not sputter easily. However, it melts at too
Iowa temperature and absorbs too much gas to be very useful in sealed-off
tubes.

Molybdenum. Molybdenum has most of the excellent properties
of nickel except that it is somewhat harder to work and is more expen
sive. Its relatively high melting temperature and low vapor pressure
make it useful in low-power transmitting tubes. It is readily spot
\velded to iron or nickel but not to tungsten. It absorbs oxygen when
heated to a dull red heat. Molybdenum is used in applications that
involve temperatures in the range of 200 to 500°0.

Tantalum. Next to tungsten, tantalum has the highest melting
temperature of all the metals. Its vapor pressure is very low. It is
easily formed and drawn. The metal is expensive as a result of the
relatively complicated vacuum processing required to put it into form
suitable for vacuum-tube construction. It is extensively used in radia
tion-cooled transmitting tubes, where the electrodes are often run at a
red heat. It has a getter action that causes it to absorb gases, particu
larly hydrogen, the maximum absorption occurring at 1000°0 (cherry
red). The gases that have been absorbed are given off again at tem
peratures of 1300°C and higher. Minimum temperature for getter action
is approximately 8000 e. Tantalum is also used as an emitter in applica
tions requiring specially shaped cathodes. Its work function is lower
than that of tungsten, ,vith the result that its emission is greater at the
same temperature. Tungsten can, of course, achieve higher emission
because it can be heated to higher temperatures without melting.

Tungsten. Reference has already been made to some of the numerous
applications of tungsten in vacuum-tube construction; as an emitter
and filament wire and in some lead-sealing applications it has virtually
no substitute. Its high melting temperature makes it especially useful
in some vacuum-tube construction processes. It is used as a filament
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and control devices make use of its large change of resistance with
temperature.

Tungsten is not readily drawn or formed. It must be hammered or
swaged into shape. As a result, it is principally available in wire or rod
form. Tungsten has a pronounced crystalline structure, which is
accentuated by heating. Tungsten filaments therefore become brittle
if overheated for appreciable periods of time. Tungsten is relatively
inactive chemically, which reduces contamination problems. It is
sometimes alloyed with molybdenum (W/Mo = 4%1) to give a material
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that is more workable than tungsten itself and yet retains a high melting
temperature.

Relative Properties of the Metals. Metals other than those listed
separately above find many special applications in tube construction,
but those listed take care of the majority of the applications. The
relative properties of the principal metals used in vacuum-tube con
struction are shown on the scale lines of Fig. 21.41. 1 One of the most
important properties of a metal is its vapor pressure, which is an increas
ing function of temperature. The last scale line gives the temperature
of which a metal has a vapor pressure of 10-5 mm of mercury. This
determines the highest temperature to which a metal in a tube can be
raised during the exhaust proc~ss.

Spot Welding. In the construction of vacuum tubes the" majority
of small metal-to-metal joints are formed by spot welding. Basically
the process of spot welding consists in passing a large current through
the joint to be welded. The joint is heated by the large current density,
of the order of thousands of amperes per square inch, to the point where
the metals melt and dissolve into one another, forming a weld.

Spot-welding machines consist of a set of pointed jaws supported by a
mechanical arrangement that brings the jaws together by the operation
of a foot pedal. The materials to be ,velded are placed between the jaws,
and pressure is applied by the foot pedaL Care must be taken in sup
porting the work between the jaws to see that current will flow from the
jaws through the work and through the point to be welded. The jaws
are connected to a step-down transformer that gives a large current
through a closed circuit when the primary is closed by means of another
foot pedal. For most operations the jaws are made of copper and
because of their resulting high conductivity will have relatively little
heat developed at their point of contact with the work. Where welding
operations are at all critical, an electronic circuit should be used to control
the amount of current and the time duration of current flow. Many
welding operations require a current flow of hundreds of amperes for a
fraction of a second.

N at all metal combinations will spot-weld readily. Difficulties are
encountered with metals of high conductivity, high melting temperature,
and high oxidation tendencies. In Table XVI there is indicated the
relative ease with which different metals can be spot-welded to one
another. 2

Spot welding forms only a part of the art of joining metals. In the

1 For more complete data than are given here the reader is referred to ESPE and
KNOLL, loe. cit.

2 ESPE and KN0LL, OPe cit., pp. 135-13~
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newer tube designs, extensive use is made of r-f brazing both in hydrogen
atmosphere and in air. This brazing process makes use of single shots
of r-f power (about 100 kc) where the pulses are of the duration of
0.001 to 0.1 sec ior the whole weld. Arc welding is also employed in
both hydrogen and argon atmospheres. This is essentially atomic
,velding. The gas is dissociated by the arc and then recombines on the
work, where it liberates energy in very concentrated form.

TABLE XVI
SPOT-WELDING PROPERTIES OF THE METALS

Con- Ni/Cr In- Fe/Cr Al Cu Fe Ni Ta Mo W
Monel stan- (~2) var (%)

tan
-~--------------------

Tungsten ..... · . · . · . · . · . 4 4 C3 2 A4 C4 4
Mo .......... B · . · . B · . 4 4 C3 2 4 C4
Ta ........... · . · . · . · . · . 4 A4 C3 2 3
Ni ........... B 3 B B 2 3-4 3 1 1
Fe (pure) ..... B 2 B · . · . 3 2-3 1
Cu ........... · . · . · . · . · . 4 4 B3-4
AI ........... 4 2 4 · . · . 3
Fe/Cr (;'3) ... · . · . · . 3
Invar ........ B · . B B
Ni/Cr (%) ... B · . B
Constantan ... · . B
Monel ........ B

1. Very good.
2. Good.
3. Difficult.
4. Bad or impossible.
A. Good with suitable flux.
B. Good with controlled current impulses.
C. Good for small wires with short controlled current impulses.

21.10. Insulators. In addition to glass, ,vhich is a good insulator at
lo\v temperatures, mica and various ceramics are the principal insulators
used in vacuum-tube construction.

Mica is extensively and almost exclusively used as an insulator and
electrode spacer in receiving tubes. It is a potassium-aluminum silicate,
which in its natural form is known as "muscovite." Mica as used in
tubes is a dehydrated muscovite. It has a crystalline structure that
permits it to be split into thin sheets. Sheets as thin as 0.5 thousandths
of an inch can be had. For receiving-tube use, the sheets are usually
of the order of 20 thousandths of an inch thick. Mica has one of the
highest specific resistances of all known insulators. I ts dielectric con-
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stant of 5 to 8 makes it useful in electrical condensers. Its breakdown
voltage lies in the range of 60 to 200 kv per mm. It can be used at
temperatures up to 500°C.

Various ceramics are used as insulators in transmitting tubes that
involve higher temperatures and strength than mica can withstand and
furnish. Most useful are the various silicates, principally those of
magnesium. These materials are not machinable but can be formed
to almost any shape desired before they are fired. A compromise
on machinability has been achieved in Some special materials, such
as Alsimag 222, which can be machined with a stellite or other hard
tool. For experimental work, soapstone, which is very soft, is often
machined to shape and then hardened by heating in hydrogen to a red
heat.

Porcelain, as has been mentioned, finds some applications where it is
necessary to get a glass-ceramic seal. It is not machinable but must be
formed in the desired shape before firing.

Aluminum oxide is often used as an insulating coating on filament
wires. The coating is obtained by either dipping or spraying from a
suspension of amyl acetate and then drying at about 600°C. A hard
vitreous coating is formed by flashing at 1500°0. Such insulating coat
ings are most effective if made of a succession of thin layers each baked
individually. The resulting insulation has a sufficiently high mechanical
strength to make it useful for filament ,vires used in indirectly heated
cathodes. The electrical strength is likewise adequate for low-voltage
applications.

21.11. Degassing of Glass and Metals. Materials used in vacuum
tubes must be heated to drive off gases during the evacuation process.
Some of the gas is merely condensed on the surface, in ,vhich it is said
to be adsorbed. Other gases are in chemical combination with the
material, in which case they are said to be absorbed. With metals
there will generally be considerable quantities of gas trapped in crevices,
seams, and flaws. Such gases are said to be occluded.

In general, tubes should be degassed by heating at temperatures
appreciably greater than the temperatures the tube will encounter in
practice. The time required for outgassing may range from 15 min for
receiving tubes to hours or days for high-po,ver transmitting tubes.

The gases encountered ,vith glass are mostly adsorbed. A 40-watt
lamp bulb will evolve about 500 cm3 of gas (measured at room tempera
ture and pressure) when heated at 500°C. About 90 per cent of this
gas is in the form of water vapor. Glasses should be heated at about
90 per cent of their annealing temperature to drive off adsorbed gases.
At higher temperatures the glass may soften, and some gases will be given
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off by decomposition of the glass. The time required for outgassing of
glass is about 15 min at top temperature. Heating may be done with
either soft gas flames or ,vith a baking oven that surrounds the entire tube.
Heating ,vith a baking oven allo\vs a better control of temperatures,
though receiving tubes are frequently degassed \vith gas flames. Degas
sing of a tube should not be begun until the tube has been evacuated to a
pressure of 10-3 mm of mercury or less.

The gases encountered with metals are mostly in the form of occluded
gases. Metal electrodes and parts may be degassed by heating to about
50 per cent of the melting temperatures of the metals. The amount of
gas evolved from a metal ,vill depend upon the area multiplied by a depth
of a few thousandths of an inch, except for tungsten and molybdenum,
\vhich have a laminar structure. The principal component of the gases
involved is generally carbon monoxide, \vhich is present to the extent of
about 30 to 90 per cent of the total gases. The remainder of the gas
is mostly nitrogen, \vhich comes off at a higher temperature than carbon
monoxide. Interestingly enough, ,vhen a metal has been degassed by
heating in a vacuum it will pick up very little gas upon subsequent
exposure to air at atmospheric pressure, if carefully handled. 1 Degassing
of metals is commonly achieved by r-f induction heating. Radiation
cooled transmitting tubes may be degassed by direct electronic bombard
ment of the elements.

21.12. Getters. Getters are materials used in vacuum tubes to
clean up residual gases by chemical combination. The alkali metals
are most extensively used. Barium seems to he most effective in cleanup
action though magnesium, calcium, sodium, and phosphorus have also
been used. 2,3 The getter material is usually enclosed in the pure metal
form in a small cup or ,vire cage of base metal and then reduced and
vaporized, after the tube is sealed off, by heating to a temperature of
about 700°0 by r-f induction currents. Sometimes the getter material
is contained in a tube formed of a rolled nickel sheet, in which case the
vaporized metal escapes through the crack in the tube. The vaporized
metal deposits on the wall of the tube, care always being taken that it
does not deposit on any of the insulators. When gas molecules come
in contact with this layer, they ,viII combine (except for the noble gases),
\vith the result that the vacuum gets progressively better with time. A

1 NORTON, E. J., and A. L. MARSHALL, The Degassing of Metals, Gen. Elec. Co.
Research Lab. Rept. 613, March, 1932.

2 LEDERER, E. A., and D. H. WAMSLEY, Batalum, a Barium Getter for Metal
Tubes, RCA Rev., vol. 11, pp. 117-123, July, 1937.

3 LEDERER, E. A., Recent Advances in Barium Getter Techniques, RCA Rev.,
vol. 14, pp. 310-318, January, 1940.
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getter in a receiving tube will usually be sufficient to improve the vacuum
obtained from a mechanical pump to 10-6 mm of mercury in about 10
min. Previous treatment of the getter to remove gases seems to be more
important then the material of the getter itself. 1,2

The absorption properties of other metals may also be used in the
form of an auxiliary filament. Tungsten, molybdenum, and tantalum
can be used for this purpose if heated to l000°C or higher. Most
interesting of all the metals in its cleanup action is zirconium. 3 ,4 Zir
conium will absorb 5 times its own volume of hydrogen at 400°C, while
at 1400°C it will absorb carbon monoxide and carbon dioxide as well
as 40 times its own volume of oxygen and 20 times its own volume of
nitrogen. At temperatures below 200°C, protective oxides and nitrides
form. For complete getter action, tViO filaments, one to work"at 400°C
and one to work at 1400°C, are necessary. Zirconium-filament getters
are seldom used in commercial tubes but are useful in experimental
tubes. Zirconium is often used in the form of a sprayed powdered
coating applied to metal anodes. This gives increased thermal emissivity
and also a continuous getter action during operation.

1 ANDREWS, M. R., and J. S. BACON, The Comparison of Certain Commercial
Getters, Gen. Elec. Research Paper 574, June, 1931, also published in Jour. Amer.
Chern. Soc., pp. 1674-1681, May, 1931.

2 DUSHMAN, "The Production and Measurement of High Vacuum," Ope cit. The
last half of this book is devoted to the subject gas sorption and degassing of materials.

3 FAST, J. D., Zirkon und seine hochschmelzenden Verbindungen, Philips Tech.
Rev., vol. 3, pp. 353-360, December, 1938.

4 FAST, J. D., Metals as Getters, Philips Tech. Rev., vol. 5, pp. 217-221, August,
1940.



APPENDIX I
PROPERTIES OF THE ELEMENTS

A. Atomic Weights and Numbers

L
L
Li
L

Sym- Atomic Atomic Sym- Atomic Atomic
bol number weight boI number weight

Aluminum .... Al 13 26.97 Molybdenum .. Mo 42 95.95
Antimony .... Sb 51 121.76 Neodymium ... Nd 60 144.27
Argon ........ A 18 39.944 Neon ......... Ne 10 20.183
Arsenic ....... As 33 74.91 Nickel ........ Ni 28 58.69
Barium ....... Ba 56 137.36 Nitrogen ...... N 7 14.008
Beryllium ..... Be 4 9.02 Osmium ....... Os 76 190.2
Bismuth ...... Bi 83 209.00 Oxygen ....... 0 8 OOסס.16

Boron ........ B 5 10.82 Palladium ..... Pd 46 106.7
Bromine ...... Br 35 79.916 Phosphorus P 15 30.98
Cadmium ..... Cd 48 112.41 Platinum ...... Pt 78 195.23
Calcium ...... Ca 20 40.08 Potassium ..... K 19 39.096
Carbon ....... C 6 12.010 Praseodymium. Pr 59 140.92

Cerium ....... Ce 58 140.13 Protoactinium Pa 91 231.
Caesium ...... Cs 55 132.91 Radium ....... Ra 88 226.05
Chlorine ...... Cl 17 35.457 Radon ........ Rn 86 222.
Chromium .... Cr 24 52.01 Rhenium ...... Re 75 186.31
Cobalt ........ Co 27 58.94 Rhodium ...... Rh 45 102.91
Columbium ... Cb 41 92.91 Rubidium ..... Rb 37 85.48
Copper ....... Cu 29 63.57 Ruthenium .... Ru 44 101.7
Dysprosium ... Dy 66 162.46 Samarium ..... Sm 62 150.43
Erbium ....... Er 68 167.2 Scandium ..... Be 21 45.10

Europium .... Eu 63 152.0 Selenium...... Se 34 78.96
Fluorine ...... F 9 19.00 Silicon ........ Si 14 28.06
Gadolinium ... Gd 64 156.9 Silver......... Ag 47 107.880
Gallium ...... Ga 31 69.72 Sodium ....... Na 11 22.997
Germanium ... Ge 32 72.60 Strontium ..... Sr 38 87.63
Gold ......... Au 79 197.2 Sulphur ....... S 16 32.06
Hafnium ..... Hf 72 178.6 Tantalum..... Ta 73 180.88
Helium ....... He 2 4.003 Tellurium ..... Te 52 127.61
Holmium ..... Ho 67 164.94 Terbium ...... Tb 65 159.2
Hydrogen ..... H 1 1.0080 Thallium ...... Tl 81 204.39
Indium ....... In 49 114.76 Thorium ...... Th 90 232.12
Iodine ........ I 53 126.92 Thullum ...... Tm 69 169.4
Iridium ....... Ir 77 193.1 Tin ........... Sn 50 118.70
Iron .......... Fe 26 55.85 Titanium ..... Ti 22 47.90
Krypton ...... Kr 36 83.7 Tungsten ..... W 74 183.92

anthanum ... La 57 138.92 Uranium ...... U 92 238.07
ead ......... Ph 82 207.21 Vanadium ..... V 23 50.95
·thium ...... Li 3 6.940 Xenon ........ Xe 54 131.3
utecium ..... Lu 71 174.99 Ytterbium .... Yb 70 173.04

Magnesium ... Mg 12 24.32 Yttrium ...... y 39 88.92
Manganese ... Mn 25 54.93 Zinc .......... Zn 30 65.38
Mercury ...... Hg 80 200.61 Zirconium ..... Zr 40 91.22
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APPENDIX II

DIFFERENTIAL OPERATORS AND
VECTOR NOTATIONI

1. Differential operators for rectangular coordinates (mutually perpen...
dicular unit vectors a~, au, a,).

./
,/

./
,/

./

Gradient:

. (av av av)-E = gradIent V = VV = a., ax + av iJy + a& a:
Components:

av
grad,; V = ax

av
gradu V = ay

aV
grad, V = ai

x

z

y

The gradient of any scalar quantity is always a vector quantity.

Divergence:

D· E d· E E dEz + oEu oE.Ivergence = IV = V · = - - + -ax oy az
The divergence of any vector quantity is always a scalar quantity.

Curl:
az, au Q,

curl E = V X E = a a aax ay oz
E z Eu E,

1 For the development of the relations of this appendix and further information on
vector notation and relations see

SKILLING, H. H., "Fundamentals of Electric Waves," Wiley, New York, 1942.
HARNWELL, G. P., "Principles of Electricity and Electromagnetism," McGraw

Hill, New York, 1938.
STRATTON, J. A., "ElektrQmagnetic Theory," McGraw-Hill, New York, 1941.
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'Components:

VACUUM TUBES

curl
x

E = aEz _ aEy

ay iJz

curly E = aEx , ~ (JEt;
az ax

cur1;~ E = dEy _ aE:r;
ax . ~y_

The curl of a vector quantity is al,vays a vector quantity.

Laplacian:

The Laplacian ofca scalar quantity is al,vays a scalar quantity~.

2. Differential op~rators for cylindrical coordinates (mutually perpen
dicular JInit vectors aT) au) Qz).

Gradient:

-E = gradient V = VV

Components:
av

grad r V = ar-
laV

grade V·=-
r ao
av

gradz V = az

x

Divergence:

z

,./
//. Z

.-/

~/_--t------y

"'8-

~url:

ar rae az

curl E VX'E
1 iJ a a

= = - aer iJr az
E r· . ,rEg Ez



Components:

Laplacian:

APPENDIX II

curl E = ! iJEz _ iJE,
r r ao iJz

curIo E = aEr _ iJEz

dZ ar
curL: E = ! (J(rEo) _ ! (JEr

r ar r a8

815

V2V =!~ (r av) +.!- a2v + (J2V
r ar ar r2 (J02 az2

3. Differential operators for spherical coordinates (mutually perpen
dicular unit vectors a" an, a~).

Gradient:
-E = gradient V = V V

Components:
av

grad r V = or
laV

grad, V =-
r 00

1 aV
grad = -.~

tp r SIn () alp

x

z

rSln8dtp

.".,.
.".,.

/'

~-~~---y

i-sin8

Divergence:

div E = V · E = 1,.: (r2E,) + -!-(J aae (sin 8 Eo) + _.1_ !- (aE fP)
r ur r SIn r SIn 8 alp alp

Curl:
ar

1 0
curl E = V X E = 2 • () orr SIn

Er

ran r sin (J alp
a a

ao alp
rEo r sin 8 EfP

Components:

I E = _1_ [a(Sin (} Ef{J) _ OE8]
cur r • (} ~(} .:tIr SIn u ucp

curio E = _~_ aEr _ ! iJ(rEtp)
r SIn () iJlp 1r ar

curl E = ! [aCrEs) _ oErl
tp r or 08
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Laplacian:

v2V = ~ ~ (r2 av) + _1_ ~ (Sin (J av) + _1_ a2v
r 2 ar or r2 sin 8 iJ8 i)(J r 2 sin (J iJ<p2

4. Differential operators for general orthogonal coordinates (mutually
perpendicular unit vectors at, a2, ag).

h t , h2, and ha are scale factors such that an element of length is given
by

Gradient:
-E =, gradient V = vv

Components:
1 iJV

gradu1 V = h- :;
t {JUt

1 iJV
gradu2 V = h-~

2 UU2

1 iJV
gradua V = -h~

3 {JUa

Curl:
h1al h2Q2 h3a 3

1 iJ iJ a
curl E = V X E = --

hIh2ha au 1 (JU2 aua

hlE I h2E 2 haEa



APPENDIX III

A NOTE ON MKS UNITS

IN this book there are used rationalized practical mks units. Much
has been written on the subject of units. This section is intended to be
not an exposition of the topic but rather a group of comments that will
aid the student in using mks units.

In the mks system of units, distance is measured in meters, mass in
kilograms, and time in seconds. The term "rationalized" means
that the defining constants of the system have had the factor 41r included
in them in such a way that Maxwell's equations have the simplest
possible form. The term "practical" indicates that the common
electrical quantities such as potential, current, power, charge, and
resistance are expressed in the practical units of volts, amperes, watts,
coulombs, and ohms. This latter simplifies things greatly, for no con
version factors need be applied for the common electrical quantities.
It may be argued that it would be more appropriate to use rationalized
practical cgs units in a book on vacuum tubes than the corresponding
mks units because it is easier to think in terms of coulombs per cubic
centimeter than in terms of coulombs per cubic meter, etc. The mks
units have been used, however, because they are so extensively employed
in books and papers on electromagnetic theory and so will ordinarily be
reasonably familiar to the student. It is probably a simpler matter to
shift a decimal point than to remember two sets of constants.

The basic constants of the rationalized practical mks units are the
permeability and dielectric constant of free space, which have values of

po = 411" X 10-7 = 1.2576 X 1°-:6 henly per meter
and

eo = 3~ X 10-9 = 8.8485 X 10-12 farad per meter

The dimensions of these units become apparent if one works out the
expression for the inductance of a long solenoid and the capacity of a
parallel-plate condenser in these units. The resulting expressions are

L = N2 area
p. length

817
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farads

where N is the number of turns, and

c = £ are.a
spacIng

Although the numerical values of the two fundamental constants given
above look very awk\vard, they may be remembered or quickly derived
by virtue of their relation to two other well-known physical constants.
One of these is the velocity of light, which has the value

1
c = -- = 3 X 108

~
meters per sec

ohms

The other is the so-called "intrinsic impedance of free spa.ce," which
is the ratio of the electric- to the magnetic-field strength in a plane
polarized wave,

11 = ! = /1£0 = 12011" = 377
H "J £0

\vhich by coincidence is the same as the angular frequency of a 60-cycle
wave. From the above it is seen that

JJo = ~
c

and
1

£0 =
1/C

In rationalized practical mks units, Maxwell's equations have the form

div D = p

div B = 0
curl E = -8
curl H = b + J

This set of equations differs notably from the corresponding equations
written in Gaussian units by the fact that all the numerical coefficients
are unity. In particular, the factors c and 411'" do not appear. This
means that the factor 41r and c have been absorbed into the constants JJ

and £. Unfortunately, if the factor 41r is suppressed in one place it will
necessarily crop out in another. In any rationalized system of units
the factor 41r will not appear in any relations involving rectangular
coordinates, but it will appear in relations involving spherical coordinates.
This is just the reverse of the situation encountered with unrationalized
units, of which the Gaussian units are an example. Since rectangular
components are used more frequently than spherical components in
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vacuum-,tub.e pr.obleIris andfof thttt'nlatter in virtuaJly all exeeptantenIia
radiation problems, the' rationalization seems ju~tifiable.

So far it seems that the rationalized practical mks units achieve some

TABLE XVII
RELATIONS' BETWEEN -THE PRINCtPAL PHYSICAL, -MAGNE'TIC, "AND

ELECTRIC QUANTITIES IN THE PRINCIPAL 'SYSTEMS OF UNITS,:

Rationalized
practic~l mks

. Electrostatic Mag'netic

]09 abohms

4 1r X 10-3 oersted

107 ergs per second
10-1 abcoulomb

10-1 abampere

106 abvolts per cen
timeter

107 ergs

106 abvolts
10-s

104 gausses

109 abhenry

10-9 abfarad

Unity

100 centimeters-
1,000 'gra~s
i'second
.106: dynes

1
9 X 1020 (seconds

per centimeter) 2

100 centimeters
1,000 'grams
1 second "
105 dynes:

107 ergs

107 ergs per second
3 X 109 statcou
lombs

3 X 109 statamperes
1

3 X 104 statvolt

per centimeter

Current, 10 00 1 ampere

Electric field, E 0 1 volt per meter

Power, W .. 0 ••••••••

Charge, q 0

Le~fgth, t. 0 0 • • • • • • • •• 1 meter
Mass, m.... '0< . . . . .. 1 kilogram
Time, to,' . ",' ..~ ..•... ,1 second
Farce,. F .' ~ ' 1 newton
Work, energy,.e .. , .. 1 watt-secop.d

1 joule '
1 meter-~~logr&.m

1 watt
1 coulomb.

Potential difference,
or emf, V o.

Electric-flux density,
D

Magnetic field, H . ...

1 volt ~~ 00 statvolt
1 coulomb per 3 X 105

square meter
1 ampere turn per 1211" X 107

meter
Magnetic-flux den- 1 weber per square

sity, B meter

Resistance, R. . . . . . .. 1 ohm

Inductance, L 1 henry

1
3 X 106

1
9 X 1011 statohm

1
9 X 1011 stathenry

Capacity, C 1 farad 9 X 1011 statfarads
Permeability of free 47r X 10-7 henry per 1

space, Po meter 9 X 1020 (seconds
per centimeter)2

Dielectric constant of 1 f d U .
free space, £0 361r X 109 ara s per llity

f meter

simplifications of formulas in return for some other slight disadvantages.
Another factor to be considered is that in the system of units used here
magnetic-flux density does not equal magnetic field but rather

B= l}H
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It is important to distinguish between B a.nd H. Likewise, electric
flux density does not equal electric field but rather

D=rE

In both the above relations there is a big difference in the numerical
values of the :Bux-densi~yand field factors even for free space.

The price that is paid for reducing the common electrical quantities
to practical units is that some other quantities appear in relatively
unfamiliar units. Thus the unit of force becomes the newton, which is
~qual to 105 d~es and is sometimes known as the "dyne-five." The
mainetic units ~re a little strange, too. The nlagnetic field H appears
in units of ampere turns per,meter, which, however, makes good physical
sense. The magnetic-flux density appears in units of webers per square
meter, each one of which is equal to 104 gausses. These l;tre not too
difficult to remember, however.

The relation between the most commonly used qu&ntities in electro
static, electromagnetic, and rationaliz~d practical units are given in
Table X VII. Quantities in any row are equal.
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APPENDIX VI

PRINCIPAL PROPERTIES OF THE
BESSEL FUNCTIONSl-4

Differential equation of the Bessel function:

d2
y 1 dy ( n 2

)-+--+ 1-- y=Odx 2 X dx x 2

Form of solution:
y = AJn(x) + BNn(x)

where J n is the nth-order Bessel function of -the first kind and N n is
the nth-order Bessel function of the second kind, also known as the

(n = 1, 2, · · · )

"Neumann function."
Series expansion of the Bessel function:

x n [X2
x 4

J n(X) = 2nn! 1 - 22(n + 1) + 2 42!(n + 1)(n + 2) +
( -1)kx n+2k

+ 2n+2kk!(n + k)! +
Small-value approximations (x less than 710 of first root):

xn 2 2
In(x) = n!2n No(x) = ~ ;ln E 1.781x

- en - I)! 2n

x

... ]

Large-value approximations (x larger than third root):

/2 ( 2n + 1 )J n(X) = '\j rX cos X --= 4 1r

[2 · ( 2n + 1 )N n(X) = '\j;X SIn x - 4 1r

1 JAHNKE, E., and F. EMDE, "Tables of Functions," Teubuer, Berlin, 1933.
2 BURRINGTC,N, R. 8'1 and C. C. TORRANCE, "Higher Mathematics," pp. 432-442,

McGraw-Hill, New York, 1939.
3 HANSEN, W. W., and V. R. WOODYARD, "A New Principle in Directional Antenna

Design," Proc. I.R.E., vol. 26, p. 338 March, 1938.
4 SMITH, D. B., L. M. RODGERS, and E. H. TRAUB... Zeros of Bessel Functions, Jour.

Franklin Inst., vol. 237, pp. 301-303, April, 1944.
823
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Roots of the Bessel function: U nm = mth root of nth-order function.

U01 = 2.405
U02 = 5.520
U03 = 8.654
U04 = 11.792

U11 = 3.832
U12 = 7.016
U13 = 10.173
U14 = 13.324

U21 = 5.135
U22 = 8.417
U23 = 11.620
U24 = 14.796

U31 = 6.380
U32 = 9.761
U33 = 13.015
U34 = 16.223

Roots of first derivative of Bessel function: u'nm = mth root of
nth-order function.

U'01 = 3.832
u' 02 = 7.016
U'03 = 10.174
U' 04 = 13.324

U'11 = 1.841
U'12 = 5.331
U'13 = ~.536

U'14 = 11.706

U'21 = 3.054
U'22 = 6.706
U/23 = 9.970
U/24 = 13.170

U'a1 = 4.201
U'32 = 8.015
U' 33 = 11.346
U'34 = 14.586

Integral definition of the Bessel function:

1 f7t'Jfl(x) = - cos (x sin cP - ncP) det>
1(' 0

Other important relations:

dJdn(X) = - ~ In(x) + In-1(x)
x X

ddJfl = ~ I n - I n+1x X

dJfl 1 1
dx = 2J fl- 1 - 2 I n+1

J o' = -J1 J 1' = J o _ J 1

X

cos (z sin x) = J o(z) + 2[J2(Z) cos x + J 4(Z) cos 4x + · · · ]
sin (z sin x) = 2[J 1(z) sin x + J 3(z) sin 3x + · · · ]
cos (z cos x) = Jo(z) - 2[J2(z) cos 2x - J .. (z) cos 4x + · · · ]
sin (z cos x) = 2[J1(z) cos X - Ja(z) cos 3x + . · · ]
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APPENDIX VII

VALUES OF a 2 AS A FUNCTION OF r c

EQ. (15.63)*

FOR USE IN

(rc == radius of emitter; r = radius at any point P; a 2 applies to case where P is
outside emitter, r > rc ; (-a)2 applies to case where P is inside emitter, rc > r)

T T" a 2 (-a2)
T Tc

a 2 (-a)2- or- - or-
T" T Te T

1.0 0.0000 0.0000 6.5 1.385 13.35
1.05 0.0023 0.0024 7.0 1.453 15.35
1.1 0.0086 0.0096 7.5 1.516 17.44
1.15 0.0180 0.0213 8.0 1.575 19.62
1.2 0.0299 0.0372 8.5 1.630 21.89
1.25 0.0437 0.0571 9.0 1.682 24.25
1.3 0.059) 0.0809 9.5 1.731 26.68
1.35 0.0756 0.1084 10 1.777 29.19
1.4 0.0931 0.1396 12 1.938 39.98
1.45 0.1114 0.1740 14 2.073 51.86

1.5 0.1302 0.2118 16 2.189 64.74
1.6 0.1688 0.2968 18 2.289 78.56
1.7 0.208 0.394 20 2.378 93.24
1.8 0.248 0.502 30 2.713 178.2
1.9 0.287 0.621 40 2.944 279.6
2.0 0.326 0.750 50 3.120 395.3
2.1 0.364 0.888 60 3.261 523.6
2.2 0.402 1.036 70 3.380 663.3
2.3 0.438 1.193 80 3.482 813.7
2.4 0.474 1.358 90 3.572 974.1

2.5 0.509 1.531 100 3.652 1144
2.6 0.543 1.712 120 3.788 1509
2.7 0.576 1.901 140 3.903 1907
2.8 0.~O8 2.098 160 4.002 2333
2.9 0.639 2.302 ISO 4.089 2790
3.0 0.669 2.512 200 4.166 3270
3.2 0.727 2.954 250 4.329 4582
3.4 0.783 3.421 300 4.462 6031
3.6 0.836 3.913 350 4.573 7610
3.8 0.886 4.429 400 4.669 9303,

4.0 0.934 4.968 500 4.829 13015
4.2 0.979 5.528 600 4.960
4.4 1.022 6.109 800 5.165
4.6 1.063 6.712 1000 5.324
4.8 1.103 7.334 1500 5.610
5.0 1.141 7.976 2000 5.812
5.2 1.178 8.636 5000 6.453
5.4 1.213 9.315 10000 6.933
5.6 1.247 10.01 30000 7.693
5.8 1.280 10.73 100000 8.523
6.0 1.311 11..f6

• LANOMt71Rt I. L. t and K. BLODGJIIIr1't Currents Limited by Space Charp between Concentri.
Spheres, Ph1/B. Rw., vol. 24. p. 53, July, 1924.
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APPENDIX VIII

\tL
Nomographic· chart relating object and image distance to the focal
length ·of a thin lens.
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APPENDIX X

DESIGNATION OF FREQUENCY BANDSl

Title Abbr. Wave length Frequency

Very low frequency ............. ~ ..... VLF 33.3- 10 km 10- 30 kc
Low frequency ........................ LF 10- 1 km 30- 300kc
Medium frequency .................... MF 1,000--100 meters 0.3- 3 me
High frequency ....................... HF 100- 10 meters 3- 30 me
Very high frequency ................... VHF 10- 1 meter 30- 300 mc
ffitra-high frequency .................. UHF 1- 10 em 300-3,000 me
Super-high frequency .................. SHF 10- lem 3- 30kmc

1 As announced by Federal Communications Commission, Mar. 2, 1943.



PROBLEMS

CHAPTER 4:

4.1. What fraction of the electrons emitted from an oxide coating at a tem
perature of 10000 K can overcome a retarding voltage of 0.5 volt?

4.2. What is the emission-current density predicted by the emission equation
[Eq. (4.3)] for tantulum at 25000 K? What is the corresponding emission-current
density of tungsten at 25000 K? At what temperature will the emission-current
density of tungsten be five times as great as at 25000 K?

4.3. Using the data given in Table 2, calculate the operating characteristics
and life for a 10 per cent evaporation of mass of an ideal tungsten filament having
a length of 2 em and a diameter of 0.25 mm whe~ heated to 2600oK.

a. Power radiated

W = W'ld = 263.0 X 2 X 0.025 = 13.17 watts

b. Resistance

R = R' ~ = 98.66 X 10-6 0.0;52 = 0.3155 ohm

c. Filament current

If = 1/ X d% = 1.632 X 0.025~2 = 6.45 amperes

d. Voltage drop

V I = V,' X iy, = 161.1 X 10-3 X O.0~5~' = 2.04 volts

e. Emission current

Ie = I~'ld = 2.25 X 2 X 0.025 = 0.1125

f. Ratio of hot to cold resistance

RT

R
-o = 14.12

293

ampere

g. Life for 10 per cent reduction in mass

L'f volume X density
1 e = 10(sec per hr)M hr

Dr since M = M'ld and density is 19,

LOf _ 4.15 X 10- 4d _ 4.15 X 10-4 X 0.025 = 376 hr
1 e - M' - 2076 X 10-8

H29
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4.4. Calculate the operatinl!: characteristics and life for a 10 per cent evapora
tion of mass of an ideal tungsten filament having a length of 1 in. and a diameter
of 10 thousandths of an inch when operated at 2850oK.

4.6. Design a tungsten filament ~ in. long that will give an emission of 0.500
ampere and have a life of 1,000 hr. Find the emission efficiency of this filament
in milliamperes per watt.

4.6. Calculate and plot the emission efficiency of tungsten filaments in milli
amperes per watt over a temperature range of 2000 to 3000oK. Show that the
emission efficiency is independent of the length and diameter of the filament.

4.7. Calculate the emission of an ideal tungsten filament whose length is
4 cm and whose diameter is 0.5 mm over the temperature range of 2000 to 3000oK.
Plot the results on pO~,l'er-emission paper to sho,v that the curve is a· straight line
when presented in this form. Plot contours of constant emission efficiency in
milliamperes per watt on this same sheet.

4.8. What is the emission-current density from a tungsten filament 1 em
in length and 0.2 mm in diameter operating at a temperature of 27000 K when the
surface gradient of potential is 500 volts per cm? What is it when the surface
gradient results from a cylindrical electrode surrounding the cathode that is
2 cm in diameter and raised to a potential of 500 volts?

4.9. Determine the emission constants A and b appearing in Richardson's
equation for thoriated tungsten and barium-strontium oxide from the intercept
and slope of the lines of Fig. 4.5.

4.10. What are the operating characteristics of a thoriated tungsten filament
1 in. in length and 10 thousandths of an inch in diameter operating at 21000 K?
Use the data of Table II for heating power and the constants determined in
Prob. 4.9 to determine the emission.

4.11. What are the relative emission-current densities of a pure tungsten
filament and a thoriated tungsten filament at 25000 K? For the case of a filament
2 cm in length and 0.1 mm in diameter what are the relative emission efficiencies
in milliamperes per watt?

4.12. Using coefficients determined as in Prob. 4.10, determine the emission
current density of a barium-strontium oxide coating at 1000oK.

4.13. Using the emission efficiency data of Fig. 4.7, estimate the emission
of the oxide-coated cathode of a type 27 tube. The cathode dimensions are
0.065 in. in diameter by 14 mm in length. The cathode is heated by a voltage of
2.5 volts, which produces a current of 1.75 amperes. How does the emission
current compare with the rated space-charge-limited current of 5 rna? Suggest
how you could measure the emission current without damaging the tube.

CHAPTER 5

6.1. Two particles are suspended by strings of the same length, L, from the
same point. Each has a mass m and a charge q. As a result of the forces arising
from the like charges the particles will separate. Show that the angle B which
each string makes with the vertical in the equilibrium position is given by

4mgL2 sin3 (I = q2 cos B(41r£o)
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dV -}J

dx - 41rEo(a + 1)

Solve this problem by taking a summation of intensities.

6.2. Two point charges are located as follows:

+200 coulombs at x = 0, Y = 0 meters.
-100 coulombs at x = 1, Y = 0 meters.

a. Sketch a curve showing how potential varies along the line passing through
the charges, outside the charges, and between.

b. At what points on the line is the potential zero?
c. At what point on the line is a gradient of potential zero?
6.3. Two parallel line charges are spaced 1 meter apart. If the first is located

at the point (0,0) and has a positive charge of +2 units per meter and the second
is located at (0,1) and has a charge of -1 unit per meter, sketch the relative
potential along a line passing through the two line charges and perpendicular to
both. If the potential midway between the wires is zero and if it is -100 volts
at (0,0.9), where else is it zero? Where is the gradient of potential zero?

6.4. Show that the electric intensity inside of an infinitely long straight
cylindrical rod of radius a which has a charge of A per unit length uniformly dis
tributed throughout its cross section is

E-~
r - 21r£oa2

6.6. Obtain the potential plot about two parallel equally charged wires by
drawing logarithmically spaced equipotential circles about individual wires,
obtaining the potentials at the intersections of the circles by addition, and then
drawing equipotential contours through points of the same value of potential.
Let the wire diameter be one-twentieth of the spacing between wires, and assume
that each wire is charged to +100 volts.

5.6. Work Probe 5.5 for the case of one wire charged to +100 volts and the
other charged to -100 volts.

6.7. Prove that the electric intensity inside a uniformly charged spherical
shell is zero.

6.8. What is the gradient of potential between the conductors of a con
centric cable whose outer and inner radii are '2 and '1, respectively, whose inner
conductor potential· is zero, and whose outer-conductor potential is VI? Find
the potential at any radius between the conductors.

5.9. Evaluate the potential at a point that lies a distance c from a uniform
spherical distribution of charge of radius a. Let the charge per unit volume of
the spherical distribution be p. Show that toe resulting potential outside the
charge is the same as ihough the total charge were concentrated at the center of
the sphere. Do this by integrating the effects of elements of charge in spherical
coordinates.

6.10. Given a linear distribution of charge along a line segment of length l
and density of X coulombs per meter. Show that the potential gradient at a
distance a from the end of the line segment of charge along the extended line
segment is
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5.11. Solve Probe 5.10 by evaluating the potential at any point along the
extended line segment of charge and then taking the derivative.

6.12. Sketch the potential-flux pattern around an exterior right angle of a
conductor, i.e., the field in the vicinity of a corner of a long square charged con
ductor. Make use of the properties listed in the text.

6.13. Calculate and plot equipotential and flux lines outside of a right-angle
corner of a conductor by means of the function W = Z~~. Compare the results
with the sketch of Prob. 5.12.

5.14. Obtain by integration a solution of Laplace's equation in one dimension
for rectangular coordinates. Sho\v that the potential varies linearly with distance
while the gradient of potential is constant.

5.15. Obtain by integration a solution of Laplace's equation in polar coordi
nates when there is no variation of potential with angle. Show that potential
varies logarithmically with radius while the gradient of potential varies inversely
as radius.

6.16. A concentric conductor cable consists of a circular inner conductor
2 cm in diameter inside of an outer conductor of square cross section that meas
ures 4 em per side. Assume that the inner conductor is at a direct potential of
100 volts while the outer conductor is at a direct potential of 0 volts. Sketch
flux and potential lines in the space between conductors. Estimate the gradient
of potential at

a. The surface of the center conductor opposite a corner of the outer
conductor.

b. The surface of the center conductor closest to the outer conductor.
c. The surface of the outer conductor closest to the center conductor.
d. At a corner of the outer conductor.

Estimate the capacity per unit length of line by taking the ratio of charge to
potential. Remember that each flux line terminates on one unit of charge
when the field plot is given by curvilinear squares and the adjacent equipotentials
are separated by unit potential.

6.17. One section of a plane-electrode triode is approximated by the follo\ving
potential lattice

100 volts 100 volts 100 volts 100 volts 100 volts
a b c b a
d e f e d
g h -10 h g
i j k j i
ovolts ovolts ovolts ovolts ovolts

The top row represents the plate at a potential of 100 volts. The bottom
row represents the cathode at a potential of 0 volts. The grid is represented by
the number in the fourth row of the third column and is at -10 volts. The
points a, d, g, i are midway between grid wires on a line of symmetry. Find
potentials at the lettered points by first assuming reasonable values and then
correcting several times around by means of Eq. (5.44).
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fi.18. Prove that the function W = In Z is analytic for finite values of Z
other than zero and infinity.

5.19. Prove that the function W = Zi is analytic for finite values of Z other
than infinity.

6.20. Separate the function W = In Z into real and imaginary parts U and V,
respectively. Show that U = const and V = const form orthogonal families of
curves. Show that both U = const and V = const are solutions of Laplace's
ec;.uation. Show also that the Cauchy-Riemann conditions are satisfied.

6.21. The transformation W = Z~~ transforms the upper half of the Z plane
into the first quadrant of the TV plane, giving rise to the field configuration
associated \vith an inside right-angled corner. Show that the equipotential
lines inside the right-angled corner are given by rectangular hyperbolas. Show
that the flux lines are also hyperbolas. Sho\v that the gradient of potential
along the u and v axes in the W plane is normal to the axis and proportional
to the distance from the origin.

6.22. Use the function W = ZH to obtain the flux and potential plot for an
internal 45-deg corner between two plane conducting surfaces. Do this by
letting W = RLcjJ and Z = r L8 and then transforming the lines x = r cos e= const
and y = r sin 8 = const by means of the transforming function.

6.23. The function W = Z2 transforms the upper half of the Z plane into
the entire W plane and gives the potential configuration about the edge of a sheet
conductor corresponding to the positive real axis of the W plane. Find the
equations of the potential and flux lines in the lV plane. Show that these
are orthogonal sets of parabolas. Find the gradient of potential at any point
in the W plane.

5.24. Show that the transformation W = In sin Z gives the field configuration
of a row of parallel equidistant line charges having the same charge, i.e., the field
about a grid of parallel ,vires.

6.25. Show that the transformation W = In tan Z gives the potential about
a row of parallel equidistant line charges ,vith alternate positive and negative
charges.

5.26. Show that the function W = In (~ ~ :) gives the potential and flux

pattern about a two-wire transmission line having wires located at (a,O) and
(-a,O) in the Z plane. Find the equations for the flux and potential lines to
show that these are orthogonal families of circles.

6.27. Show that the function W = In (Z· - 1) gives the field about n line
charges uniformly distributed around the unit circle, i.e., the field of a squirrel
cage grid.

CHAPTER 6

6.1. An electron is liberated ",ith zero velocity at the cathode of !t plane...
electrode diode whose electrode spacing is 5 rom and whose cathode-plate potential
difference is 100 volts. With what velocity does the electron strike the plate?
What energy has the electron acquired in moving from cathode to plate? How
long does it take the electron to make the trip? If a singly charged hydrogen
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ion and a doubly charged oxygen ion are liberated at the plate, give the velocity,
energy, and time associated with their arrival at the cathode.

6.2. An electron is liberated with zero velocity at the cathode of a cylindrical
electrode diode whose cathode radius is 0.2 em and whose concentric plate radius
is 1.0 em. The cathode-plate potential difference is 100 volts. With what
velocity and energy does the electron arrive at the plate? How long does the
trip take? If a singly charged hydrogen ion and a doubly charged oxygen ion
are liberated at the plate, with what velocity and energy and at what time will
they arrive at the cathode? Refer to Fig. 8.14 for time factors.

6.3. An electron with a velocity acquired by falling through 10 volts is
injected into a region with a retarding potential gradient of 2 volts per em. How
far will the electron travel before having its direction reversed? How long will
it take the electron to return to its starting point? With what velocity will the
electron return?

6.4. An electron is injected into the region between two parallel planes sepa
rated 1 em and differing in potential by 50 volts, the resultant field being retarding.
If the electron has a velocity acquired by falling through 100 volts of potential,
find the point at which the electron will strike one of the electrodes, the velocity
components with which it will strike, and the time of flight when the angle with
which the electron enters is 0,30,45, and 60 deg with the normal to the electrodes.
Tabulate results.

6.5. Solve Prob. 6.4 when the potential between the plates is 50 volts and the
field is accelerating.

6.6. In Prob. 6.4 find the location of points closest to the second plate on
traject.ories of those electrons which are returned to the first plate.

6.7. An electron is injected at an angle of 60 deg with the normal to the plates
into a region between two parallel plates separated 1 em and having a retarding
field of 20 volts per em. There is a small hole in the second plate displaced 3 cm
from the point at which the electron enters. Assuming that the transverse
component of electron velocity is in line with the point of entrance and the hole
in the second plate, with what velocity must the electron enter the retarding field
region in order to pass through the hole in the second plate?

6.8. Derive Eq. (6.25).
6.9. Through what potential must an electron fall in order to be accelerated

to 0 1, 0.5, 0.9, 0.95 of the velocity of light? What is the relative transverse
mass of the electron at each of these velocities?

6.10. At what velocity is the transverse mass of an electron increased 1, 10,
and 100 per cent? What are the corresponding accelerating potentials?

6.11. Derive Eq. (6.38).
6.12. Calculate and plot curves of the transverse and longitudinal mass of an

electron as a function of !:.
c

6.13. Calculate and plot curves of the transverse and longitudinal mass of an
electron relative to the rest mass as a function of potential.

6.14. Derive an expression for the deflection of a cathode-ray-tube beam by a
set of deflecting plates, the expression to include the relativity correction for
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mass and velocity. Express the deflection as a fraction relative to the deflection
in the absence of relativity effects.

6.15. Calculate and plot a curve of electron velocity in equivalent volts
required to produce a circular path 1 cm in diameter when an electron is moving
in a magnetic field ranging in intensity from 100 to 10,000 gausses.

6.16. Singly ionized lithium atoms with atomic weights of 6 and 7 are acceler
ated by a potential of 2,000 volts and then injected into a region of constant
transverse magnetic field of density 800 gausses. The atoms are allowed to
traverse a half circle before striking a photographic plate. What will be the
separation of the marks on the photographic plate corresponding to the two
isotopes of lithium?

6.17. An electron is accelerated through a given potential and then injected
perpendicular to the elements of a cylinder, 10 cm in diameter, that has a con
stant magnetic field of strength 10 gausses parallel to its axis. There is a hole in
the cylinder a quarter of a full circumference around the cylinder on a circle at
which the electron enters. Through what potential must the electron be acceler
ated before entering the cylinder in order to pass out of the cylinder through this
hole? There is a second hole a quarter of a circumference around the cylinder
but displaced 3 em axially along the tube. With what potential and at what angle
with the axis must an electron directed toward the axis enter the cylinder in order
to pass out through this second hole?

6.18. In a cyclotron a uniform magnetic field is used to cause ions to move in
segments of a circular arc. Every half revolution the ions are subjected to an
aecelerating gradient of potential at the gaps of two D-shaped electrodes so that
the radius after each semicircle of motion is greater than before. The accelerat
ing field is supplied by a r-f voltage impressed upon the two D's and appears as
an alternating field across the gap. The frequency of the field is regulated so
that the ions cross the gap twice each cycle. If the magnetic-flux density is
10,000 gausses, what must the frequency of the applied voltage be when singly
charged light hydrogen ions are used (atomic weight unity)? If each passage
across the gap increases the energy of the ions by 40,000 volts, how many such
passages are required to produce a 2,000,000-volt particle? What will be the
diameter of the last semicircle of circular motion?

6.19. What will be the final diameter of the path of a 2,OOO,OOO-volt heavy
hydrogen ion (atomic weight 2) and what will be the frequency of the applied
voltage for the cyclotron of Prob. 6_18? Assume the same magnetic field and
energy increase per gap passage. .,

6.20. What will be the final diameter of the path of a 2,OOO,OOo-volt argon
ion and what must be the frequency of the voltage producing the accelerating
field for the cyclotron of Prob. 6.18? Assume the same magnetic field and
energy increase per gap passage.

6.21. An electron's velocity is x-directed in a region of uniformly directed
electric field of strength 50 volts per cm and uniform z-directed magnetic field of
strength 500 gausses. What must the electron velocity in equivalent volts be
in Grder that its net deflection is zero?

6.22. An electron is emitted with zero velocity from a plane surface where it
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is subjected to an accelerating gradient of field of strength 50 volts per em and a
transverse magnetic field of 500 gausses. What is the maximum travel in the
direction of the electric field in the resulting cycloidal path? What is the
velocity at this point of maximum separation from the plane of emission? Where
does the electron again return to the plane of emission? What is the elapsed
time between departure and return to the emission plane?

6.23. Given the field conditions of Prob 6.22, but with an electron injected
with a velocity equivalent to 20 volts normal to the plane. Find the position
and velocity with which the electron again returns to the plane.

6.24. A diode consists of a straight filamentary cathode of radius Tc surrounded
by a concentric circular plate of radius Tp. If the plate voltage is low enough,
the magnetic field of the filament current may cause the electrons to curve
strongly enough in their paths so that the tube will be cut off. Derive an expres
sion for cutoff in such a tube in terms of the plate potential, the filament current.,
and the cathode and plate radius.

CHAPTER 7

7.1. Consider an idealized type 210 plane-electrode triode for which
dl-Q = 0.050 in., dgp = 0.075 in., a = 0.050 in., and T g = 0.0025 in. Using the
low-mu formulas, calculate and plot potential profiles along lines perpendicular
to the plane electrodes and passing (1) through a grid wire and (2) midway
between grid wires for

a. Grid at twice cutoff voltage.
b. Grid at cutoff voltage.
c. Grid at half cutoff voltage.
d. Grid at zero potential.
e. Grid positive and at its" natural" potential.
f. Grid positive and at plate potential.

Assume a plate potential of 100 volts.
7.2. Find the diameters of the cathode, grid, and plate cylinders in the

Z-plane equivalent of the W-plane triode representation of the tube whose dimen
sions are given in Probe 7.1. Use the transformation of Eq. (7.3).

7.3. A cylindrical-electrode triode has a cathode diameter of 0.020 in. and a
plate diameter of 0.750 in. There are 10 grid wires each of 0.012 in. diameter
arranged to form a squirrel cage of grid wires evenly spaced around a grid-wire
circle of diameter 0.262 in.

a. Calculate the amplification factor of the tube.
b. Calculate the equivale'nt-diode radius of the tube.
c. Calculate the interelectrode capacities of the active portion of the tube

if this is 1 in. long.

7.4. Calculate and plot potential profiles of the cylindrical-electrode triode
of Prob. 7.3 in planes through the axis and (1) through a grid wire and (2) midway
between grid wires for a plate potential of 100 volts and
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a. Grid at twice cutoff potential.
b. Grid at cutoff potential.
c. Grid negative but at half the cutoff potential.
d. Grid at zero potential.
e. Grid positive at its" natural" potential.
f. Grid at plate potential.

7.5. Find the diameters of the cathode, grid, and plate cylinders in the
Z-plane equivalent of the triode of Probe 7.3 if this latter be considered the
W-plane configuration. Use the transforTllation of Eq. (7.15).

7.6. A plane-electrode triode has a cathode-grid spacing of 1 mm, a screening
fraction of 0.14, grid-wire diameter of 0.1 mm, and a grid-plate spacing of 2.5 mm.
Determine the amplification factor and the equivalent-diode spacing.

7.7. A cylindrical-electrode triode has the dimensions of the tube of Probe
7.3 except that there are 14 grid wires evenly spaced around the grid-wire circle,
instead of 10. Calculate the amplification factor and equivalent-diode radius.

7.8. A plane-electrode triode is to have an amplification factor of 10. If the
screening fraction is 78 and there are 50 grid wires per in., specify the grid-wire
radius and the grid-plate spacing.

7.9. A plane-electrode triode has a grid-plate spacing of 0.050 in. and a
square mesh grid of O.OOS-in.-diameter wire spaced 0.015 in. Find the amplifica
tion factor of the tube.

7.10. A cylindrical-electrode triode has a plate radius of 0.500 in. and a grid
consisting of parallel rings of 0.250 in. diameter and of O.OO5-in. wire spaced
0.015 in. There are four grid-ring supports of O.OIO-in. wire parallel to the axis
of the tube and evenly spaced around the grid. Find the amplification factor
of the tube. Cathode diameter is 0.10 in.

7.11. A cylindrical triode has a cathode diameter of 0.10 in. and a plate diam
eter of 0.500 in. The grid is a helix of Q.Ol-in.-diameter wire wound so that the
largest circular cylinder that can be passed through it is 0.245 in. in diameter.
The helical grid has a pitch of 0.08 in. between turns. There are two support
wires for the grid of 0.025-in. wire parallel to the axis of the tube. Determine
the amplification factor of the tube.

7.12. A plane-electrode triode has a grid-cathode spacing of 8 mils, a grid
wire spacing of 16 mils, grid-\\Tire radius of 1 mil, and a grid-plate spacing of
20 mils. Determine the variation of amplification factor along the cathode.
What are the maximum, minimum, and average values of amplification factor
that appear? How do these compare with the values of amplification factor
that assume large cathode-grid spacing?

7.13. Suggest means of measuring the amplification factor of a triode, given
a current-flow model containing a suitable electrolyte.

7.14. Prove that the amplification factors of two geometrically similar tubes
are equal.

7.15. From a comparison of Eqs. (7.33) and (7.43) obtain expressions for the
cathode-grid and cathode-plate capacities of the fundamental triode of Fig.
7.1a. From a comparison of Eqs. (7.34) and (7.44) obtain an expression for the
grid-plate capacity.
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7.16. From the results of Probe 7.15 and the transformation of Eqs. (7.4)
and (7.5) obtain expressions for the interelectrode capacities of a plane-electrode
triode per unit of area.

7.17. From the results of Probe 7.15 and the transformation of Eqs. (7.16)
and (7.17) find the interelectrode capacities of a cylindrical-electrode triode per
unit of axial length of structure.

7.18. Find the interelectrode capacities per unit area of the triode of Probe
7.1. Consider that the grid and plate exist only on one side of the cathode.

7.19. Calculate the interelectrode capacities per unit of axial length of the
cylindrical-electrode triode of Probe 7.7.

7.20. Calculate the capacity per unit length of a five-\vire transmission line
made of wires of 3-mm-diamete.r ,vireo Four of the wires are located at the
corners of a square whose dimension is 10 em on an edge in the crqss-sectional
view and are connected together. The other wire is located at the center of the
square and acts as a return wire. From the capacity per meter determine the
characteristic impedance of the line neglecting losses, using the relation that
the characteristic impedance in ohms is the reciprocal of the product of the capac
ity per unit length in farads per meter and the velocity of propagation in meters
per second.

7.21. Given a plane-electrode triode with the dimensions of the tube of Probe
7.1 except that the diameter of the grid wires is twice as large. Calculate the
amplification factor by the formula of Vodges and Elder and by the Ollendorf
second and third approximations, and compare results.

7.22. Given a cylindrical-electrode triode with the dimensions of the tube of
Probe 7.3 except that the grid wires are twice as large in diameter. Calculate
the amplification factor by the formulas of Vodges and Elder and the Ollendorf
second and third approximations, and compare results.

7.23. Derive the amplification-factor formula given in Fig. 7.l9a for the
electrode geometry shown.

7.24. Derive the anlplification-factor formula given In Fig. 7.19b for the
electrode geometry shown.

7.26. Derive the amplification-factor formula given in Fig. 7.19c for the
electrode geometry shown.

7.26. Derive the amplification-factor formula given in Fig. 7.19d for the
electrode geometry shown.

CHAPTER 8

8.1. In an ideal plane-electrode diode whose emission is space-charge-limited,
the cathode-plate separation is 2 mm, and the potential difference is 100 volts.
Find the transmitted-current density, the space-charge density at the plate, and
the velocity of the electrons arriving at the plate. Find also the power dissipated
per unit area of plate surface and the gradient of potential at the plate.

8.2. What must be the cathode-plate spacing of an ideal plane-electrode diode
in order that the transmitted current per square inch be 250 rna when the poten
tial difference between cathode and plate is 200 volts?
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8.3. Calculate and plot curves similar to those of Fig. 8.6 for a cylindrical
diode whose ratio of plate to cathode radius is 10.

8.4. Given an ideal cylindrical diode whose cathode diameter is 2 mm and
whose plate radius is 1 cm. Find the transmitted current per centimeter of
axial length for a potential difference of 100 volts. Find also the velocity with
which the electrons arrive at the plate, the space-charge density at the plate, the
gradient of potential at the plate, and the power dissipated per centimeter of
axial length at the plate.

8.6. Find the potential, gradient of potential, electron velocity, and space
charge density midway between cathode and plate in the diode of Prob. 8.4.

8.6. Solve Prob. 8.4 on the assumption that the outer electrode is the cathode
and the inner electrode is the plate, dimensions and potentials being other\vise
unchanged.

8.7. Calculate and plot curves showing the location and magnitude of the
maximum gradient of potential in a cylindrical diode as a function of the ratio
of plate radius to cathode radius when the inner electrode is the cathode.

8.8. Calculate and plot curves similar to those of Fig. 8.6a but for a cylindrical
diode whose outer electrode is the cathode and whose inner is the plate.

8.9. Given a diode whose electrodes are concentric spheres, the inner being
the cathode and the ratio of diameters being 2 to 1. If the plate diameter is
2 crn, what will be the plate current for a potential difference of 100 volts?

8.10. Solve Prob. 8.9 with the outer electrode considered the cathode and
other conditions unchanged.

8.11. A plane-electrode triode has the dimensions of the tube of Prob. 7.1.
Calculate the mutual conductance for a plate potential of 100 volts and a grid
potential of half the cutoff value. Determine also the plate current per square
inch under these conditions.

8.12. A plane-electrode triode has a grid-plate spacing of 30 mils. Grid
wires are spaced 15 mils, and the screening fraction is 7l o. What must be the
cathode-grid spacing to give a mutual conductance of 5,000 micromhos per
in.2 if the plate voltage is 200 volts and the grid voltage is 1 volt negative?

8.13. Calculate the equivalent-diode spacing of the tube of Prob. 7.1 for a
plate voltage of 100 volts and a grid voltage of 2 volts negative by the formulas
of Eq. (7.53) and Eq. (8.45), and compare results.

8.14. Derive Eqs. (8.49) and (8.50).
8.16. From Eq. (8.49) obtain an expressioll for· the equivalent-diode radius

of a cylindrical triode. Calculate the equivalent-diode radius of the triode of
Prob. 7.3 by this fonnula, and compare with the result obtained by using Eq.
(7.58).

8.16. Calculate the mutual conductance and plate current for the tube of
Probe 7.3, assuming that the structure is 1 in. long and that the plate potential
is 500 volts while the grid potential is -20 volts.

8.17. It is desired to design a triode for high-power audio service. Assunle
an ideal cylindrical structure. Assume that the cathode is to be 2 mm in diam
eter and the plate to be 1 em in diameter. The electrode structure is to be 1 cm
in length. What must be the grid dimensions in order that the tube will have aL
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amplification factor of 100 and an average mutual conductance of 5,000 micro...
mhos when the plate potential is 500 volts?

8.18.. Given a plane-electrode diode whose cathode is emitting electrons having
an average velocity such that they can overcome a retarding potential of 2 volts.
Let the electrode spacing be 5 mm, and let the current that reaches the plate be
one-tenth of the emitted current. Find the location of the potential minimum
and the magnitude of the plate-current density for a plate 25 volts more positive
than the cathode. Use the relations of Eqs. (8.58) to (8.62).

8.19. The cathode of a plane-electrode diode is oxide-coated and operates at a
temperature of 1000oK. What is the transmitted-current density to a plate at a
potential that is 20 volts positive relative to cathode? Find the location and
magnitude of the potential minimum. Find also the fraction of the emitted
current that is transmitted to the plate.

8.20. A cylindrical diode is 1 in. long and has a plate diameter of ~ in. and a
tungsten filament whose diameter is 5 mils. Neglecting end effects and initial
velocities of electrons, calculate the plate current when the plate is 20 volts
positive with respect to the negative end of the filament and the direct voltage
drop along the filament is 10 volts. Calculate the plate current when the
filament is excited by an alternating voltage whose rms value is 10 volts and one
end of the filament is grounded. Ho\v does this differ from the current resulting
when the filament is heated by alternating current with the sa-me voltage drop
but with the center tap of the exciting transformer grounded?

8.21. Derive Eq. (8.85).
8.22. Carry out the steps leading to Eqs (8.22) to (8.24).

CHAPTER 9

9.1. Three triodes with constants as follows are operated in parallel:

""1 = 10 Gmt = 2,000 micromhos
/-L2 = 12 Gm2 = 5,000 micromhos
J.l.3 = 30 Gma = 3,000 micromhos

Calculate the equivalent amplification factor, mutual conductance, and plate
resistance.

9..2. A plane-electrode triode has the following dimensions:

dC(J = 40 mils To = 2 mils
a = 30 mils dop = 60 mils

Calculate the current-division factor. Calculate the ratio of plate to grid current
when the grid and plate are both positive and the plate potential is five times as
great as the grid potential, assuming that there is negligible secondary emission.

9.3. Estimate the current-division factor of the cylindrical triode having
the dimensions of the tube of Probe 7.3.

9.4. Calculate and plot contours of constant plate and grid current per square
inch of electrode structure of the triode of Probe 7.1. Let grid voltage range
from -100 to +100 volts. Let plate voltage range from - 500 to +500 volts.
Show constant current contours in all four quadrants. Assume that secondary
emission from both grid and plate is negligible.
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CHAPTER 10

10.1. A plane-electrode beam-po\ver tube has the following electrode dimen-
sions:

dc(} = 20 mils
dQ-v = 30 mils
dop = 70 mils

a = 20 mils
T g = 1 mil
T 8 = 1 mil

Calculate the amplification factor by the formula of Eq. (10.11). Compare
this value with that obtained from the product of the triode mu'~ as explained
in Sec. 10.2.

10.2. In an idealized beam-power tube the density of the current injected
into the screen-grid-plate region is 10 rna per cm2

• If the screen grid is at a
potential of 100 volts positive and the plate is at a potential of 10 volts negative,
at what point will the electrons come to rest and reverse direction. The screen
grid-plate spacing is 1 em.

10.3. In the beam-po\ver tube of Probe 10.1 the plate voltage is raised to 10
volts positive. For the same injected-current density determine \vhether a type
B distribution of potential is possible.

10.4. For the beam-po,ver tube of Prob. 10.1 let the screen-grid potential be
100 volts positive, the plate voltage be 10 volts positive, and the injected-current
density be variable. The potential distribution is of type B. Find the location
of the virtual cathode when the current transmitted to the plate is 0.25, 0.5, and
0.75 of the injected Cllrrent.

10.5. A beam-po\ver tube has a screen-grid potential of 300 volts and a plate
potential of 60 volts. The potential distribution is of type C with a potential
minimum of 30 volts. What must be the screen-plate distance for an injected
current of 48.5 rna per cm2?

10.6. A plane-electrode beam-power tube has a screen-grid-plate spacing of
0.5 cm. Screen grid and plate are kept at a potential of 50 volts. Indicate the
position of the potential minimum or virtual cathode as the injected-current
density is increased from zero to 50 rna per cm2 and then reduced to zero again.

10.7. A beam-power tube has its plane screen grid and plate separated a
distance of 0.8 em. Plot a curve of current density transmitted to the plate
against injected-current density as the injected-current density is increased from
zero to 50 rna per cm2 and reduced to zero again, when the screen grid is at a
potential of 100 volts and the plate is at a potential of 50 volts.

10.8. A plane-electrode beam-power tube has its screen grid and plate
separated a distance of 0.8 cm. Let the screen-grid potential be 100 volts and
'the injected-current density be held constant at 10 rna per cm 2• Plot a curve of
plate current against plate voltage as plate voltage is raised from zero to 100 volts
and then reduced to zero again.

CHAPTER 11

11.1. Derive an expression similar to that of Eq. (11.6) giving the maximum
potential between suppressor-grid wires when the plate potential has the general
value V p not equal to V 2. Let V 3 = o.
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11.2. Justify Eq. (11.9) qualitatively.
11.3. An idealized plane-electrode pentode has the following electrode

dimensions:
Tl = 1.5 mils
r2 = 1.75 mils
T3 = 2.5 mils

al = 12 mils
a2 = 18 mils
U3 = 60 mils

del = 10 mils
d12 = 60 mils
d23 = 120 mils
d3p = 80 mils

Calculate the ratio of plate to screen-grid current.
11.4. For the pentocle of Probe 11.3 determine the cathode charge per unit

area and the charge per unit length of each of the grids for the following potential
values:

Vc = Va = 0 VI = -1 volt V 2 = 200 volts V p = 250 volts

11 6. For the pentode of Probe 11.3 calculate the electrostatic amplification
factors j.Llp and J.l12.

11.6. Assuming that the value of m in Eq. (11.1) is 0.2, calculate the true
amplification factor of the pentode of Prob. 11.3.

11.7.. Calculate the mutual conductance of the pentocle of Probe 11.3 for
the electrode potentials of Probe 11.4 and for an m of 0.2.

11.8.. Calculate the plate resistance of the pentode of Probe 11.3 for the elec
trode potentials of Probe 11.4 and an m of 0.2.

11.9.. Plot curves similar to those of Fig. 11.12 for the pentode of Probe
11.3, assuming values of a3 of 30 and 90 as well as 60 mils. Plot curves with

V" P b· d V p - Vmin dO t N h t th V · 1 d h .112 as a SClssa an V 2 as or Ina e. ote t a e min InVO ve ere IS

the V 3 max of Eq. (11.6).
11.10. Plot curves similar to those of Fig. 11.13 for the pentode of Probe

11.3. Let d?p have a constant value of 200 mils, but plot curves for dap equal to

40 and 120 as well as 80 mils. Plot curves with ~: as abscissa and VI' ~2Vmin

as ordinate.
11.11. Plot curves similar to those of Fig. 11.18 showing the distribution of

the sidewise component of velocity of electrons scattered by the three grids of the
pentode of Prob. 11.3 operating with the electrode potentials of Probe 11.4.

11.12. From the results of Probe 11.11 calculate and plot the plate-voltage
plate-current characteristic.

CHAPTER 12

12.1. Find the rms voltage and current associated with the thermal-agitation
noise in a 10,000-ohm resistor over a band width of 50,000 cycles.

12.2. What is the available noise power from the resistor of Probe 12.1?
12.3. What is the noise power available from a 200-0hm resistor over a band

width of 10 me?
12.4. What is the noise power available from a parallel combination of a

resistance of 50,000 ohms at 20°C and a resistance of 100,000 ohms at 200°C over
a, band width of 2 mc?
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12.5. 'What is the noise voltage associated with a parallel combination of a
20,OOO-ohm resistor and a O.l-microfarad condenser over a band width of 50,000
cycles?

12.6. The relative power gain of a resistance-capacity coupled amplifier is
given by

where Gr/fm) is the mid-frequency power gain, 11 is the low-frequency 70.7 per
cent point, and 12 is the high-frequency 70.7 per cent point. What is the equiva-

lent band width from Eq. (12.1O)? Assume ~ > 100.

12.7. What direct current is required in a diode whose emission is tempera
ture-limited to give an rms noise current of 20 microamperes over a band widtll
of 5 me?

12.8. What is the rIDS noise current in a diode whose emission is space
charge-limited when the cathode temperature is 1000oK, the band width is 1 mc,
and the plate resistance is 10,000 ohms?

12.9. What is the rms noise current in a diode whose emission is space-charge
limited when the plate current is 10 rna, the plate voltage is 50 volts, and the
band width is 0.5 me?

12.10. What resistance in series with the grid circuit of a triode will produce
as much noise in the plate circuit as does the tube itself if the mutual conductance
is 5,000 micromhos, the amplification factor is 50, the cathode-grid spacing is 12
mils, and the grid-plate spacing is 25 mils?

12.11. What resistance in series with the grid of a triode will produce as much
noise in the plate circuit as does the gas in a triode when the grid-circuit resistance
is 1 megohm, the plate current is 10 rna, the positive-ion grid current is 0.1 micro
ampere, and the mutual conductance of the tube is 2,000 micromhos?

12.12. What is the resistance whose noise when placed in series with the grid
of an ideal pentode produces the same effect as does the actual tube when the
mutual conductance is 6,000 micromhos, the plate current is 10 rna, and the
screen current is 2 rna?

12.13. What is the noise figure of a secondary-emission multiplier tube using
six stages of multiplication when the secondary-emission ratio per stage is 5?

12.14. What is the noise figure of an intermediate-frequency amplifier having
a pentode input stage operating from a resistance of 600 ohms over a band
width of 3 mc? The mutual conductance of the tube is 7,000 micromhos, the
plate current is 10 rna, and the screen current is 2 rna.. If the output impedance
of the first stage is 2,000 ohms and the second tube in the amplifier has the same
characteristics as the first, will it contribute appreciably to the output noise?
What is the over-all noise figure including the effect of the second stage?

12.15. Derive an expression for the noise figure of three stages of amplification
in cascade.

12.16. A receiver uses a crystal mixer without r-f preamplification. If the
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crystal conversion gain is 0.6 and its noise temperature is 2.3, what will be the
noise figure of the receiver if the noise figure of the amplifier is 3.12?

CHAPTER 13

13.1. An electron moving with a velocity equivalent to 500 volts crosses a
plane boundary into a region where the potential is uniformly 100 volts less.
If the electron made an angle of 30 deg with the normal to the plane boundary
before crossing it, what angle will it make after? By how much must the
potential on the far side of the plane boundary be less than 500 volts for the same
angle of incidence in order that the electron will just be reflected back?

13.2. Derive a series expansion for potential similar to that of Eq. (13.21)
about a radial line of symmetry -ior two-dimensional potential fields expressed
in terms of polar coordinates rand 8. What angle do the equipotential lines
at a saddle point make with the radial line of symmetry in this case?

13.3. What is the radius of curvature of the equipotential line on the axis
of an equal-diameter two-cylinder lens at a distance of one radius from the
cylinder junction when the cylinder spacing is very smaIl?

13.4. An electric lens consists of a circular aperture in a plate between two
parallel plates. Plot the potential along the axis of the lens for the following
potentials and dimensions:

V 1 = 10 volts
V 2 == 2 volts
Vs = 50 volts

d1? = 3 mm
d 23 = 9 mm
R = 1.5mm

where the notation is that of Eq. (13.37)e
13.5. What is the focal length of the aperture lens of Probe 13.4?
13.6. Calculate the two focal lengths and the location of the two principal

planes of an equal-diameter two-cylinder lens for a voltage ratio of 4 to 1 by
the method of linear axial-potential segments.

13.7. Solve Prob. 13.6 by the method of joined circular segments.
13.8. Solve Probe 13.6 by the method of equivalent thin lenses.
13.9. For the lens of Prob. 13.6 what is the location of the image for an object

located fOUf lens diameters from the cylinder junction on the low-voltage side
of the lens, and what is the corresponding magnification?

13.10. Calculate and plot the P-Q curves for the Hutter lens of Fig. 13.26.
13.11. It is desired to use a lens that will operate \vith an object distance of

3 em and an image distance of 25 em. The voltage ratio to be used is to be 5 to 1.
If the resulting image is to have as small a size as is practically feasible, what
lens should you use?

13.12. Given a lens with the following constants:

11 = -1.8 mm
F 1 = -2.6 mm

12 = 4 mm
F2 = 2.8mm

Calculat~~p.d plot jmage distance ft,ud lateral magnification as a function of object
distance! . ~
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CHAPTER 14

8'45

14.1. Derive Eq. (14.26).
14.2. Derive Eq. (14.30).
14.3. Derive Eq. (14.31).
14.4. Derive Eq. (14.57).
14.5. How many ampere turns are required for a magnetic lens that is to

have a focal length of 2 em when the coil diameter is 3 em and the beam voltage
is 800 volts? What is the rotation associated with such a lens? ~

CHAPTER 16

15.1. A cathode gun of the aperture type shown in Fig. 15.5 has the following
dimensions: R = 1 mm, du = 3 mm, d23 = 6 mm. What is the amplification
factor determining current cutoff?

15.2. What is the radius of the crossover section of the beam of a gu~ cathode
for \vhich Tc = 2 mID, 8 = 0.1 radian, V 2 = 10 volts, and the cathode is' coated
with an oxide emitter operating at 10000 K?

16.3. What magnetic-flux density is required to produce a deflection of 2 cm
at a fluorescent screen 20 cm from the deflecting field if the region of uniform
field is 2.5 cm long and the beam voltage is 1,000 volts?

16.4:. An electron beam leaves an electron gun converging with a maximum
angle of 5 deg with the axis. The current is uniformly distributed over the beam.
If the total beam current is 1 rna and the beam voltage is 800 volts, where will
the minimum-diameter cross section occur and what will be the value of this
diameter? Assume that the original diameter of the beam is 2 mm. What will
be the diameter of the beam on a screen 25 cm from the electron gun?

15.5. At-what angle should a 1-kv beam with a current of 1 rna leave an elec~

tron gun in order that the cross section of minimum diameter will occur on a
screen 25 em away? Assume that the original diameter of the beam is 2 mm.

15.6. What is the maximum current that can be transmitted in the form of a
beam through a cylinder 2.5 cm lo'ng and 0.5 cm in diameter without wasting
any current in the absence of positiv&-ion neutralization? What is the imped
ance corresponding to this' current? What will be the maximum currept if it
is permitted to waste current? .

15.7. It is desired to construct a Pierce cathode with a convergent conical
beam. The cathode diameter is to be 1 cm; the initial angle of convergence of the
beam is to be 15 deg after ·the anode and 56 deg before the anode. What wilt
be the size of the anode aperture, and what voltage will be required to produce
a current of 500 rna? Indicate the shape of the cathode and anode electrodes
outside the beam. '

16.8. Design a Pierce cathode that will pass the maximum current through a
cylinder ~~ cm in diameter and 6 cm in length at a voltage of 1,000 volts.

15.9. Design a Pierce cathode that will produce a parallel circular beam Ji in.
in diameter and carrying a total current of 1 ampere at a voltage of 5,000 volts.

15.10. Design a Pierce cathode that Win produce a strip beam 2 rom thick
llnd carrying a current of 100 rna per cm2:at a voltage of 600 volts.

16.11. A set of electrostatic-deflection plates for an 800-volt beam is 2 cm
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long with a spacing of ~ em. At what frequency will the maximum deflection
be reduced to half the d-c value?

16.12. Derive an expression for the static deflection of a two-wire trans
mission line of wires of diameter d and spacing 8. The electrons are shot between
the wires in a direction normal to the plane of the wires. Extend this expression
to include transit-time effects.

16.13. Derive an expression for the spread of a sheet beam resulting from the
mutual electrostatic repulsion between electrons.

15.14. Derive an expression for the spread of a circular beam of electrons
including the effect of the magnetic forces involved.

16.16. At what angle must a beam whose initial diameter is 3 mm leave an
electron gun in order to have th~ minimum possible diameter at a screen 30 em
away if the beam current is 0.1 rna and the beam voltage is 1,000 v~lts? What
is the resultant minimum diameter at the screen?

16.16. Solve problem 15.15 for the case of a beam current of 1 rna, all other
conditions being the same.

CHAPTER 16

16.1. Calculate the inductance of a straight piece of wire 2 in. long and 20 mils
in diameter. What is the reactance of this inductance at 250 mc?

16.2. An ultra-high-frequency amplifier has a common grid and plate-circuit
inductance consisting of a lead 1 in. in length and 50 mils in diameter. What is
the component of input conductance due to this at 200 me if the input capacity
is 10 micromicrofarads and the tube conductance is 2,000 micromhos?

16.3. What is the input conductance of a tube due to electron transit-time
effects at a frequency of 100 mc if the tube has a mutual conductance of 2,000
micromhos, the cathode-grid spacing is 10 mils, the grid-plate spacing is 50 mils,
the effective voltage of the grid plane is 2 volts, and the plate potential is 100
volts?

16.4. A plane-electrode diode has a plate current of 100 rna at a plate potential
of 50 volts. (Cathode is one-sided, and there is a plate only on the emitting
side.) If the area of the cathode and plate are each 4 cm2, what is the r-f imped
ance of the diode at a frequency of 400 mc?

16.6. Calculate the components of the equivalent circuit of Fig. 16.13 for
the idealized 210 tube of Probe 7.1 if the effective cathode and plate area are each
1 in2• Take the plate potential as 100 volts, the grid potential as half the cutoff
value, and the frequency as 200 mc.

16.6. What is the effect of voltage-scaling a triode by a factor of 2 in dimen
sions upon the various operating constants and properties of the tube?

16.'1. What is the effect of completely scaling a tube in the direction of higher
frequencies if the tube size is reduced by 2 and the tube is to operate at twice
the frequency?

16.8. Two tubes are geometrically similar except that the smaller is half the
size of the larger. If the smaller is to be used at three times the frequepcy to
be applied to the larger, how will the tube constants and operating conditions
compare?
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16.9. At what frequency will the efficiency of a triode whose cathode-grid
spacing is 20 mils, whose grid-plate spacing is 100 mils, and whose plate voltage
is 1,600 volts have dropped to 90 per cent of its low-frequency value?

16.10. At what frequency will the efficiency of a triode whose cathode-grid
spacing is 6 mils and whose grid-plate spacing is 30 mils have dropped to 90
per cent of its low-frequency value if the plate voltage is 250 volts?

16.11. What is the frequency at which the tube of Prob. 16.10 would stop
oscillating if the amplification factor of the tube is 20?

16.12. What is the ratio of the grid-plate transit time to the cathode-grid
transit time of the tube of Prob. 16.10 if the effective potential of the grid plane
is 5 volts and the plate potential is 50 volts?

16.13. Obtain equations of motion for electrons in a plane-electrode diode
similar to those of Eq. (16.79) for the case of temperature-limited emission and
bias such that current flows for only 60 deg of the entire cycle.

CHAPTER 17

17.1. What is the skin depth of current penetration in copper at 4,000 mc?
What is the corresponding surface resistivity?

17.2. What is the skin depth of current penetration in iron at 3,000 me if the
volume resistivity of the iron is six times that of copper and the permeability is
50? What is the corresponding surface resistivity?

17.3. The energy stored in the field of a cavity that is tuned to 4,500 me
drops by a factor of 10 db in 5 Dlicroseconds. What is the Q of the resonator?

17.4. What is the error in the approximate expression for the impedance

of a parallel resonant circuit given by Eq. (17.13) when the value of a is ~?

17.5. What are the equivalent series resistance, inductance, and capacity of a
resonator whose shunt resistance is 100,000 ohms, whose Q is 15,000, and whose
resonant frequency is 2,500 mc?

17.6. Derive an expression for the beam coupling coefficient of a parallel
set of fine grids including second-order transit-time effects.

17.7. Obtain an expression for the beam coupling coefficient of a bunching
gap consisting of two equal-diameter cylinders placed end to end without grids.

17.8. Construct a distance-time diagram for electrons bunched by a set of
plane grids. The depth of modulation is 0.15, the beam voltage is 1,000 volts,
and the frequency is 3,000 mc. Use at least 18 lines per cycle.

17.9. Repeat Prob. 17.8 for a depth of modulation of 0.30.
17.10. The bunching grids of a klystron amplifier are 2 mm apart. If the

beam voltage is 2,000 volts and the drift space is 2.5 em long, what must be the
value of the r-f voltage at the bunching grids to produce a maximum fundamenta.l
component of current at the catcher? The operating frequency is 3,000 rae.
For the same bunching grids, what must be the magnitude of an exciting voltage
of 300-mc frequency to produce a maximum value of tenth-harmonic current
at the catcher?

17.11. A klystron amplifier has buncher and catcher grids that are fine and
plane a·nd spaced 2 mm apart. The length of the drift space is 2.5 em. The
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operating frequency is 3,000 mc. The beam current is 20 rna at 1,500 volts.
Calculate and plot small-signal transconductance as a function of beam voltage
for the following cases:

a. Emission is space-charge-limited so that beam current is proportional to
the three-halves power of the beam voltage.

b. Beam current is constant as beam voltage is varied.

17.12. What is the theoreticar power required to bunch a beam of 30 rna at
300 volts when the bunching gap spacing is 1.5 mm?

17.13. Construct a distance-time diagram for~ a reflex-klystron oscillator
whose potential field in the reflector space is linear. Let the time spent by an
unmodulated electron in the reflector space be 2.75 cycles. Let the depth of
modulation be such that maximum power is obtained from the be&m. (Con
struction is simplified if a template of the parabolic curve involved is cut and all
curves are drawn from this.) Use at least 18 lines per cycle.

17.14. Plot the negative of the small-signal admittance Elpiral of a reflex
klystron oscillator whose beam conductance is 100 micromhos and whose beam
coupling coefficient is unity. The tube has a resonator whose shunt resistance at
the resonant frequency of 3,500 me is 1,000 ohmg and whose Q is 200. Plot
the line showing the locus of resonator admittance as frequency is varied. On
which transit-time mode will oscillations first occur? On which mode will the
power output be maximum? What will be the limiting frequencies of oscillation
on the two lowest modes? What will be the frequency stability in megacycles
per volt at mid-mode for the lowe~t mode, assuming that cathode and reflector
voltages vary proportionately?

17.15. Derive Eq. (17.89).
17.16. Derive Eq. (17.93).
17.17. Discuss qualitatively the factors detennining optimum gap spacing

in a reflex-klystron oscillator of the evacuated-cavity type from the standpoint of
maximum output power.

17.18. What is the maximum power that can be obtained from a reflex
klystron oscillator having a beam current of 15 rna and operating with a beam
voltage of 300 volts, if the gap spacing is 1.5 mm, the resonant frequency is
3,500 mc, the unloaded shunt resistance is 1,000 ohms, and the unloaded Q is
3OO? Consider that the Q and shunt resistance can be reduced by coupling an
external resistive load through a lossless coupling loop. What is the resonator
efficiency for a condition of maximum output power?

17.19. Plot curves similar to those of Fig. 17.48 for k = 0.01, Ql = 100,
WI = W2, but with Q2 assuming values of 50 and 200 as well as 100.

17.20. What is the frequency stability in kilocycles per volt of a two-resonator
klystron oscillator whose operating frequency is 3,000 me and whose beam voltage
is 1,500 volts if Qa = 250, Qb = 60, and k == 0.02, the transit angle between
resonators being &r radians?

17.21. Derive Eq. (17.134).
17.22. What is the starting current of the tube in Probe 17.20 if the beam

coupling coefficient is 0.7 and the mutual reactance between resonators is 50
ohms?
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A

Abbe formula, 741
Absorption of gases, 808
Action, least, principle of, 123
Adsorption of gases, 808
Aluminum, 803
Amplification factor, 128-165

of pentode, 286, 288
of screen-grid tube, 248
of triodes, definition of, 206

high-mu cylindrical-electrode, 151
high-mu plane-electrode, 148
low-mu cylindrical-electrode, 137
low-mu plane-electrode, 128
nonideal, 156
for small cathode-grid spacing, 162
for small grid-plate spacing, 159
for small screening fraction, 160

of tubes in parallel, 212
of unconventional tubes, 165
variation of, 208

Analytic functions, 84
Atomic numbers, 21

tables of, 811-812
Atomic weights, 21

tables of, 811-812
Atoms, 20, 21
Avogadro's law, 749

B

Barium, 809
Batalum, 809n.
Beam coupling coefficient, 541
Beam-powertub~ 9,245
Bessel function, 71, 553-557, 823
Black-body radiation, 31
Boyle's law, 749
Bunching of electron beam, 541-556

large-signal effects on, 570

Bunching of electron beam, power re
quired for, 562

Bunching parameter, 546, 552

c

Camera tubes, 728
Campbell's formula, 626
Cathode lead inductance, 478
Cathode-ray beam deflection, 101-103,

425-429
electrostatic, 101
magnetic, 425

Cathode-ray tubes, 412-472
description of, 12
form of, 412
photography of traces, 470
postdeflection acceleration in, 428

Cathodes, 413, 449-450
of electron gun, 413
high-efficiency, 449
Pierce, 450

Cauchy-Riemann conditions, 85
Cavity resonators, 529

excitation of, by electrons, 537
Q of., definition of, 534
shunt resistance of, definition of, 535

Ceramics, vacuum, 808
Charles's law (Gay-Lussac's), 749
Child-Langmuir space-charge law, 171

fot' cylindrical-electrode diode, 173
filament voltage-drop effect on, 189
initial-velocity effect on, 191
for plane-electrode diode, 171

Complex functions, 82
Concentric-line resonator, 591-606

circumferential resonances in, 605
equivalent circuit of, 592
tuning curves for, 594

Conformal transformations, 82-96
Contact potential, 48

353



854 VACUUM TUBES

Conversion transconductance, 705
Converter, pentagrid, 714
Copper, 797, 802
Copper-to-glass seals, 797
Coulomb's law, 59
Coupled circuits, 611
Current, induced by electron motion, 482

ultra-high-frequency space-charge, 496
Current-division factor, 225
Cyclotron frequency, 632
Cylindrical-electrode triode, 135-142,149-

152
electron paths in, 215
field transformation equation' for, 135
potential contours of, 138
potential profiles in, 139-144

D

De Broglie wave length, 740
Deflection, electron-beam, 101-103, 425-

429
electrostatic, 425
magnetic, 426
ultra-high-frequency, 466

Deflection tubes, 727
Degassing, 808
Diode, 5, 168-200, 495-501

q,dmittance at ultra-high frequency, 501
impedance at ultra-high frequency, 499
ultra-high-frequency current form, 520

Diode characteristics, 5
Directed-ray electron tubes, 724
Disk-seal tubes, 524
Disk seals, 798
Dumet, 797
Dynatron, 718

E

Einstein's photoelectric equation, 679,
683

Electric flux, definition of, 60
Electric intensity, definition of, 59
Electron, 19, 104, 740

equivalent wave length of, 740
mass of, longitudinal, 104

rest, 19
transverse, 104

radius of, 19

Electron beam, 5, 328--474
bunching of, 541-556,562,510
current efficiency of, 439
electric force within, 441
electrodes for conical beam, 456-458,
electrodes for cylindrical beam, 452-

453
impedance for maximum current, 448
intensity efficiency of, 439
magnetic forces within, 441
maximum current through cylinder,

447
maximum current with positive ions,

447
negative ions in, 427
slope of spread of, 465
spot size, space-charge limitation of,

440
thermal limitation of, 440

spread due to space-charge, 441
universal spread chart for, 444, 445
universal spread formula for, 443

Electron charge, 19
Electron gun, 412-425

amplification factor of, 417
cutoff relations in, 415
design of, 414
size of crossover in, 419
unipotential, 451, 455-462

Electron-gun structures, typical, 423, 424
Electron microscope, 738--746

electrostatic, 745
magnetic, 735
resolving power of, 740
stability of, 744
structure of, 734

Electron motion, 97-124
in combined electric and magnetic

fields, 116, 406
in crossed magnetic and alternating

electric fields, 636
in crossed magnetic and radial electric

fields, 642
in crossed static fields, 631
current induced by, 482
cycloidal path, 117, 633
initial velocity at angle with uniform

electric field, 99
in nonuniform magnetic field, 114
relativity effects OD, 103
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Electron motion, segments, circular, 122
trochoidal path of, 119, 635
in two-dimensional electric fields, 107
in uniform electric field, 97
in uniform magnetic field, 111

Electron optics, 328-393
Electron paths, 97-124

in beam-power tube, 249
in cylindrical-electrode triodes, 216
determination of, 121-124

circular-segments method, 122
elastic-membrane method, 123
graphical methods, 121
least-action method, 123
numerical methods, 121

helical, in uniform magnetic field, 394
in magnetron, 641
in magnetron with space charge, 649
in pentod~ 283, 291, 292
in photomultiplier tubes, 696
in plane-electrode triodes, 215

Electron-ray indicator tubes, 723
Electron tubes, directed-ray, 724
Electrostatic field, of pentocle, 283

of triodes, 125-167
cylindrical-electrode, 138
plane-electrode, 125

Elements, periodic table of, 21, 812
properties of, 811

Emission, 23-57
field, 23, 24
secondary, 48-57

of alkali halides, 55
current ratio, 49
dependence upOn angle, 53, 54
of insulators, 56
velocity distribution of, 52-53

transient, 46
types of emitters, 35-42

atomic film, 39-42
thoriated tungsten, 39--41

oxide, 42
pure metal, 35-39

tantalum, 36
tungsten, 35, 37, 38

Emission equation, 30

F

Fermat principle, 328
Fernico, 798, 799

Field emission, 23, 24
Fluorescence, 430
Fluorescent materials, 429-437

and blocking potential, 437
characteristics of, 433
electrical properties of, 434
luminous properties of, 431
make-up of, 430
photographic properties of, 471
and sticking potential, 437

Flux, electric, definition of, 60
Fractionating pumps, 790

G

Gain-band-width law, 482
Gas laws, 749
Gases, absorption of, 808

adsorption of, 808
molecular diameters of, 754
occlusion of, 808

Gauges, McLeod, 760-764
Pirani, 766-770
thermocouple, 770
triode ionization, 770-775

Gay-Lussac's (Charles's) law, 749
Getters, 809
Glass, 791-795

composition of, 792, 794
hard, 792
physical properties of, 7U4
soft, 792
thermal expansion ot, 794, 800
viscosity of, 793

Glass-metal sealing, 796
Glass-mica sealing, 799
Glass-porcelain sealing, 799
Glow-discharge tube, 718
Gradient of potential, 61
Grid current, 2, 8, 237

primary law of, 224
secondary emission, effect of, 234

Grid-input conductance, 479, 492
Grid-input resistance, 494

H

Hei! tube, 616
lIeptode, 710-716
Hexode, 702-710
Housekeeper seals, 797
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I

IcoDoscope, 730-734
operation of, 733
structure of, 731

Image-dissector tube, 729-730
Image iconoscope, 735
Image orthicon, 736
Induced currents, 482-495

in diodes, 483, 486
in triode grid, 487, 489

Insulators, 807
Intensity, electric, definition of, 59
Ionization, 22 '

by collision, 756
Ionization gauge, 770
Ionization potentials, 690
Ions, 21
Isotopes, 21

K

Klystron amplifier, 556-566
Klystron oscillators, 606-616

condition for oscillation, 610
frequency stability, 615
phase requirements, 614
reflex (see Reflex-klystron oscillators)
starting current, 615

Klystrons, 527-620
beam current, 545
bunching principle for, 527
bunching theory for, 541
cascade amplifier, 564-566
description of, 13
equivalent circuits, 560, 607

Kovar, 798

L

Lagrange's law, 360
Laplace's equation, 67-74

curvature interpretation of, 69
difference form of, 72-74

for cylindrical coordinates, 74
for rectangular coordinates, 72

solutions of, 70-72
for cylindrical coordinatea, 71
for polar coordinates, 71
for rectangular cOQrdinates, 70

Larmor frequency, 633
Least action, principle of, 123, 330
Lenses, electrostatic electron, 328-393

aberrations in, 387-393
astigmatism, 390
chromatic, 389
coma, 390
curvature of field, 391
distortion of field, 391
spherical, 392

characteristics of, 332-337
calculation of, 360-365
focal length of, 332

of specific lenses, 369-373
focal point of, 332

of specific lenses, 369-373
measurement of, 365-369
P-Q curves, 377-386

equation of, 335, 336, 358
fields of, 337-349
third-order imagery, theory of, 388
types of, 330-336, 350-360

aperture, 345, 354
cylinder, 342-345
Einzel, 386
Hutter, 375-377
thick, 355
thin, 350

magnetic, 394-411
aberrations in, 405
of circular turn of wire, 400

electron rotation in, 340
focal length of, 399

Glazer, 401
Lighthouse oscillator, 524
Lighthouse tube, 526
Logarithmic transformation, 87
Luminescence, 430

M

McLeod gauge, 760-764
design chart for, 764
for linear-scale operation, 762
long form of, 761
for quadratic-scale operation, 762
short form of, 761

Magnetic fields with axial symmetry,
396
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~agnetrons, 621-674
angular velocity of electrons in, 644
cutoff relations of, 645
dimensional relations of, 665
electron action in, 639
electron efficiency in, 658
electron paths in, 641, 649
electron reaction with rotating fields,

656
equivalent circuit of, 628
frequency pulling in, 674
mode interference in, 630
optimum dimensions for, 661
output characteristics of, 667
output coupling for, 624
performance chart for, 673
resonant properties of, 625
Rieke diagram of, 672
rising-sun type, 630
space charge in, 648
and strapping, 630
structural form of, 622
tuning of, 631

Manometers, 759
Maxwellian distribution of velocities, 24

25,750
Mean free path, of an electron, 755

of a molecule, 753
Mercator projection, 89, 91
Mercury-diffusion pump, 782
Meson, 20
Mesotron, 20
Metal-to-metal seals, SOl
Metals, 801-806

lattice constant for, 29
melting temperature of, 29, 804
miscellaneous properties of, 804
radiation efficiencies of, 33, 34
thermal expansion of, 795, 800, 804
vapor pressure of, 804
work function of, 25-29

Mica, 807
Microscope, electron (see Electron Micro-

scope)
Mixer tubes, 705
Molecular diameters, 754
Molecules, 22
Molybdenum, 797, 803
Monoscope, 737

Mosaic, photoelectric, 734
Mutual conductance, 206

of pentodes, 288
of triodes, 188, 189
of tubes in parallel, 212
variation of, 209

N

Negative-resistance devices, 718 -723
feedback circuits, 722
pentode circuit, 720
push-pull circuit, 721
special tubes, 718, 722

Negative-transconductance tubes, 723
Neumann function, 71, 823
Neutrons, 20
Newton's law, 359
Nickel, 802
Noise, in circuits, 298-305

in re'listors, 299
in tubes, 298-327

in diodes, 306, 308
from gas, 312
in mixer tubes, 314
in pentodes, 313
in phototubes, 318
in secondary-electron multipliers,

319
sources of, 305
in triodes, 310
at ultra-high frequency, 316
in velocity-modulation tubes, 317

Noise fig'ure, 321-326
definition of, 321
measurement of, 325
for networks in cascade, 323

Nonex, 792, 794, 795, 797

o

Occluded gases, 808
Octode, 716
Oil-vapor vacuum pumps, 784-791

air-cooled, 788
fractionating, 790
water-cooled, 787

Orthicon, 735
Oscillator, klystron, 6O(H)16
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Oscillator, lighthouse, 526
reflex-klystron, 571-606
triode, 507

p

Pentagrid converter, 714
Pentocles, 266-297

amplification factor of, 286, 288
current division in, 272
design considerations for, 289
electron paths in, 283, 291, 292, 296
electrostatic field of, 279
plate-current characteristics of, ~67
plate resistance in, 288
screen-current characteristics of, 269
transconductance in, 288

Periodic table of the elements, 21, 812
Phosphorescence, 430
Phosphors (see Fluorescent materials)
Photoelectric mosaic, 734
Photoemission, 675-683

dependence of initial velocity upon
frequency, 679

dependence upon illumination, 678
theory of, 681

Photographic-film sensitivities, 473
Photomultiplier tubes, 694-701

electron paths in, 696
noise in, 697

Photon, 20, 682
Phototubes, 675-700

gas-type, 688
frequency distortion in, 692

general form of, 675
use of, 693
vacuum-type, 685

Pirani gauge, 766-770
Plane-electrode triodes, 125-135, 142-

149
electron paths in, 215
field transformation of, 127
potential contours of, 130, 131
potential profiles of, 132-135

Plate resistance, 207-212
definition of, 207
of tubes in parallel, 212
variation of, 210

Platinum, 796
Poisson's equation, 67

Polar azimuthal equidistant projection,
89-96

Porcelain, 799, 808
Positron, 20
Potential, 58-124

contours of, radius of curvature for,
341

current-flow models of, 76, 80
definition of, 60
gradient of, 61
membrane models of, 75
profiles of, 70
series expansion for axial, 339
sketching of fields, 80

Power-emission paper, 33
Pressure measurement, 757-775

by McLeod gauge, 760-764
by manometer, 759
by Pirani gauge, 766-770
by spark-discharge tube, 764
by thermocouple gauge, 770
by triode gauge, 770-775

Pressure scales, 748
Principal rays of lenses, 332
Principle of least action, 123, 330
Proton, 20
Pump-oil characteristics, 786
Pumping speed, 775-779

of aperture, 775
definition of, 775
of tubing, 776

Pumps (see Vacuum pumps)
Pyrex, 792-797, 800

Q

Q of cavity resonators, 534
Quantum theory, 682

R

Reflex-klystron oscillators, 571-606
admittance spiral, electronic, 581
band width of modes in, 590
beam admittance for, 577
beam conductance for, 580
blind spots in, 601
broad-band operation of, 591
bunching theory of, 575
distance-time diagram for, 576
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Reflex-klystron oscillators, general form
of, 571

mode plot for, 583, 596
calculation of, 595
ideal, 599

power relations in, 585
reaction \vith resonant circuit, 583
starting current for, 590
voltage stability of, 591

Resonator, concentric-line, 591-606
RLC circuit, transient response of, 579

s

Scaling, voltage, 506, 667
wave-length, 506, 667

Schottky effect (Schrot effect), 46, 306
Schwartz-Christoffel transformation, 86
Screen-grid tube, 238-245

plate-current characteristics of, 241
screen-current characteristics of, 244

Secondary emission (see Emission, sec-
ondary)

Shot noise (see Schottky effect)
Silicones, 785
Skin effect, 530, 822
Snell's law, 329
Space-charge effects, 168-200

in cylindrical-electrode diodes, 173-
181

equivalent dielectric constant of, 651
in plane-electrode diode, 168-173
in screen-grid-plate space, 250

Spark-discharge tube, 764
Spot welding, 806
Stefan-Boltzmann law, 31

T

Tantalum, emission of, 36, 803
Television tubes, 728-738
Tetrodes, 238-265

beam-power tube, 245-265
screen-grid tube, 238-245
at ultra-high frequency, 522

Thermocouple pressure gauge, 770
Thoriated-tungsten emission, 39-41
Transconductance (see Mutual conduc-

tance)
Transient emission, 46
Tra.nsient response of RLC ~ircuit, 579

Transit time, 195-198
in diodes, 195-198

at ultra-high frequency, 487, 516
in triodes, 514, 520

at ultra-high frequency, 490, 491
\vith space charge, 515-516

Transit-time effects, 482-524
in diodes with space charge, 495-501,

516-520
onset in triodes, 490-495
in triodes with space charge, 501-502

Triode ionization gauge, 770
Tri0de oscillation, 507
Triodes, 201-237

constant-current curves of, 204, 224
current law in cylindrical-electrode, 188

in plane-electrode, 183
effective grid radius for, 230
equivalent-diode radius for, 155
equivalent-diode spacing for, 153, 187
grid-current characteristics of, 218-237
mutual conductance of cylindrical-

electrode, 189
of plane-electrode, 188

plate-current characteristics of, 201
218

ultra-high-frequency, 475-522
bunching effects in, 617
current form, 522
electrostatic field of, 125-167
lighthouse, 524
output versus frequency, 508, 509
small-signal transadmittance, 502
transit time, 512, 515

Tube-noise values, 327
Tungsten, 35-38, 796, 800, 803, 805, 807

u

tntI'a-high-frequency effects, 475-526
large-signal effects, 516
limit of triode oscillation, 507
scaling factors for ultra-high-frequency

tubes, 506
on tetrodes, 522
on triode current, 522
on tube output, 475
on tube reactance, 477

Ultra-high-frequency tubes, types of.
481
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Unipotential electron gun, 451, 455-462
design chart for, 462
electrode shapes for, 456-458
focal lengths of, 459
general form of, 460
location of focal point, 461

Units, rationalized mks, 58, 817-820

v

Vacuum gauges (see Gauges)
Vacuum pumps, mechanical, 780-781

vapor, 781-791
Vapor pressure, of mercury, 784

of oils, 785

Velocity distributioDj Fermi-Dirac, 24
in a gas, 751
Maxwellian, 24-25, 750

Virtual cathode, 191, 194, 253
Voltage scaling, 506, 667

w

Wave-length scaling, 506, 667
Work function, 25, 27, 29, 679, 681

Z

Zirconium, 810






	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827
	828
	829
	830
	831
	832
	833
	834
	835
	836
	837
	838
	839
	840
	841
	842
	843
	844
	845
	846
	847
	848
	849
	850
	851
	852
	853
	854
	855
	856
	857
	858
	859
	860
	861
	862
	863
	864
	865
	866
	867
	868
	869
	870
	871
	872
	873
	874
	875
	876
	877



